File size: 32,118 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
"""
Several basic tests for hierarchical clustering procedures

"""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import itertools
import shutil
from functools import partial
from tempfile import mkdtemp

import numpy as np
import pytest
from scipy.cluster import hierarchy
from scipy.sparse.csgraph import connected_components

from sklearn.cluster import AgglomerativeClustering, FeatureAgglomeration, ward_tree
from sklearn.cluster._agglomerative import (
    _TREE_BUILDERS,
    _fix_connectivity,
    _hc_cut,
    linkage_tree,
)
from sklearn.cluster._hierarchical_fast import (
    average_merge,
    max_merge,
    mst_linkage_core,
)
from sklearn.datasets import make_circles, make_moons
from sklearn.feature_extraction.image import grid_to_graph
from sklearn.metrics import DistanceMetric
from sklearn.metrics.cluster import adjusted_rand_score, normalized_mutual_info_score
from sklearn.metrics.pairwise import (
    PAIRED_DISTANCES,
    cosine_distances,
    manhattan_distances,
    pairwise_distances,
)
from sklearn.metrics.tests.test_dist_metrics import METRICS_DEFAULT_PARAMS
from sklearn.neighbors import kneighbors_graph
from sklearn.utils._fast_dict import IntFloatDict
from sklearn.utils._testing import (
    assert_almost_equal,
    assert_array_almost_equal,
    assert_array_equal,
    create_memmap_backed_data,
    ignore_warnings,
)
from sklearn.utils.fixes import LIL_CONTAINERS


def test_linkage_misc():
    # Misc tests on linkage
    rng = np.random.RandomState(42)
    X = rng.normal(size=(5, 5))

    with pytest.raises(ValueError):
        linkage_tree(X, linkage="foo")

    with pytest.raises(ValueError):
        linkage_tree(X, connectivity=np.ones((4, 4)))

    # Smoke test FeatureAgglomeration
    FeatureAgglomeration().fit(X)

    # test hierarchical clustering on a precomputed distances matrix
    dis = cosine_distances(X)

    res = linkage_tree(dis, affinity="precomputed")
    assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0])

    # test hierarchical clustering on a precomputed distances matrix
    res = linkage_tree(X, affinity=manhattan_distances)
    assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0])


def test_structured_linkage_tree():
    # Check that we obtain the correct solution for structured linkage trees.
    rng = np.random.RandomState(0)
    mask = np.ones([10, 10], dtype=bool)
    # Avoiding a mask with only 'True' entries
    mask[4:7, 4:7] = 0
    X = rng.randn(50, 100)
    connectivity = grid_to_graph(*mask.shape)
    for tree_builder in _TREE_BUILDERS.values():
        children, n_components, n_leaves, parent = tree_builder(
            X.T, connectivity=connectivity
        )
        n_nodes = 2 * X.shape[1] - 1
        assert len(children) + n_leaves == n_nodes
        # Check that ward_tree raises a ValueError with a connectivity matrix
        # of the wrong shape
        with pytest.raises(ValueError):
            tree_builder(X.T, connectivity=np.ones((4, 4)))
        # Check that fitting with no samples raises an error
        with pytest.raises(ValueError):
            tree_builder(X.T[:0], connectivity=connectivity)


def test_unstructured_linkage_tree():
    # Check that we obtain the correct solution for unstructured linkage trees.
    rng = np.random.RandomState(0)
    X = rng.randn(50, 100)
    for this_X in (X, X[0]):
        # With specified a number of clusters just for the sake of
        # raising a warning and testing the warning code
        with ignore_warnings():
            with pytest.warns(UserWarning):
                children, n_nodes, n_leaves, parent = ward_tree(this_X.T, n_clusters=10)
        n_nodes = 2 * X.shape[1] - 1
        assert len(children) + n_leaves == n_nodes

    for tree_builder in _TREE_BUILDERS.values():
        for this_X in (X, X[0]):
            with ignore_warnings():
                with pytest.warns(UserWarning):
                    children, n_nodes, n_leaves, parent = tree_builder(
                        this_X.T, n_clusters=10
                    )
            n_nodes = 2 * X.shape[1] - 1
            assert len(children) + n_leaves == n_nodes


