File size: 14,101 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import warnings

import numpy as np
import pytest

from sklearn import config_context, datasets
from sklearn.base import BaseEstimator, TransformerMixin, clone
from sklearn.compose import TransformedTargetRegressor
from sklearn.dummy import DummyRegressor
from sklearn.linear_model import LinearRegression, OrthogonalMatchingPursuit
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import FunctionTransformer, StandardScaler
from sklearn.utils._testing import assert_allclose

friedman = datasets.make_friedman1(random_state=0)


def test_transform_target_regressor_error():
    X, y = friedman
    # provide a transformer and functions at the same time
    regr = TransformedTargetRegressor(
        regressor=LinearRegression(),
        transformer=StandardScaler(),
        func=np.exp,
        inverse_func=np.log,
    )
    with pytest.raises(
        ValueError,
        match="'transformer' and functions 'func'/'inverse_func' cannot both be set.",
    ):
        regr.fit(X, y)
    # fit with sample_weight with a regressor which does not support it
    sample_weight = np.ones((y.shape[0],))
    regr = TransformedTargetRegressor(
        regressor=OrthogonalMatchingPursuit(), transformer=StandardScaler()
    )
    with pytest.raises(
        TypeError,
        match=r"fit\(\) got an unexpected " "keyword argument 'sample_weight'",
    ):
        regr.fit(X, y, sample_weight=sample_weight)

    # one of (func, inverse_func) is given but the other one is not
    regr = TransformedTargetRegressor(func=np.exp)
    with pytest.raises(
        ValueError,
        match="When 'func' is provided, 'inverse_func' must also be provided",
    ):
        regr.fit(X, y)

    regr = TransformedTargetRegressor(inverse_func=np.log)
    with pytest.raises(
        ValueError,
        match="When 'inverse_func' is provided, 'func' must also be provided",
    ):
        regr.fit(X, y)


def test_transform_target_regressor_invertible():
    X, y = friedman
    regr = TransformedTargetRegressor(
        regressor=LinearRegression(),
        func=np.sqrt,
        inverse_func=np.log,
        check_inverse=True,
    )
    with pytest.warns(
        UserWarning,
        match=(r"The provided functions.* are not strictly inverse of each other"),
    ):
        regr.fit(X, y)
    regr = TransformedTargetRegressor(
        regressor=LinearRegression(), func=np.sqrt, inverse_func=np.log
    )
    regr.set_params(check_inverse=False)

    with warnings.catch_warnings():
        warnings.simplefilter("error", UserWarning)
        regr.fit(X, y)


def _check_standard_scaled(y, y_pred):
    y_mean = np.mean(y, axis=0)
    y_std = np.std(y, axis=0)
    assert_allclose((y - y_mean) / y_std, y_pred)


def _check_shifted_by_one(y, y_pred):
    assert_allclose(y + 1, y_pred)


def test_transform_target_regressor_functions():
    X, y = friedman
    regr = TransformedTargetRegressor(
        regressor=LinearRegression(), func=np.log, inverse_func=np.exp
    )
    y_pred = regr.fit(X, y).predict(X)
    # check the transformer output
    y_tran = regr.transformer_.transform(y.reshape(-1, 1)).squeeze()
    assert_allclose(np.log(y), y_tran)
    assert_allclose(
        y, regr.transformer_.inverse_transform(y_tran.reshape(-1, 1)).squeeze()
    )
    assert y.shape == y_pred.shape
    assert_allclose(y_pred, regr.inverse_func(regr.regressor_.predict(X)))
    # check the regressor output
    lr = LinearRegression().fit(X, regr.func(y))
    assert_allclose(regr.regressor_.coef_.ravel(), lr.coef_.ravel())


def test_transform_target_regressor_functions_multioutput():
    X = friedman[0]
    y = np.vstack((friedman[1], friedman[1] ** 2 + 1)).T
    regr = TransformedTargetRegressor(
        regressor=LinearRegression(), func=np.log, inverse_func=np.exp
    )
    y_pred = regr.fit(X, y).predict(X)
    # check the transformer output
    y_tran = regr.transformer_.transform(y)
    assert_allclose(np.log(y), y_tran)
    assert_allclose(y, regr.transformer_.inverse_transform(y_tran))
    assert y.shape == y_pred.shape
    assert_allclose(y_pred, regr.inverse_func(regr.regressor_.predict(X)))
    # check the regressor output
    lr = LinearRegression().fit(X, regr.func(y))
    assert_allclose(regr.regressor_.coef_.ravel(), lr.coef_.ravel())


