File size: 24,263 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 |
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import numbers
import threading
from numbers import Integral, Real
from warnings import warn
import numpy as np
from scipy.sparse import issparse
from ..base import OutlierMixin, _fit_context
from ..tree import ExtraTreeRegressor
from ..tree._tree import DTYPE as tree_dtype
from ..utils import (
check_array,
check_random_state,
gen_batches,
)
from ..utils._chunking import get_chunk_n_rows
from ..utils._param_validation import Interval, RealNotInt, StrOptions
from ..utils.parallel import Parallel, delayed
from ..utils.validation import _num_samples, check_is_fitted, validate_data
from ._bagging import BaseBagging
__all__ = ["IsolationForest"]
def _parallel_compute_tree_depths(
tree,
X,
features,
tree_decision_path_lengths,
tree_avg_path_lengths,
depths,
lock,
):
"""Parallel computation of isolation tree depth."""
if features is None:
X_subset = X
else:
X_subset = X[:, features]
leaves_index = tree.apply(X_subset, check_input=False)
with lock:
depths += (
tree_decision_path_lengths[leaves_index]
+ tree_avg_path_lengths[leaves_index]
- 1.0
)
class IsolationForest(OutlierMixin, BaseBagging):
"""
Isolation Forest Algorithm.
Return the anomaly score of each sample using the IsolationForest algorithm
The IsolationForest 'isolates' observations by randomly selecting a feature
and then randomly selecting a split value between the maximum and minimum
values of the selected feature.
Since recursive partitioning can be represented by a tree structure, the
number of splittings required to isolate a sample is equivalent to the path
length from the root node to the terminating node.
This path length, averaged over a forest of such random trees, is a
measure of normality and our decision function.
Random partitioning produces noticeably shorter paths for anomalies.
Hence, when a forest of random trees collectively produce shorter path
lengths for particular samples, they are highly likely to be anomalies.
Read more in the :ref:`User Guide <isolation_forest>`.
.. versionadded:: 0.18
Parameters
----------
n_estimators : int, default=100
The number of base estimators in the ensemble.
max_samples : "auto", int or float, default="auto"
The number of samples to draw from X to train each base estimator.
- If int, then draw `max_samples` samples.
- If float, then draw `max_samples * X.shape[0]` samples.
- If "auto", then `max_samples=min(256, n_samples)`.
If max_samples is larger than the number of samples provided,
all samples will be used for all trees (no sampling).
contamination : 'auto' or float, default='auto'
The amount of contamination of the data set, i.e. the proportion
of outliers in the data set. Used when fitting to define the threshold
on the scores of the samples.
- If 'auto', the threshold is determined as in the
original paper.
- If float, the contamination should be in the range (0, 0.5].
.. versionchanged:: 0.22
The default value of ``contamination`` changed from 0.1
to ``'auto'``.
max_features : int or float, default=1.0
The number of features to draw from X to train each base estimator.
- If int, then draw `max_features` features.
- If float, then draw `max(1, int(max_features * n_features_in_))` features.
Note: using a float number less than 1.0 or integer less than number of
features will enable feature subsampling and leads to a longer runtime.
bootstrap : bool, default=False
If True, individual trees are fit on random subsets of the training
data sampled with replacement. If False, sampling without replacement
is performed.
n_jobs : int, default=None
The number of jobs to run in parallel for :meth:`fit`. ``None`` means 1
unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using
all processors. See :term:`Glossary <n_jobs>` for more details.
random_state : int, RandomState instance or None, default=None
Controls the pseudo-randomness of the selection of the feature
and split values for each branching step and each tree in the forest.
Pass an int for reproducible results across multiple function calls.
See :term:`Glossary <random_state>`.
verbose : int, default=0
Controls the verbosity of the tree building process.
warm_start : bool, default=False
When set to ``True``, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just fit a whole
new forest. See :term:`the Glossary <warm_start>`.