def test_height_linkage_tree():
    # Check that the height of the results of linkage tree is sorted.
    rng = np.random.RandomState(0)
    mask = np.ones([10, 10], dtype=bool)
    X = rng.randn(50, 100)
    connectivity = grid_to_graph(*mask.shape)
    for linkage_func in _TREE_BUILDERS.values():
        children, n_nodes, n_leaves, parent = linkage_func(
            X.T, connectivity=connectivity
        )
        n_nodes = 2 * X.shape[1] - 1
        assert len(children) + n_leaves == n_nodes


def test_zero_cosine_linkage_tree():
    # Check that zero vectors in X produce an error when
    # 'cosine' affinity is used
    X = np.array([[0, 1], [0, 0]])
    msg = "Cosine affinity cannot be used when X contains zero vectors"
    with pytest.raises(ValueError, match=msg):
        linkage_tree(X, affinity="cosine")


@pytest.mark.parametrize("n_clusters, distance_threshold", [(None, 0.5), (10, None)])
@pytest.mark.parametrize("compute_distances", [True, False])
@pytest.mark.parametrize("linkage", ["ward", "complete", "average", "single"])
def test_agglomerative_clustering_distances(
    n_clusters, compute_distances, distance_threshold, linkage
):
    # Check that when `compute_distances` is True or `distance_threshold` is
    # given, the fitted model has an attribute `distances_`.
    rng = np.random.RandomState(0)
    mask = np.ones([10, 10], dtype=bool)
    n_samples = 100
    X = rng.randn(n_samples, 50)
    connectivity = grid_to_graph(*mask.shape)

    clustering = AgglomerativeClustering(
        n_clusters=n_clusters,
        connectivity=connectivity,
        linkage=linkage,
        distance_threshold=distance_threshold,
        compute_distances=compute_distances,
    )
    clustering.fit(X)
    if compute_distances or (distance_threshold is not None):
        assert hasattr(clustering, "distances_")
        n_children = clustering.children_.shape[0]
        n_nodes = n_children + 1
        assert clustering.distances_.shape == (n_nodes - 1,)
    else:
        assert not hasattr(clustering, "distances_")


@pytest.mark.parametrize("lil_container", LIL_CONTAINERS)
def test_agglomerative_clustering(global_random_seed, lil_container):
    # Check that we obtain the correct number of clusters with
    # agglomerative clustering.
    rng = np.random.RandomState(global_random_seed)
    mask = np.ones([10, 10], dtype=bool)
    n_samples = 100
    X = rng.randn(n_samples, 50)
    connectivity = grid_to_graph(*mask.shape)
    for linkage in ("ward", "complete", "average", "single"):
        clustering = AgglomerativeClustering(
            n_clusters=10, connectivity=connectivity, linkage=linkage
        )
        clustering.fit(X)
        # test caching
        try:
            tempdir = mkdtemp()
            clustering = AgglomerativeClustering(
                n_clusters=10,
                connectivity=connectivity,
                memory=tempdir,
                linkage=linkage,
            )
            clustering.fit(X)
            labels = clustering.labels_
            assert np.size(np.unique(labels)) == 10
        finally:
            shutil.rmtree(tempdir)
        # Turn caching off now
        clustering = AgglomerativeClustering(
            n_clusters=10, connectivity=connectivity, linkage=linkage
        )
        # Check that we obtain the same solution with early-stopping of the
        # tree building
        clustering.compute_full_tree = False
        clustering.fit(X)
        assert_almost_equal(normalized_mutual_info_score(clustering.labels_, labels), 1)
        clustering.connectivity = None
        clustering.fit(X)
        assert np.size(np.unique(clustering.labels_)) == 10
        # Check that we raise a TypeError on dense matrices
        clustering = AgglomerativeClustering(
            n_clusters=10,
            connectivity=lil_container(connectivity.toarray()[:10, :10]),
            linkage=linkage,
        )
        with pytest.raises(ValueError):
            clustering.fit(X)

