File size: 44,901 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 |
"""Ordering Points To Identify the Clustering Structure (OPTICS)
These routines execute the OPTICS algorithm, and implement various
cluster extraction methods of the ordered list.
Authors: Shane Grigsby <[email protected]>
Adrin Jalali <[email protected]>
Erich Schubert <[email protected]>
Hanmin Qin <[email protected]>
License: BSD 3 clause
"""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import warnings
from numbers import Integral, Real
import numpy as np
from scipy.sparse import SparseEfficiencyWarning, issparse
from ..base import BaseEstimator, ClusterMixin, _fit_context
from ..exceptions import DataConversionWarning
from ..metrics import pairwise_distances
from ..metrics.pairwise import _VALID_METRICS, PAIRWISE_BOOLEAN_FUNCTIONS
from ..neighbors import NearestNeighbors
from ..utils import gen_batches
from ..utils._chunking import get_chunk_n_rows
from ..utils._param_validation import (
HasMethods,
Interval,
RealNotInt,
StrOptions,
validate_params,
)
from ..utils.validation import check_memory, validate_data
class OPTICS(ClusterMixin, BaseEstimator):
"""Estimate clustering structure from vector array.
OPTICS (Ordering Points To Identify the Clustering Structure), closely
related to DBSCAN, finds core sample of high density and expands clusters
from them [1]_. Unlike DBSCAN, keeps cluster hierarchy for a variable
neighborhood radius. Better suited for usage on large datasets than the
current sklearn implementation of DBSCAN.
Clusters are then extracted using a DBSCAN-like method
(cluster_method = 'dbscan') or an automatic
technique proposed in [1]_ (cluster_method = 'xi').
This implementation deviates from the original OPTICS by first performing
k-nearest-neighborhood searches on all points to identify core sizes, then
computing only the distances to unprocessed points when constructing the
cluster order. Note that we do not employ a heap to manage the expansion
candidates, so the time complexity will be O(n^2).
Read more in the :ref:`User Guide <optics>`.
Parameters
----------
min_samples : int > 1 or float between 0 and 1, default=5
The number of samples in a neighborhood for a point to be considered as
a core point. Also, up and down steep regions can't have more than
``min_samples`` consecutive non-steep points. Expressed as an absolute
number or a fraction of the number of samples (rounded to be at least
2).
max_eps : float, default=np.inf
The maximum distance between two samples for one to be considered as
in the neighborhood of the other. Default value of ``np.inf`` will
identify clusters across all scales; reducing ``max_eps`` will result
in shorter run times.
metric : str or callable, default='minkowski'
Metric to use for distance computation. Any metric from scikit-learn
or scipy.spatial.distance can be used.
If metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable
should take two arrays as input and return one value indicating the
distance between them. This works for Scipy's metrics, but is less
efficient than passing the metric name as a string. If metric is
"precomputed", `X` is assumed to be a distance matrix and must be
square.
Valid values for metric are:
- from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
'manhattan']
- from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski',
'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao',
'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean',
'yule']
Sparse matrices are only supported by scikit-learn metrics.
See the documentation for scipy.spatial.distance for details on these
metrics.
.. note::
`'kulsinski'` is deprecated from SciPy 1.9 and will be removed in SciPy 1.11.
p : float, default=2
Parameter for the Minkowski metric from
:class:`~sklearn.metrics.pairwise_distances`. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
metric_params : dict, default=None
Additional keyword arguments for the metric function.
cluster_method : str, default='xi'
The extraction method used to extract clusters using the calculated
reachability and ordering. Possible values are "xi" and "dbscan".
eps : float, default=None
The maximum distance between two samples for one to be considered as
in the neighborhood of the other. By default it assumes the same value
as ``max_eps``.
Used only when ``cluster_method='dbscan'``.
xi : float between 0 and 1, default=0.05
Determines the minimum steepness on the reachability plot that
constitutes a cluster boundary. For example, an upwards point in the
reachability plot is defined by the ratio from one point to its
successor being at most 1-xi.
Used only when ``cluster_method='xi'``.
predecessor_correction : bool, default=True
Correct clusters according to the predecessors calculated by OPTICS
[2]_. This parameter has minimal effect on most datasets.
Used only when ``cluster_method='xi'``.
min_cluster_size : int > 1 or float between 0 and 1, default=None
Minimum number of samples in an OPTICS cluster, expressed as an
absolute number or a fraction of the number of samples (rounded to be
at least 2). If ``None``, the value of ``min_samples`` is used instead.
Used only when ``cluster_method='xi'``.
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
Algorithm used to compute the nearest neighbors:
- 'ball_tree' will use :class:`~sklearn.neighbors.BallTree`.