@pytest.mark.parametrize(
    "X,y", [friedman, (friedman[0], np.vstack((friedman[1], friedman[1] ** 2 + 1)).T)]
)
def test_transform_target_regressor_1d_transformer(X, y):
    # All transformer in scikit-learn expect 2D data. FunctionTransformer with
    # validate=False lift this constraint without checking that the input is a
    # 2D vector. We check the consistency of the data shape using a 1D and 2D y
    # array.
    transformer = FunctionTransformer(
        func=lambda x: x + 1, inverse_func=lambda x: x - 1
    )
    regr = TransformedTargetRegressor(
        regressor=LinearRegression(), transformer=transformer
    )
    y_pred = regr.fit(X, y).predict(X)
    assert y.shape == y_pred.shape
    # consistency forward transform
    y_tran = regr.transformer_.transform(y)
    _check_shifted_by_one(y, y_tran)
    assert y.shape == y_pred.shape
    # consistency inverse transform
    assert_allclose(y, regr.transformer_.inverse_transform(y_tran).squeeze())
    # consistency of the regressor
    lr = LinearRegression()
    transformer2 = clone(transformer)
    lr.fit(X, transformer2.fit_transform(y))
    y_lr_pred = lr.predict(X)
    assert_allclose(y_pred, transformer2.inverse_transform(y_lr_pred))
    assert_allclose(regr.regressor_.coef_, lr.coef_)


@pytest.mark.parametrize(
    "X,y", [friedman, (friedman[0], np.vstack((friedman[1], friedman[1] ** 2 + 1)).T)]
)
def test_transform_target_regressor_2d_transformer(X, y):
    # Check consistency with transformer accepting only 2D array and a 1D/2D y
    # array.
    transformer = StandardScaler()
    regr = TransformedTargetRegressor(
        regressor=LinearRegression(), transformer=transformer
    )
    y_pred = regr.fit(X, y).predict(X)
    assert y.shape == y_pred.shape
    # consistency forward transform
    if y.ndim == 1:  # create a 2D array and squeeze results
        y_tran = regr.transformer_.transform(y.reshape(-1, 1))
    else:
        y_tran = regr.transformer_.transform(y)
    _check_standard_scaled(y, y_tran.squeeze())
    assert y.shape == y_pred.shape
    # consistency inverse transform
    assert_allclose(y, regr.transformer_.inverse_transform(y_tran).squeeze())
    # consistency of the regressor
    lr = LinearRegression()
    transformer2 = clone(transformer)
    if y.ndim == 1:  # create a 2D array and squeeze results
        lr.fit(X, transformer2.fit_transform(y.reshape(-1, 1)).squeeze())
        y_lr_pred = lr.predict(X).reshape(-1, 1)
        y_pred2 = transformer2.inverse_transform(y_lr_pred).squeeze()
    else:
        lr.fit(X, transformer2.fit_transform(y))
        y_lr_pred = lr.predict(X)
        y_pred2 = transformer2.inverse_transform(y_lr_pred)

    assert_allclose(y_pred, y_pred2)
    assert_allclose(regr.regressor_.coef_, lr.coef_)


def test_transform_target_regressor_2d_transformer_multioutput():
    # Check consistency with transformer accepting only 2D array and a 2D y
    # array.
    X = friedman[0]
    y = np.vstack((friedman[1], friedman[1] ** 2 + 1)).T
    transformer = StandardScaler()
    regr = TransformedTargetRegressor(
        regressor=LinearRegression(), transformer=transformer
    )
    y_pred = regr.fit(X, y).predict(X)
    assert y.shape == y_pred.shape
    # consistency forward transform
    y_tran = regr.transformer_.transform(y)
    _check_standard_scaled(y, y_tran)
    assert y.shape == y_pred.shape
    # consistency inverse transform
    assert_allclose(y, regr.transformer_.inverse_transform(y_tran).squeeze())
    # consistency of the regressor
    lr = LinearRegression()
    transformer2 = clone(transformer)
    lr.fit(X, transformer2.fit_transform(y))
    y_lr_pred = lr.predict(X)
    assert_allclose(y_pred, transformer2.inverse_transform(y_lr_pred))
    assert_allclose(regr.regressor_.coef_, lr.coef_)


def test_transform_target_regressor_3d_target():
    # Non-regression test for:
    # https://github.com/scikit-learn/scikit-learn/issues/18866
    # Check with a 3D target with a transformer that reshapes the target
    X = friedman[0]
    y = np.tile(friedman[1].reshape(-1, 1, 1), [1, 3, 2])

    def flatten_data(data):
        return data.reshape(data.shape[0], -1)

    def unflatten_data(data):
        return data.reshape(data.shape[0], -1, 2)

    transformer = FunctionTransformer(func=flatten_data, inverse_func=unflatten_data)
    regr = TransformedTargetRegressor(
        regressor=LinearRegression(), transformer=transformer
    )
    y_pred = regr.fit(X, y).predict(X)
    assert y.shape == y_pred.shape


def test_transform_target_regressor_multi_to_single():
    X = friedman[0]
    y = np.transpose([friedman[1], (friedman[1] ** 2 + 1)])

    def func(y):
        out = np.sqrt(y[:, 0] ** 2 + y[:, 1] ** 2)
        return out[:, np.newaxis]

    def inverse_func(y):
        return y

    tt = TransformedTargetRegressor(
        func=func, inverse_func=inverse_func, check_inverse=False
    )
    tt.fit(X, y)
    y_pred_2d_func = tt.predict(X)
    assert y_pred_2d_func.shape == (100, 1)