    # Test that using ward with another metric than euclidean raises an
    # exception
    clustering = AgglomerativeClustering(
        n_clusters=10,
        connectivity=connectivity.toarray(),
        metric="manhattan",
        linkage="ward",
    )
    with pytest.raises(ValueError):
        clustering.fit(X)

    # Test using another metric than euclidean works with linkage complete
    for metric in PAIRED_DISTANCES.keys():
        # Compare our (structured) implementation to scipy
        clustering = AgglomerativeClustering(
            n_clusters=10,
            connectivity=np.ones((n_samples, n_samples)),
            metric=metric,
            linkage="complete",
        )
        clustering.fit(X)
        clustering2 = AgglomerativeClustering(
            n_clusters=10, connectivity=None, metric=metric, linkage="complete"
        )
        clustering2.fit(X)
        assert_almost_equal(
            normalized_mutual_info_score(clustering2.labels_, clustering.labels_), 1
        )

    # Test that using a distance matrix (affinity = 'precomputed') has same
    # results (with connectivity constraints)
    clustering = AgglomerativeClustering(
        n_clusters=10, connectivity=connectivity, linkage="complete"
    )
    clustering.fit(X)
    X_dist = pairwise_distances(X)
    clustering2 = AgglomerativeClustering(
        n_clusters=10,
        connectivity=connectivity,
        metric="precomputed",
        linkage="complete",
    )
    clustering2.fit(X_dist)
    assert_array_equal(clustering.labels_, clustering2.labels_)


def test_agglomerative_clustering_memory_mapped():
    """AgglomerativeClustering must work on mem-mapped dataset.

    Non-regression test for issue #19875.
    """
    rng = np.random.RandomState(0)
    Xmm = create_memmap_backed_data(rng.randn(50, 100))
    AgglomerativeClustering(metric="euclidean", linkage="single").fit(Xmm)


def test_ward_agglomeration(global_random_seed):
    # Check that we obtain the correct solution in a simplistic case
    rng = np.random.RandomState(global_random_seed)
    mask = np.ones([10, 10], dtype=bool)
    X = rng.randn(50, 100)
    connectivity = grid_to_graph(*mask.shape)
    agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity)
    agglo.fit(X)
    assert np.size(np.unique(agglo.labels_)) == 5

    X_red = agglo.transform(X)
    assert X_red.shape[1] == 5
    X_full = agglo.inverse_transform(X_red)
    assert np.unique(X_full[0]).size == 5
    assert_array_almost_equal(agglo.transform(X_full), X_red)

    # Check that fitting with no samples raises a ValueError
    with pytest.raises(ValueError):
        agglo.fit(X[:0])


def test_single_linkage_clustering():
    # Check that we get the correct result in two emblematic cases
    moons, moon_labels = make_moons(noise=0.05, random_state=42)
    clustering = AgglomerativeClustering(n_clusters=2, linkage="single")
    clustering.fit(moons)
    assert_almost_equal(
        normalized_mutual_info_score(clustering.labels_, moon_labels), 1
    )

    circles, circle_labels = make_circles(factor=0.5, noise=0.025, random_state=42)
    clustering = AgglomerativeClustering(n_clusters=2, linkage="single")
    clustering.fit(circles)
    assert_almost_equal(
        normalized_mutual_info_score(clustering.labels_, circle_labels), 1
    )


def assess_same_labelling(cut1, cut2):
    """Util for comparison with scipy"""
    co_clust = []
    for cut in [cut1, cut2]:
        n = len(cut)
        k = cut.max() + 1
        ecut = np.zeros((n, k))
        ecut[np.arange(n), cut] = 1
        co_clust.append(np.dot(ecut, ecut.T))
    assert (co_clust[0] == co_clust[1]).all()


def test_sparse_scikit_vs_scipy(global_random_seed):
    # Test scikit linkage with full connectivity (i.e. unstructured) vs scipy
    n, p, k = 10, 5, 3
    rng = np.random.RandomState(global_random_seed)