- 'kd_tree' will use :class:`~sklearn.neighbors.KDTree`.
- 'brute' will use a brute-force search.
- 'auto' (default) will attempt to decide the most appropriate
algorithm based on the values passed to :meth:`fit` method.
Note: fitting on sparse input will override the setting of
this parameter, using brute force.
leaf_size : int, default=30
Leaf size passed to :class:`~sklearn.neighbors.BallTree` or
:class:`~sklearn.neighbors.KDTree`. This can affect the speed of the
construction and query, as well as the memory required to store the
tree. The optimal value depends on the nature of the problem.
memory : str or object with the joblib.Memory interface, default=None
Used to cache the output of the computation of the tree.
By default, no caching is done. If a string is given, it is the
path to the caching directory.
n_jobs : int, default=None
The number of parallel jobs to run for neighbors search.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
Attributes
----------
labels_ : ndarray of shape (n_samples,)
Cluster labels for each point in the dataset given to fit().
Noisy samples and points which are not included in a leaf cluster
of ``cluster_hierarchy_`` are labeled as -1.
reachability_ : ndarray of shape (n_samples,)
Reachability distances per sample, indexed by object order. Use
``clust.reachability_[clust.ordering_]`` to access in cluster order.
ordering_ : ndarray of shape (n_samples,)
The cluster ordered list of sample indices.
core_distances_ : ndarray of shape (n_samples,)
Distance at which each sample becomes a core point, indexed by object
order. Points which will never be core have a distance of inf. Use
``clust.core_distances_[clust.ordering_]`` to access in cluster order.
predecessor_ : ndarray of shape (n_samples,)
Point that a sample was reached from, indexed by object order.
Seed points have a predecessor of -1.
cluster_hierarchy_ : ndarray of shape (n_clusters, 2)
The list of clusters in the form of ``[start, end]`` in each row, with
all indices inclusive. The clusters are ordered according to
``(end, -start)`` (ascending) so that larger clusters encompassing
smaller clusters come after those smaller ones. Since ``labels_`` does
not reflect the hierarchy, usually
``len(cluster_hierarchy_) > np.unique(optics.labels_)``. Please also
note that these indices are of the ``ordering_``, i.e.
``X[ordering_][start:end + 1]`` form a cluster.
Only available when ``cluster_method='xi'``.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
DBSCAN : A similar clustering for a specified neighborhood radius (eps).
Our implementation is optimized for runtime.
References
----------
.. [1] Ankerst, Mihael, Markus M. Breunig, Hans-Peter Kriegel,
and Jörg Sander. "OPTICS: ordering points to identify the clustering
structure." ACM SIGMOD Record 28, no. 2 (1999): 49-60.
.. [2] Schubert, Erich, Michael Gertz.
"Improving the Cluster Structure Extracted from OPTICS Plots." Proc. of
the Conference "Lernen, Wissen, Daten, Analysen" (LWDA) (2018): 318-329.
Examples
--------
>>> from sklearn.cluster import OPTICS
>>> import numpy as np
>>> X = np.array([[1, 2], [2, 5], [3, 6],
... [8, 7], [8, 8], [7, 3]])
>>> clustering = OPTICS(min_samples=2).fit(X)
>>> clustering.labels_
array([0, 0, 0, 1, 1, 1])
For a more detailed example see
:ref:`sphx_glr_auto_examples_cluster_plot_optics.py`.
"""
_parameter_constraints: dict = {
"min_samples": [
Interval(Integral, 2, None, closed="left"),
Interval(RealNotInt, 0, 1, closed="both"),
],
"max_eps": [Interval(Real, 0, None, closed="both")],
"metric": [StrOptions(set(_VALID_METRICS) | {"precomputed"}), callable],
"p": [Interval(Real, 1, None, closed="left")],
"metric_params": [dict, None],
"cluster_method": [StrOptions({"dbscan", "xi"})],
"eps": [Interval(Real, 0, None, closed="both"), None],
"xi": [Interval(Real, 0, 1, closed="both")],
"predecessor_correction": ["boolean"],
"min_cluster_size": [
Interval(Integral, 2, None, closed="left"),
Interval(RealNotInt, 0, 1, closed="right"),
None,
],
"algorithm": [StrOptions({"auto", "brute", "ball_tree", "kd_tree"})],
"leaf_size": [Interval(Integral, 1, None, closed="left")],
"memory": [str, HasMethods("cache"), None],
"n_jobs": [Integral, None],
}
def __init__(
self,
*,
min_samples=5,
max_eps=np.inf,
metric="minkowski",
p=2,
metric_params=None,
cluster_method="xi",
eps=None,
xi=0.05,
predecessor_correction=True,
min_cluster_size=None,
algorithm="auto",
leaf_size=30,
memory=None,
n_jobs=None,
):
self.max_eps = max_eps
self.min_samples = min_samples
self.min_cluster_size = min_cluster_size
self.algorithm = algorithm
self.metric = metric
self.metric_params = metric_params
self.p = p
self.leaf_size = leaf_size
self.cluster_method = cluster_method
self.eps = eps
self.xi = xi
self.predecessor_correction = predecessor_correction
self.memory = memory
self.n_jobs = n_jobs
@_fit_context(
# Optics.metric is not validated yet
prefer_skip_nested_validation=False
)
def fit(self, X, y=None):
"""Perform OPTICS clustering.