    # force that the function only return a 1D array
    def func(y):
        return np.sqrt(y[:, 0] ** 2 + y[:, 1] ** 2)

    tt = TransformedTargetRegressor(
        func=func, inverse_func=inverse_func, check_inverse=False
    )
    tt.fit(X, y)
    y_pred_1d_func = tt.predict(X)
    assert y_pred_1d_func.shape == (100, 1)

    assert_allclose(y_pred_1d_func, y_pred_2d_func)


class DummyCheckerArrayTransformer(TransformerMixin, BaseEstimator):
    def fit(self, X, y=None):
        assert isinstance(X, np.ndarray)
        return self

    def transform(self, X):
        assert isinstance(X, np.ndarray)
        return X

    def inverse_transform(self, X):
        assert isinstance(X, np.ndarray)
        return X


class DummyCheckerListRegressor(DummyRegressor):
    def fit(self, X, y, sample_weight=None):
        assert isinstance(X, list)
        return super().fit(X, y, sample_weight)

    def predict(self, X):
        assert isinstance(X, list)
        return super().predict(X)


def test_transform_target_regressor_ensure_y_array():
    # check that the target ``y`` passed to the transformer will always be a
    # numpy array. Similarly, if ``X`` is passed as a list, we check that the
    # predictor receive as it is.
    X, y = friedman
    tt = TransformedTargetRegressor(
        transformer=DummyCheckerArrayTransformer(),
        regressor=DummyCheckerListRegressor(),
        check_inverse=False,
    )
    tt.fit(X.tolist(), y.tolist())
    tt.predict(X.tolist())
    with pytest.raises(AssertionError):
        tt.fit(X, y.tolist())
    with pytest.raises(AssertionError):
        tt.predict(X)


class DummyTransformer(TransformerMixin, BaseEstimator):
    """Dummy transformer which count how many time fit was called."""

    def __init__(self, fit_counter=0):
        self.fit_counter = fit_counter

    def fit(self, X, y=None):
        self.fit_counter += 1
        return self

    def transform(self, X):
        return X

    def inverse_transform(self, X):
        return X


@pytest.mark.parametrize("check_inverse", [False, True])
def test_transform_target_regressor_count_fit(check_inverse):
    # regression test for gh-issue #11618
    # check that we only call a single time fit for the transformer
    X, y = friedman
    ttr = TransformedTargetRegressor(
        transformer=DummyTransformer(), check_inverse=check_inverse
    )
    ttr.fit(X, y)
    assert ttr.transformer_.fit_counter == 1


class DummyRegressorWithExtraFitParams(DummyRegressor):
    def fit(self, X, y, sample_weight=None, check_input=True):
        # on the test below we force this to false, we make sure this is
        # actually passed to the regressor
        assert not check_input
        return super().fit(X, y, sample_weight)


def test_transform_target_regressor_pass_fit_parameters():
    X, y = friedman
    regr = TransformedTargetRegressor(
        regressor=DummyRegressorWithExtraFitParams(), transformer=DummyTransformer()
    )

    regr.fit(X, y, check_input=False)
    assert regr.transformer_.fit_counter == 1


def test_transform_target_regressor_route_pipeline():
    X, y = friedman

    regr = TransformedTargetRegressor(
        regressor=DummyRegressorWithExtraFitParams(), transformer=DummyTransformer()
    )
    estimators = [("normalize", StandardScaler()), ("est", regr)]

    pip = Pipeline(estimators)
    pip.fit(X, y, **{"est__check_input": False})

    assert regr.transformer_.fit_counter == 1


class DummyRegressorWithExtraPredictParams(DummyRegressor):
    def predict(self, X, check_input=True):
        # In the test below we make sure that the check input parameter is
        # passed as false
        self.predict_called = True
        assert not check_input
        return super().predict(X)


def test_transform_target_regressor_pass_extra_predict_parameters():
    # Checks that predict kwargs are passed to regressor.
    X, y = friedman
    regr = TransformedTargetRegressor(
        regressor=DummyRegressorWithExtraPredictParams(), transformer=DummyTransformer()
    )

    regr.fit(X, y)
    regr.predict(X, check_input=False)
    assert regr.regressor_.predict_called


@pytest.mark.parametrize("output_format", ["pandas", "polars"])
def test_transform_target_regressor_not_warns_with_global_output_set(output_format):
    """Test that TransformedTargetRegressor will not raise warnings if
    set_config(transform_output="pandas"/"polars") is set globally; regression test for
    issue #29361."""
    X, y = datasets.make_regression()
    y = np.abs(y) + 1
    with config_context(transform_output=output_format):
        with warnings.catch_warnings():
            warnings.simplefilter("error")
            TransformedTargetRegressor(
                regressor=LinearRegression(), func=np.log, inverse_func=np.exp
            ).fit(X, y)