    # Not using a lil_matrix here, just to check that non sparse
    # matrices are well handled
    connectivity = np.ones((n, n))
    for linkage in _TREE_BUILDERS.keys():
        for i in range(5):
            X = 0.1 * rng.normal(size=(n, p))
            X -= 4.0 * np.arange(n)[:, np.newaxis]
            X -= X.mean(axis=1)[:, np.newaxis]

            out = hierarchy.linkage(X, method=linkage)

            children_ = out[:, :2].astype(int, copy=False)
            children, _, n_leaves, _ = _TREE_BUILDERS[linkage](
                X, connectivity=connectivity
            )

            # Sort the order of child nodes per row for consistency
            children.sort(axis=1)
            assert_array_equal(
                children,
                children_,
                "linkage tree differs from scipy impl for linkage: " + linkage,
            )

            cut = _hc_cut(k, children, n_leaves)
            cut_ = _hc_cut(k, children_, n_leaves)
            assess_same_labelling(cut, cut_)

    # Test error management in _hc_cut
    with pytest.raises(ValueError):
        _hc_cut(n_leaves + 1, children, n_leaves)


# Make sure our custom mst_linkage_core gives
# the same results as scipy's builtin
def test_vector_scikit_single_vs_scipy_single(global_random_seed):
    n_samples, n_features, n_clusters = 10, 5, 3
    rng = np.random.RandomState(global_random_seed)
    X = 0.1 * rng.normal(size=(n_samples, n_features))
    X -= 4.0 * np.arange(n_samples)[:, np.newaxis]
    X -= X.mean(axis=1)[:, np.newaxis]

    out = hierarchy.linkage(X, method="single")
    children_scipy = out[:, :2].astype(int)

    children, _, n_leaves, _ = _TREE_BUILDERS["single"](X)

    # Sort the order of child nodes per row for consistency
    children.sort(axis=1)
    assert_array_equal(
        children,
        children_scipy,
        "linkage tree differs from scipy impl for single linkage.",
    )

    cut = _hc_cut(n_clusters, children, n_leaves)
    cut_scipy = _hc_cut(n_clusters, children_scipy, n_leaves)
    assess_same_labelling(cut, cut_scipy)


@pytest.mark.parametrize("metric_param_grid", METRICS_DEFAULT_PARAMS)
def test_mst_linkage_core_memory_mapped(metric_param_grid):
    """The MST-LINKAGE-CORE algorithm must work on mem-mapped dataset.

    Non-regression test for issue #19875.
    """
    rng = np.random.RandomState(seed=1)
    X = rng.normal(size=(20, 4))
    Xmm = create_memmap_backed_data(X)
    metric, param_grid = metric_param_grid
    keys = param_grid.keys()
    for vals in itertools.product(*param_grid.values()):
        kwargs = dict(zip(keys, vals))
        distance_metric = DistanceMetric.get_metric(metric, **kwargs)
        mst = mst_linkage_core(X, distance_metric)
        mst_mm = mst_linkage_core(Xmm, distance_metric)
        np.testing.assert_equal(mst, mst_mm)


def test_identical_points():
    # Ensure identical points are handled correctly when using mst with
    # a sparse connectivity matrix
    X = np.array([[0, 0, 0], [0, 0, 0], [1, 1, 1], [1, 1, 1], [2, 2, 2], [2, 2, 2]])
    true_labels = np.array([0, 0, 1, 1, 2, 2])
    connectivity = kneighbors_graph(X, n_neighbors=3, include_self=False)
    connectivity = 0.5 * (connectivity + connectivity.T)
    connectivity, n_components = _fix_connectivity(X, connectivity, "euclidean")

    for linkage in ("single", "average", "average", "ward"):
        clustering = AgglomerativeClustering(
            n_clusters=3, linkage=linkage, connectivity=connectivity
        )
        clustering.fit(X)

        assert_almost_equal(
            normalized_mutual_info_score(clustering.labels_, true_labels), 1
        )


def test_connectivity_propagation():
    # Check that connectivity in the ward tree is propagated correctly during
    # merging.
    X = np.array(
        [
            (0.014, 0.120),
            (0.014, 0.099),
            (0.014, 0.097),
            (0.017, 0.153),
            (0.017, 0.153),
            (0.018, 0.153),
            (0.018, 0.153),
            (0.018, 0.153),
            (0.018, 0.153),
            (0.018, 0.153),
            (0.018, 0.153),
            (0.018, 0.153),
            (0.018, 0.152),
            (0.018, 0.149),
            (0.018, 0.144),
        ]
    )
    connectivity = kneighbors_graph(X, 10, include_self=False)
    ward = AgglomerativeClustering(
        n_clusters=4, connectivity=connectivity, linkage="ward"
    )
    # If changes are not propagated correctly, fit crashes with an
    # IndexError
    ward.fit(X)


def test_ward_tree_children_order(global_random_seed):
    # Check that children are ordered in the same way for both structured and
    # unstructured versions of ward_tree.