Extracts an ordered list of points and reachability distances, and
performs initial clustering using ``max_eps`` distance specified at
OPTICS object instantiation.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features), or \
(n_samples, n_samples) if metric='precomputed'
A feature array, or array of distances between samples if
metric='precomputed'. If a sparse matrix is provided, it will be
converted into CSR format.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
self : object
Returns a fitted instance of self.
"""
dtype = bool if self.metric in PAIRWISE_BOOLEAN_FUNCTIONS else float
if dtype is bool and X.dtype != bool:
msg = (
"Data will be converted to boolean for"
f" metric {self.metric}, to avoid this warning,"
" you may convert the data prior to calling fit."
)
warnings.warn(msg, DataConversionWarning)
X = validate_data(self, X, dtype=dtype, accept_sparse="csr")
if self.metric == "precomputed" and issparse(X):
X = X.copy() # copy to avoid in-place modification
with warnings.catch_warnings():
warnings.simplefilter("ignore", SparseEfficiencyWarning)
# Set each diagonal to an explicit value so each point is its
# own neighbor
X.setdiag(X.diagonal())
memory = check_memory(self.memory)
(
self.ordering_,
self.core_distances_,
self.reachability_,
self.predecessor_,
) = memory.cache(compute_optics_graph)(
X=X,
min_samples=self.min_samples,
algorithm=self.algorithm,
leaf_size=self.leaf_size,
metric=self.metric,
metric_params=self.metric_params,
p=self.p,
n_jobs=self.n_jobs,
max_eps=self.max_eps,
)
# Extract clusters from the calculated orders and reachability
if self.cluster_method == "xi":
labels_, clusters_ = cluster_optics_xi(
reachability=self.reachability_,
predecessor=self.predecessor_,
ordering=self.ordering_,
min_samples=self.min_samples,
min_cluster_size=self.min_cluster_size,
xi=self.xi,
predecessor_correction=self.predecessor_correction,
)
self.cluster_hierarchy_ = clusters_
elif self.cluster_method == "dbscan":
if self.eps is None:
eps = self.max_eps
else:
eps = self.eps
if eps > self.max_eps:
raise ValueError(
"Specify an epsilon smaller than %s. Got %s." % (self.max_eps, eps)
)
labels_ = cluster_optics_dbscan(
reachability=self.reachability_,
core_distances=self.core_distances_,
ordering=self.ordering_,
eps=eps,
)
self.labels_ = labels_
return self
def _validate_size(size, n_samples, param_name):
if size > n_samples:
raise ValueError(
"%s must be no greater than the number of samples (%d). Got %d"
% (param_name, n_samples, size)
)
# OPTICS helper functions
def _compute_core_distances_(X, neighbors, min_samples, working_memory):
"""Compute the k-th nearest neighbor of each sample.
Equivalent to neighbors.kneighbors(X, self.min_samples)[0][:, -1]
but with more memory efficiency.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data.
neighbors : NearestNeighbors instance
The fitted nearest neighbors estimator.
working_memory : int, default=None
The sought maximum memory for temporary distance matrix chunks.
When None (default), the value of
``sklearn.get_config()['working_memory']`` is used.
Returns
-------
core_distances : ndarray of shape (n_samples,)
Distance at which each sample becomes a core point.
Points which will never be core have a distance of inf.
"""
n_samples = X.shape[0]
core_distances = np.empty(n_samples)
core_distances.fill(np.nan)
chunk_n_rows = get_chunk_n_rows(
row_bytes=16 * min_samples, max_n_rows=n_samples, working_memory=working_memory
)
slices = gen_batches(n_samples, chunk_n_rows)
for sl in slices:
core_distances[sl] = neighbors.kneighbors(X[sl], min_samples)[0][:, -1]
return core_distances
@validate_params(
{
"X": [np.ndarray, "sparse matrix"],
"min_samples": [
Interval(Integral, 2, None, closed="left"),
Interval(RealNotInt, 0, 1, closed="both"),
],
"max_eps": [Interval(Real, 0, None, closed="both")],
"metric": [StrOptions(set(_VALID_METRICS) | {"precomputed"}), callable],
"p": [Interval(Real, 0, None, closed="right"), None],
"metric_params": [dict, None],
"algorithm": [StrOptions({"auto", "brute", "ball_tree", "kd_tree"})],
"leaf_size": [Interval(Integral, 1, None, closed="left")],
"n_jobs": [Integral, None],
},
prefer_skip_nested_validation=False, # metric is not validated yet
)
def compute_optics_graph(
X, *, min_samples, max_eps, metric, p, metric_params, algorithm, leaf_size, n_jobs
):
"""Compute the OPTICS reachability graph.
Read more in the :ref:`User Guide <optics>`.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features), or \
(n_samples, n_samples) if metric='precomputed'
A feature array, or array of distances between samples if
metric='precomputed'.
min_samples : int > 1 or float between 0 and 1
The number of samples in a neighborhood for a point to be considered
as a core point. Expressed as an absolute number or a fraction of the
number of samples (rounded to be at least 2).
max_eps : float, default=np.inf
The maximum distance between two samples for one to be considered as
in the neighborhood of the other. Default value of ``np.inf`` will
identify clusters across all scales; reducing ``max_eps`` will result
in shorter run times.
metric : str or callable, default='minkowski'
Metric to use for distance computation. Any metric from scikit-learn
or scipy.spatial.distance can be used.
If metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable
should take two arrays as input and return one value indicating the
distance between them. This works for Scipy's metrics, but is less
efficient than passing the metric name as a string. If metric is
"precomputed", X is assumed to be a distance matrix and must be square.
Valid values for metric are:
- from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
'manhattan']
- from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski',
'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao',
'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean',
'yule']
See the documentation for scipy.spatial.distance for details on these
metrics.
.. note::
`'kulsinski'` is deprecated from SciPy 1.9 and will be removed in SciPy 1.11.
p : float, default=2
Parameter for the Minkowski metric from
:class:`~sklearn.metrics.pairwise_distances`. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
metric_params : dict, default=None
Additional keyword arguments for the metric function.
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
Algorithm used to compute the nearest neighbors:
- 'ball_tree' will use :class:`~sklearn.neighbors.BallTree`.
- 'kd_tree' will use :class:`~sklearn.neighbors.KDTree`.
- 'brute' will use a brute-force search.
- 'auto' will attempt to decide the most appropriate algorithm
based on the values passed to `fit` method. (default)
Note: fitting on sparse input will override the setting of
this parameter, using brute force.
leaf_size : int, default=30
Leaf size passed to :class:`~sklearn.neighbors.BallTree` or
:class:`~sklearn.neighbors.KDTree`. This can affect the speed of the
construction and query, as well as the memory required to store the
tree. The optimal value depends on the nature of the problem.
n_jobs : int, default=None
The number of parallel jobs to run for neighbors search.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
Returns
-------
ordering_ : array of shape (n_samples,)
The cluster ordered list of sample indices.
core_distances_ : array of shape (n_samples,)
Distance at which each sample becomes a core point, indexed by object
order. Points which will never be core have a distance of inf. Use
``clust.core_distances_[clust.ordering_]`` to access in cluster order.
reachability_ : array of shape (n_samples,)
Reachability distances per sample, indexed by object order. Use
``clust.reachability_[clust.ordering_]`` to access in cluster order.
predecessor_ : array of shape (n_samples,)
Point that a sample was reached from, indexed by object order.
Seed points have a predecessor of -1.
References
----------
.. [1] Ankerst, Mihael, Markus M. Breunig, Hans-Peter Kriegel,
and Jörg Sander. "OPTICS: ordering points to identify the clustering
structure." ACM SIGMOD Record 28, no. 2 (1999): 49-60.
Examples
--------
>>> import numpy as np
>>> from sklearn.cluster import compute_optics_graph
>>> X = np.array([[1, 2], [2, 5], [3, 6],
... [8, 7], [8, 8], [7, 3]])
>>> ordering, core_distances, reachability, predecessor = compute_optics_graph(
... X,
... min_samples=2,
... max_eps=np.inf,
... metric="minkowski",
... p=2,
... metric_params=None,
... algorithm="auto",
... leaf_size=30,
... n_jobs=None,
... )
>>> ordering
array([0, 1, 2, 5, 3, 4])
>>> core_distances
array([3.16..., 1.41..., 1.41..., 1. , 1. ,
4.12...])