    # test on five random datasets
    n, p = 10, 5
    rng = np.random.RandomState(global_random_seed)

    connectivity = np.ones((n, n))
    for i in range(5):
        X = 0.1 * rng.normal(size=(n, p))
        X -= 4.0 * np.arange(n)[:, np.newaxis]
        X -= X.mean(axis=1)[:, np.newaxis]

        out_unstructured = ward_tree(X)
        out_structured = ward_tree(X, connectivity=connectivity)

        assert_array_equal(out_unstructured[0], out_structured[0])


def test_ward_linkage_tree_return_distance(global_random_seed):
    # Test return_distance option on linkage and ward trees

    # test that return_distance when set true, gives same
    # output on both structured and unstructured clustering.
    n, p = 10, 5
    rng = np.random.RandomState(global_random_seed)

    connectivity = np.ones((n, n))
    for i in range(5):
        X = 0.1 * rng.normal(size=(n, p))
        X -= 4.0 * np.arange(n)[:, np.newaxis]
        X -= X.mean(axis=1)[:, np.newaxis]

        out_unstructured = ward_tree(X, return_distance=True)
        out_structured = ward_tree(X, connectivity=connectivity, return_distance=True)

        # get children
        children_unstructured = out_unstructured[0]
        children_structured = out_structured[0]

        # check if we got the same clusters
        assert_array_equal(children_unstructured, children_structured)

        # check if the distances are the same
        dist_unstructured = out_unstructured[-1]
        dist_structured = out_structured[-1]

        assert_array_almost_equal(dist_unstructured, dist_structured)

        for linkage in ["average", "complete", "single"]:
            structured_items = linkage_tree(
                X, connectivity=connectivity, linkage=linkage, return_distance=True
            )[-1]
            unstructured_items = linkage_tree(X, linkage=linkage, return_distance=True)[
                -1
            ]
            structured_dist = structured_items[-1]
            unstructured_dist = unstructured_items[-1]
            structured_children = structured_items[0]
            unstructured_children = unstructured_items[0]
            assert_array_almost_equal(structured_dist, unstructured_dist)
            assert_array_almost_equal(structured_children, unstructured_children)

    # test on the following dataset where we know the truth
    # taken from scipy/cluster/tests/hierarchy_test_data.py
    X = np.array(
        [
            [1.43054825, -7.5693489],
            [6.95887839, 6.82293382],
            [2.87137846, -9.68248579],
            [7.87974764, -6.05485803],
            [8.24018364, -6.09495602],
            [7.39020262, 8.54004355],
        ]
    )
    # truth
    linkage_X_ward = np.array(
        [
            [3.0, 4.0, 0.36265956, 2.0],
            [1.0, 5.0, 1.77045373, 2.0],
            [0.0, 2.0, 2.55760419, 2.0],
            [6.0, 8.0, 9.10208346, 4.0],
            [7.0, 9.0, 24.7784379, 6.0],
        ]
    )

    linkage_X_complete = np.array(
        [
            [3.0, 4.0, 0.36265956, 2.0],
            [1.0, 5.0, 1.77045373, 2.0],
            [0.0, 2.0, 2.55760419, 2.0],
            [6.0, 8.0, 6.96742194, 4.0],
            [7.0, 9.0, 18.77445997, 6.0],
        ]
    )

    linkage_X_average = np.array(
        [
            [3.0, 4.0, 0.36265956, 2.0],
            [1.0, 5.0, 1.77045373, 2.0],
            [0.0, 2.0, 2.55760419, 2.0],
            [6.0, 8.0, 6.55832839, 4.0],
            [7.0, 9.0, 15.44089605, 6.0],
        ]
    )

    n_samples, n_features = np.shape(X)
    connectivity_X = np.ones((n_samples, n_samples))

    out_X_unstructured = ward_tree(X, return_distance=True)
    out_X_structured = ward_tree(X, connectivity=connectivity_X, return_distance=True)