>>> reachability
array([ inf, 3.16..., 1.41..., 4.12..., 1. ,
5. ])
>>> predecessor
array([-1, 0, 1, 5, 3, 2])
"""
n_samples = X.shape[0]
_validate_size(min_samples, n_samples, "min_samples")
if min_samples <= 1:
min_samples = max(2, int(min_samples * n_samples))
# Start all points as 'unprocessed' ##
reachability_ = np.empty(n_samples)
reachability_.fill(np.inf)
predecessor_ = np.empty(n_samples, dtype=int)
predecessor_.fill(-1)
nbrs = NearestNeighbors(
n_neighbors=min_samples,
algorithm=algorithm,
leaf_size=leaf_size,
metric=metric,
metric_params=metric_params,
p=p,
n_jobs=n_jobs,
)
nbrs.fit(X)
# Here we first do a kNN query for each point, this differs from
# the original OPTICS that only used epsilon range queries.
# TODO: handle working_memory somehow?
core_distances_ = _compute_core_distances_(
X=X, neighbors=nbrs, min_samples=min_samples, working_memory=None
)
# OPTICS puts an upper limit on these, use inf for undefined.
core_distances_[core_distances_ > max_eps] = np.inf
np.around(
core_distances_,
decimals=np.finfo(core_distances_.dtype).precision,
out=core_distances_,
)
# Main OPTICS loop. Not parallelizable. The order that entries are
# written to the 'ordering_' list is important!
# Note that this implementation is O(n^2) theoretically, but
# supposedly with very low constant factors.
processed = np.zeros(X.shape[0], dtype=bool)
ordering = np.zeros(X.shape[0], dtype=int)
for ordering_idx in range(X.shape[0]):
# Choose next based on smallest reachability distance
# (And prefer smaller ids on ties, possibly np.inf!)
index = np.where(processed == 0)[0]
point = index[np.argmin(reachability_[index])]
processed[point] = True
ordering[ordering_idx] = point
if core_distances_[point] != np.inf:
_set_reach_dist(
core_distances_=core_distances_,
reachability_=reachability_,
predecessor_=predecessor_,
point_index=point,
processed=processed,
X=X,
nbrs=nbrs,
metric=metric,
metric_params=metric_params,
p=p,
max_eps=max_eps,
)
if np.all(np.isinf(reachability_)):
warnings.warn(
(
"All reachability values are inf. Set a larger"
" max_eps or all data will be considered outliers."
),
UserWarning,
)
return ordering, core_distances_, reachability_, predecessor_
def _set_reach_dist(
core_distances_,
reachability_,
predecessor_,
point_index,
processed,
X,
nbrs,
metric,
metric_params,
p,
max_eps,
):
P = X[point_index : point_index + 1]
# Assume that radius_neighbors is faster without distances
# and we don't need all distances, nevertheless, this means
# we may be doing some work twice.
indices = nbrs.radius_neighbors(P, radius=max_eps, return_distance=False)[0]
# Getting indices of neighbors that have not been processed
unproc = np.compress(~np.take(processed, indices), indices)
# Neighbors of current point are already processed.
if not unproc.size:
return
# Only compute distances to unprocessed neighbors:
if metric == "precomputed":
dists = X[[point_index], unproc]
if isinstance(dists, np.matrix):
dists = np.asarray(dists)
dists = dists.ravel()
else:
_params = dict() if metric_params is None else metric_params.copy()
if metric == "minkowski" and "p" not in _params:
# the same logic as neighbors, p is ignored if explicitly set
# in the dict params
_params["p"] = p
dists = pairwise_distances(P, X[unproc], metric, n_jobs=None, **_params).ravel()
rdists = np.maximum(dists, core_distances_[point_index])
np.around(rdists, decimals=np.finfo(rdists.dtype).precision, out=rdists)
improved = np.where(rdists < np.take(reachability_, unproc))
reachability_[unproc[improved]] = rdists[improved]
predecessor_[unproc[improved]] = point_index
@validate_params(
{
"reachability": [np.ndarray],
"core_distances": [np.ndarray],
"ordering": [np.ndarray],
"eps": [Interval(Real, 0, None, closed="both")],
},
prefer_skip_nested_validation=True,
)
def cluster_optics_dbscan(*, reachability, core_distances, ordering, eps):
"""Perform DBSCAN extraction for an arbitrary epsilon.
Extracting the clusters runs in linear time. Note that this results in
``labels_`` which are close to a :class:`~sklearn.cluster.DBSCAN` with
similar settings and ``eps``, only if ``eps`` is close to ``max_eps``.
Parameters
----------
reachability : ndarray of shape (n_samples,)
Reachability distances calculated by OPTICS (``reachability_``).
core_distances : ndarray of shape (n_samples,)
Distances at which points become core (``core_distances_``).
ordering : ndarray of shape (n_samples,)
OPTICS ordered point indices (``ordering_``).
eps : float
DBSCAN ``eps`` parameter. Must be set to < ``max_eps``. Results
will be close to DBSCAN algorithm if ``eps`` and ``max_eps`` are close
to one another.
Returns
-------
labels_ : array of shape (n_samples,)
The estimated labels.
Examples
--------
>>> import numpy as np
>>> from sklearn.cluster import cluster_optics_dbscan, compute_optics_graph
>>> X = np.array([[1, 2], [2, 5], [3, 6],
... [8, 7], [8, 8], [7, 3]])
>>> ordering, core_distances, reachability, predecessor = compute_optics_graph(
... X,
... min_samples=2,
... max_eps=np.inf,
... metric="minkowski",
... p=2,
... metric_params=None,
... algorithm="auto",
... leaf_size=30,
... n_jobs=None,
... )
>>> eps = 4.5
>>> labels = cluster_optics_dbscan(
... reachability=reachability,
... core_distances=core_distances,
... ordering=ordering,
... eps=eps,
... )
>>> labels
array([0, 0, 0, 1, 1, 1])
"""
n_samples = len(core_distances)
labels = np.zeros(n_samples, dtype=int)
far_reach = reachability > eps
near_core = core_distances <= eps
labels[ordering] = np.cumsum(far_reach[ordering] & near_core[ordering]) - 1
labels[far_reach & ~near_core] = -1
return labels
@validate_params(
{
"reachability": [np.ndarray],
"predecessor": [np.ndarray],
"ordering": [np.ndarray],
"min_samples": [
Interval(Integral, 2, None, closed="left"),
Interval(RealNotInt, 0, 1, closed="both"),
],
"min_cluster_size": [
Interval(Integral, 2, None, closed="left"),
Interval(RealNotInt, 0, 1, closed="both"),
None,
],
"xi": [Interval(Real, 0, 1, closed="both")],
"predecessor_correction": ["boolean"],
},
prefer_skip_nested_validation=True,
)
def cluster_optics_xi(
*,
reachability,
predecessor,
ordering,
min_samples,
min_cluster_size=None,
xi=0.05,
predecessor_correction=True,
):
"""Automatically extract clusters according to the Xi-steep method.
Parameters
----------
reachability : ndarray of shape (n_samples,)
Reachability distances calculated by OPTICS (`reachability_`).
predecessor : ndarray of shape (n_samples,)
Predecessors calculated by OPTICS.
ordering : ndarray of shape (n_samples,)
OPTICS ordered point indices (`ordering_`).
min_samples : int > 1 or float between 0 and 1
The same as the min_samples given to OPTICS. Up and down steep regions
can't have more then ``min_samples`` consecutive non-steep points.
Expressed as an absolute number or a fraction of the number of samples
(rounded to be at least 2).
min_cluster_size : int > 1 or float between 0 and 1, default=None
Minimum number of samples in an OPTICS cluster, expressed as an
absolute number or a fraction of the number of samples (rounded to be
at least 2). If ``None``, the value of ``min_samples`` is used instead.
xi : float between 0 and 1, default=0.05
Determines the minimum steepness on the reachability plot that
constitutes a cluster boundary. For example, an upwards point in the
reachability plot is defined by the ratio from one point to its
successor being at most 1-xi.
predecessor_correction : bool, default=True
Correct clusters based on the calculated predecessors.
Returns
-------
labels : ndarray of shape (n_samples,)
The labels assigned to samples. Points which are not included
in any cluster are labeled as -1.
clusters : ndarray of shape (n_clusters, 2)
The list of clusters in the form of ``[start, end]`` in each row, with
all indices inclusive. The clusters are ordered according to ``(end,
-start)`` (ascending) so that larger clusters encompassing smaller
clusters come after such nested smaller clusters. Since ``labels`` does
not reflect the hierarchy, usually ``len(clusters) >
np.unique(labels)``.