    # check that the labels are the same
    assert_array_equal(linkage_X_ward[:, :2], out_X_unstructured[0])
    assert_array_equal(linkage_X_ward[:, :2], out_X_structured[0])

    # check that the distances are correct
    assert_array_almost_equal(linkage_X_ward[:, 2], out_X_unstructured[4])
    assert_array_almost_equal(linkage_X_ward[:, 2], out_X_structured[4])

    linkage_options = ["complete", "average", "single"]
    X_linkage_truth = [linkage_X_complete, linkage_X_average]
    for linkage, X_truth in zip(linkage_options, X_linkage_truth):
        out_X_unstructured = linkage_tree(X, return_distance=True, linkage=linkage)
        out_X_structured = linkage_tree(
            X, connectivity=connectivity_X, linkage=linkage, return_distance=True
        )

        # check that the labels are the same
        assert_array_equal(X_truth[:, :2], out_X_unstructured[0])
        assert_array_equal(X_truth[:, :2], out_X_structured[0])

        # check that the distances are correct
        assert_array_almost_equal(X_truth[:, 2], out_X_unstructured[4])
        assert_array_almost_equal(X_truth[:, 2], out_X_structured[4])


def test_connectivity_fixing_non_lil():
    # Check non regression of a bug if a non item assignable connectivity is
    # provided with more than one component.
    # create dummy data
    x = np.array([[0, 0], [1, 1]])
    # create a mask with several components to force connectivity fixing
    m = np.array([[True, False], [False, True]])
    c = grid_to_graph(n_x=2, n_y=2, mask=m)
    w = AgglomerativeClustering(connectivity=c, linkage="ward")
    with pytest.warns(UserWarning):
        w.fit(x)


def test_int_float_dict():
    rng = np.random.RandomState(0)
    keys = np.unique(rng.randint(100, size=10).astype(np.intp, copy=False))
    values = rng.rand(len(keys))

    d = IntFloatDict(keys, values)
    for key, value in zip(keys, values):
        assert d[key] == value

    other_keys = np.arange(50, dtype=np.intp)[::2]
    other_values = np.full(50, 0.5)[::2]
    other = IntFloatDict(other_keys, other_values)
    # Complete smoke test
    max_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1)
    average_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1)


def test_connectivity_callable():
    rng = np.random.RandomState(0)
    X = rng.rand(20, 5)
    connectivity = kneighbors_graph(X, 3, include_self=False)
    aglc1 = AgglomerativeClustering(connectivity=connectivity)
    aglc2 = AgglomerativeClustering(
        connectivity=partial(kneighbors_graph, n_neighbors=3, include_self=False)
    )
    aglc1.fit(X)
    aglc2.fit(X)
    assert_array_equal(aglc1.labels_, aglc2.labels_)


def test_connectivity_ignores_diagonal():
    rng = np.random.RandomState(0)
    X = rng.rand(20, 5)
    connectivity = kneighbors_graph(X, 3, include_self=False)
    connectivity_include_self = kneighbors_graph(X, 3, include_self=True)
    aglc1 = AgglomerativeClustering(connectivity=connectivity)
    aglc2 = AgglomerativeClustering(connectivity=connectivity_include_self)
    aglc1.fit(X)
    aglc2.fit(X)
    assert_array_equal(aglc1.labels_, aglc2.labels_)


def test_compute_full_tree():
    # Test that the full tree is computed if n_clusters is small
    rng = np.random.RandomState(0)
    X = rng.randn(10, 2)
    connectivity = kneighbors_graph(X, 5, include_self=False)

    # When n_clusters is less, the full tree should be built
    # that is the number of merges should be n_samples - 1
    agc = AgglomerativeClustering(n_clusters=2, connectivity=connectivity)
    agc.fit(X)
    n_samples = X.shape[0]
    n_nodes = agc.children_.shape[0]
    assert n_nodes == n_samples - 1

    # When n_clusters is large, greater than max of 100 and 0.02 * n_samples.
    # we should stop when there are n_clusters.
    n_clusters = 101
    X = rng.randn(200, 2)
    connectivity = kneighbors_graph(X, 10, include_self=False)
    agc = AgglomerativeClustering(n_clusters=n_clusters, connectivity=connectivity)
    agc.fit(X)
    n_samples = X.shape[0]
    n_nodes = agc.children_.shape[0]
    assert n_nodes == n_samples - n_clusters


def test_n_components():
    # Test n_components returned by linkage, average and ward tree
    rng = np.random.RandomState(0)
    X = rng.rand(5, 5)

    # Connectivity matrix having five components.
    connectivity = np.eye(5)

    for linkage_func in _TREE_BUILDERS.values():
        assert ignore_warnings(linkage_func)(X, connectivity=connectivity)[1] == 5


def test_affinity_passed_to_fix_connectivity():
    # Test that the affinity parameter is actually passed to the pairwise
    # function

    size = 2
    rng = np.random.RandomState(0)
    X = rng.randn(size, size)
    mask = np.array([True, False, False, True])

    connectivity = grid_to_graph(n_x=size, n_y=size, mask=mask, return_as=np.ndarray)

    class FakeAffinity:
        def __init__(self):
            self.counter = 0

        def increment(self, *args, **kwargs):
            self.counter += 1
            return self.counter

    fa = FakeAffinity()

    linkage_tree(X, connectivity=connectivity, affinity=fa.increment)

    assert fa.counter == 3


@pytest.mark.parametrize("linkage", ["ward", "complete", "average"])
def test_agglomerative_clustering_with_distance_threshold(linkage, global_random_seed):
    # Check that we obtain the correct number of clusters with
    # agglomerative clustering with distance_threshold.
    rng = np.random.RandomState(global_random_seed)
    mask = np.ones([10, 10], dtype=bool)
    n_samples = 100
    X = rng.randn(n_samples, 50)
    connectivity = grid_to_graph(*mask.shape)
    # test when distance threshold is set to 10
    distance_threshold = 10
    for conn in [None, connectivity]:
        clustering = AgglomerativeClustering(
            n_clusters=None,
            distance_threshold=distance_threshold,
            connectivity=conn,
            linkage=linkage,
        )
        clustering.fit(X)
        clusters_produced = clustering.labels_
        num_clusters_produced = len(np.unique(clustering.labels_))
        # test if the clusters produced match the point in the linkage tree
        # where the distance exceeds the threshold
        tree_builder = _TREE_BUILDERS[linkage]
        children, n_components, n_leaves, parent, distances = tree_builder(
            X, connectivity=conn, n_clusters=None, return_distance=True
        )
        num_clusters_at_threshold = (
            np.count_nonzero(distances >= distance_threshold) + 1
        )
        # test number of clusters produced
        assert num_clusters_at_threshold == num_clusters_produced
        # test clusters produced
        clusters_at_threshold = _hc_cut(
            n_clusters=num_clusters_produced, children=children, n_leaves=n_leaves
        )
        assert np.array_equiv(clusters_produced, clusters_at_threshold)


def test_small_distance_threshold(global_random_seed):
    rng = np.random.RandomState(global_random_seed)
    n_samples = 10
    X = rng.randint(-300, 300, size=(n_samples, 3))
    # this should result in all data in their own clusters, given that
    # their pairwise distances are bigger than .1 (which may not be the case
    # with a different random seed).
    clustering = AgglomerativeClustering(
        n_clusters=None, distance_threshold=1.0, linkage="single"
    ).fit(X)
    # check that the pairwise distances are indeed all larger than .1
    all_distances = pairwise_distances(X, metric="minkowski", p=2)
    np.fill_diagonal(all_distances, np.inf)
    assert np.all(all_distances > 0.1)
    assert clustering.n_clusters_ == n_samples