Examples
--------
>>> import numpy as np
>>> from sklearn.cluster import cluster_optics_xi, compute_optics_graph
>>> X = np.array([[1, 2], [2, 5], [3, 6],
... [8, 7], [8, 8], [7, 3]])
>>> ordering, core_distances, reachability, predecessor = compute_optics_graph(
... X,
... min_samples=2,
... max_eps=np.inf,
... metric="minkowski",
... p=2,
... metric_params=None,
... algorithm="auto",
... leaf_size=30,
... n_jobs=None
... )
>>> min_samples = 2
>>> labels, clusters = cluster_optics_xi(
... reachability=reachability,
... predecessor=predecessor,
... ordering=ordering,
... min_samples=min_samples,
... )
>>> labels
array([0, 0, 0, 1, 1, 1])
>>> clusters
array([[0, 2],
[3, 5],
[0, 5]])
"""
n_samples = len(reachability)
_validate_size(min_samples, n_samples, "min_samples")
if min_samples <= 1:
min_samples = max(2, int(min_samples * n_samples))
if min_cluster_size is None:
min_cluster_size = min_samples
_validate_size(min_cluster_size, n_samples, "min_cluster_size")
if min_cluster_size <= 1:
min_cluster_size = max(2, int(min_cluster_size * n_samples))
clusters = _xi_cluster(
reachability[ordering],
predecessor[ordering],
ordering,
xi,
min_samples,
min_cluster_size,
predecessor_correction,
)
labels = _extract_xi_labels(ordering, clusters)
return labels, clusters
def _extend_region(steep_point, xward_point, start, min_samples):
"""Extend the area until it's maximal.
It's the same function for both upward and downward reagions, depending on
the given input parameters. Assuming:
- steep_{upward/downward}: bool array indicating whether a point is a
steep {upward/downward};
- upward/downward: bool array indicating whether a point is
upward/downward;
To extend an upward reagion, ``steep_point=steep_upward`` and
``xward_point=downward`` are expected, and to extend a downward region,
``steep_point=steep_downward`` and ``xward_point=upward``.
Parameters
----------
steep_point : ndarray of shape (n_samples,), dtype=bool
True if the point is steep downward (upward).
xward_point : ndarray of shape (n_samples,), dtype=bool
True if the point is an upward (respectively downward) point.
start : int
The start of the xward region.
min_samples : int
The same as the min_samples given to OPTICS. Up and down steep
regions can't have more then ``min_samples`` consecutive non-steep
points.
Returns
-------
index : int
The current index iterating over all the samples, i.e. where we are up
to in our search.
end : int
The end of the region, which can be behind the index. The region
includes the ``end`` index.
"""
n_samples = len(steep_point)
non_xward_points = 0
index = start
end = start
# find a maximal area
while index < n_samples:
if steep_point[index]:
non_xward_points = 0
end = index
elif not xward_point[index]:
# it's not a steep point, but still goes up.
non_xward_points += 1
# region should include no more than min_samples consecutive
# non steep xward points.
if non_xward_points > min_samples:
break
else:
return end
index += 1
return end
def _update_filter_sdas(sdas, mib, xi_complement, reachability_plot):
"""Update steep down areas (SDAs) using the new maximum in between (mib)
value, and the given complement of xi, i.e. ``1 - xi``.
"""
if np.isinf(mib):
return []
res = [
sda for sda in sdas if mib <= reachability_plot[sda["start"]] * xi_complement
]
for sda in res:
sda["mib"] = max(sda["mib"], mib)
return res
def _correct_predecessor(reachability_plot, predecessor_plot, ordering, s, e):
"""Correct for predecessors.
Applies Algorithm 2 of [1]_.
Input parameters are ordered by the computer OPTICS ordering.
.. [1] Schubert, Erich, Michael Gertz.
"Improving the Cluster Structure Extracted from OPTICS Plots." Proc. of
the Conference "Lernen, Wissen, Daten, Analysen" (LWDA) (2018): 318-329.
"""
while s < e:
if reachability_plot[s] > reachability_plot[e]:
return s, e
p_e = predecessor_plot[e]
for i in range(s, e):
if p_e == ordering[i]:
return s, e
e -= 1
return None, None
def _xi_cluster(
reachability_plot,
predecessor_plot,
ordering,
xi,
min_samples,
min_cluster_size,
predecessor_correction,
):
"""Automatically extract clusters according to the Xi-steep method.
This is rouphly an implementation of Figure 19 of the OPTICS paper.
Parameters
----------
reachability_plot : array-like of shape (n_samples,)
The reachability plot, i.e. reachability ordered according to
the calculated ordering, all computed by OPTICS.
predecessor_plot : array-like of shape (n_samples,)
Predecessors ordered according to the calculated ordering.
xi : float, between 0 and 1
Determines the minimum steepness on the reachability plot that
constitutes a cluster boundary. For example, an upwards point in the
reachability plot is defined by the ratio from one point to its
successor being at most 1-xi.
min_samples : int > 1
The same as the min_samples given to OPTICS. Up and down steep regions
can't have more then ``min_samples`` consecutive non-steep points.
min_cluster_size : int > 1
Minimum number of samples in an OPTICS cluster.
predecessor_correction : bool
Correct clusters based on the calculated predecessors.
Returns
-------
clusters : ndarray of shape (n_clusters, 2)
The list of clusters in the form of [start, end] in each row, with all
indices inclusive. The clusters are ordered in a way that larger
clusters encompassing smaller clusters come after those smaller
clusters.
"""
# Our implementation adds an inf to the end of reachability plot
# this helps to find potential clusters at the end of the
# reachability plot even if there's no upward region at the end of it.
reachability_plot = np.hstack((reachability_plot, np.inf))
xi_complement = 1 - xi
sdas = [] # steep down areas, introduced in section 4.3.2 of the paper
clusters = []
index = 0
mib = 0.0 # maximum in between, section 4.3.2
# Our implementation corrects a mistake in the original
# paper, i.e., in Definition 9 steep downward point,
# r(p) * (1 - x1) <= r(p + 1) should be
# r(p) * (1 - x1) >= r(p + 1)
with np.errstate(invalid="ignore"):
ratio = reachability_plot[:-1] / reachability_plot[1:]
steep_upward = ratio <= xi_complement
steep_downward = ratio >= 1 / xi_complement
downward = ratio > 1
upward = ratio < 1
# the following loop is almost exactly as Figure 19 of the paper.
# it jumps over the areas which are not either steep down or up areas
for steep_index in iter(np.flatnonzero(steep_upward | steep_downward)):
# just continue if steep_index has been a part of a discovered xward
# area.
if steep_index < index:
continue
mib = max(mib, np.max(reachability_plot[index : steep_index + 1]))
# steep downward areas
if steep_downward[steep_index]:
sdas = _update_filter_sdas(sdas, mib, xi_complement, reachability_plot)
D_start = steep_index
D_end = _extend_region(steep_downward, upward, D_start, min_samples)
D = {"start": D_start, "end": D_end, "mib": 0.0}
sdas.append(D)
index = D_end + 1
mib = reachability_plot[index]
# steep upward areas
else:
sdas = _update_filter_sdas(sdas, mib, xi_complement, reachability_plot)
U_start = steep_index
U_end = _extend_region(steep_upward, downward, U_start, min_samples)
index = U_end + 1
mib = reachability_plot[index]
U_clusters = []
for D in sdas:
c_start = D["start"]
c_end = U_end
# line (**), sc2*
if reachability_plot[c_end + 1] * xi_complement < D["mib"]:
continue
# Definition 11: criterion 4
D_max = reachability_plot[D["start"]]
if D_max * xi_complement >= reachability_plot[c_end + 1]:
# Find the first index from the left side which is almost
# at the same level as the end of the detected cluster.
while (
reachability_plot[c_start + 1] > reachability_plot[c_end + 1]
and c_start < D["end"]
):
c_start += 1
elif reachability_plot[c_end + 1] * xi_complement >= D_max:
# Find the first index from the right side which is almost
# at the same level as the beginning of the detected
# cluster.
# Our implementation corrects a mistake in the original
# paper, i.e., in Definition 11 4c, r(x) < r(sD) should be
# r(x) > r(sD).
while reachability_plot[c_end - 1] > D_max and c_end > U_start:
c_end -= 1
# predecessor correction
if predecessor_correction:
c_start, c_end = _correct_predecessor(
reachability_plot, predecessor_plot, ordering, c_start, c_end
)
if c_start is None:
continue
# Definition 11: criterion 3.a
if c_end - c_start + 1 < min_cluster_size:
continue
# Definition 11: criterion 1
if c_start > D["end"]:
continue
# Definition 11: criterion 2
if c_end < U_start:
continue
U_clusters.append((c_start, c_end))
# add smaller clusters first.
U_clusters.reverse()
clusters.extend(U_clusters)
return np.array(clusters)
def _extract_xi_labels(ordering, clusters):
"""Extracts the labels from the clusters returned by `_xi_cluster`.
We rely on the fact that clusters are stored
with the smaller clusters coming before the larger ones.
Parameters
----------
ordering : array-like of shape (n_samples,)
The ordering of points calculated by OPTICS
clusters : array-like of shape (n_clusters, 2)
List of clusters i.e. (start, end) tuples,
as returned by `_xi_cluster`.
Returns
-------
labels : ndarray of shape (n_samples,)
"""
labels = np.full(len(ordering), -1, dtype=int)
label = 0
for c in clusters:
if not np.any(labels[c[0] : (c[1] + 1)] != -1):
labels[c[0] : (c[1] + 1)] = label
label += 1
labels[ordering] = labels.copy()
return labels
|