def test_cluster_distances_with_distance_threshold(global_random_seed):
    rng = np.random.RandomState(global_random_seed)
    n_samples = 100
    X = rng.randint(-10, 10, size=(n_samples, 3))
    # check the distances within the clusters and with other clusters
    distance_threshold = 4
    clustering = AgglomerativeClustering(
        n_clusters=None, distance_threshold=distance_threshold, linkage="single"
    ).fit(X)
    labels = clustering.labels_
    D = pairwise_distances(X, metric="minkowski", p=2)
    # to avoid taking the 0 diagonal in min()
    np.fill_diagonal(D, np.inf)
    for label in np.unique(labels):
        in_cluster_mask = labels == label
        max_in_cluster_distance = (
            D[in_cluster_mask][:, in_cluster_mask].min(axis=0).max()
        )
        min_out_cluster_distance = (
            D[in_cluster_mask][:, ~in_cluster_mask].min(axis=0).min()
        )
        # single data point clusters only have that inf diagonal here
        if in_cluster_mask.sum() > 1:
            assert max_in_cluster_distance < distance_threshold
        assert min_out_cluster_distance >= distance_threshold


@pytest.mark.parametrize("linkage", ["ward", "complete", "average"])
@pytest.mark.parametrize(
    ("threshold", "y_true"), [(0.5, [1, 0]), (1.0, [1, 0]), (1.5, [0, 0])]
)
def test_agglomerative_clustering_with_distance_threshold_edge_case(
    linkage, threshold, y_true
):
    # test boundary case of distance_threshold matching the distance
    X = [[0], [1]]
    clusterer = AgglomerativeClustering(
        n_clusters=None, distance_threshold=threshold, linkage=linkage
    )
    y_pred = clusterer.fit_predict(X)
    assert adjusted_rand_score(y_true, y_pred) == 1


def test_dist_threshold_invalid_parameters():
    X = [[0], [1]]
    with pytest.raises(ValueError, match="Exactly one of "):
        AgglomerativeClustering(n_clusters=None, distance_threshold=None).fit(X)

    with pytest.raises(ValueError, match="Exactly one of "):
        AgglomerativeClustering(n_clusters=2, distance_threshold=1).fit(X)

    X = [[0], [1]]
    with pytest.raises(ValueError, match="compute_full_tree must be True if"):
        AgglomerativeClustering(
            n_clusters=None, distance_threshold=1, compute_full_tree=False
        ).fit(X)


def test_invalid_shape_precomputed_dist_matrix():
    # Check that an error is raised when affinity='precomputed'
    # and a non square matrix is passed (PR #16257).
    rng = np.random.RandomState(0)
    X = rng.rand(5, 3)
    with pytest.raises(
        ValueError,
        match=r"Distance matrix should be square, got matrix of shape \(5, 3\)",
    ):
        AgglomerativeClustering(metric="precomputed", linkage="complete").fit(X)


def test_precomputed_connectivity_metric_with_2_connected_components():
    """Check that connecting components works when connectivity and
    affinity are both precomputed and the number of connected components is
    greater than 1. Non-regression test for #16151.
    """

    connectivity_matrix = np.array(
        [
            [0, 1, 1, 0, 0],
            [0, 0, 1, 0, 0],
            [0, 0, 0, 0, 0],
            [0, 0, 0, 0, 1],
            [0, 0, 0, 0, 0],
        ]
    )
    # ensure that connectivity_matrix has two connected components
    assert connected_components(connectivity_matrix)[0] == 2

    rng = np.random.RandomState(0)
    X = rng.randn(5, 10)

    X_dist = pairwise_distances(X)
    clusterer_precomputed = AgglomerativeClustering(
        metric="precomputed", connectivity=connectivity_matrix, linkage="complete"
    )
    msg = "Completing it to avoid stopping the tree early"
    with pytest.warns(UserWarning, match=msg):
        clusterer_precomputed.fit(X_dist)

    clusterer = AgglomerativeClustering(
        connectivity=connectivity_matrix, linkage="complete"
    )
    with pytest.warns(UserWarning, match=msg):
        clusterer.fit(X)

    assert_array_equal(clusterer.labels_, clusterer_precomputed.labels_)
    assert_array_equal(clusterer.children_, clusterer_precomputed.children_)