.. versionadded:: 0.21
Attributes
----------
estimator_ : :class:`~sklearn.tree.ExtraTreeRegressor` instance
The child estimator template used to create the collection of
fitted sub-estimators.
.. versionadded:: 1.2
`base_estimator_` was renamed to `estimator_`.
estimators_ : list of ExtraTreeRegressor instances
The collection of fitted sub-estimators.
estimators_features_ : list of ndarray
The subset of drawn features for each base estimator.
estimators_samples_ : list of ndarray
The subset of drawn samples (i.e., the in-bag samples) for each base
estimator.
max_samples_ : int
The actual number of samples.
offset_ : float
Offset used to define the decision function from the raw scores. We
have the relation: ``decision_function = score_samples - offset_``.
``offset_`` is defined as follows. When the contamination parameter is
set to "auto", the offset is equal to -0.5 as the scores of inliers are
close to 0 and the scores of outliers are close to -1. When a
contamination parameter different than "auto" is provided, the offset
is defined in such a way we obtain the expected number of outliers
(samples with decision function < 0) in training.
.. versionadded:: 0.20
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
sklearn.covariance.EllipticEnvelope : An object for detecting outliers in a
Gaussian distributed dataset.
sklearn.svm.OneClassSVM : Unsupervised Outlier Detection.
Estimate the support of a high-dimensional distribution.
The implementation is based on libsvm.
sklearn.neighbors.LocalOutlierFactor : Unsupervised Outlier Detection
using Local Outlier Factor (LOF).
Notes
-----
The implementation is based on an ensemble of ExtraTreeRegressor. The
maximum depth of each tree is set to ``ceil(log_2(n))`` where
:math:`n` is the number of samples used to build the tree
(see (Liu et al., 2008) for more details).
References
----------
.. [1] Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. "Isolation forest."
Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on.
.. [2] Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. "Isolation-based
anomaly detection." ACM Transactions on Knowledge Discovery from
Data (TKDD) 6.1 (2012): 3.
Examples
--------
>>> from sklearn.ensemble import IsolationForest
>>> X = [[-1.1], [0.3], [0.5], [100]]
>>> clf = IsolationForest(random_state=0).fit(X)
>>> clf.predict([[0.1], [0], [90]])
array([ 1, 1, -1])
For an example of using isolation forest for anomaly detection see
:ref:`sphx_glr_auto_examples_ensemble_plot_isolation_forest.py`.
"""
_parameter_constraints: dict = {
"n_estimators": [Interval(Integral, 1, None, closed="left")],
"max_samples": [
StrOptions({"auto"}),
Interval(Integral, 1, None, closed="left"),
Interval(RealNotInt, 0, 1, closed="right"),
],
"contamination": [
StrOptions({"auto"}),
Interval(Real, 0, 0.5, closed="right"),
],
"max_features": [
Integral,
Interval(Real, 0, 1, closed="right"),
],
"bootstrap": ["boolean"],
"n_jobs": [Integral, None],
"random_state": ["random_state"],
"verbose": ["verbose"],
"warm_start": ["boolean"],
}
def __init__(
self,
*,
n_estimators=100,
max_samples="auto",
contamination="auto",
max_features=1.0,
bootstrap=False,
n_jobs=None,
random_state=None,
verbose=0,
warm_start=False,
):
super().__init__(
estimator=None,
# here above max_features has no links with self.max_features
bootstrap=bootstrap,
bootstrap_features=False,
n_estimators=n_estimators,
max_samples=max_samples,
max_features=max_features,
warm_start=warm_start,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose,
)
self.contamination = contamination
def _get_estimator(self):
return ExtraTreeRegressor(
# here max_features has no links with self.max_features
max_features=1,
splitter="random",
random_state=self.random_state,
)
def _set_oob_score(self, X, y):
raise NotImplementedError("OOB score not supported by iforest")
def _parallel_args(self):
# ExtraTreeRegressor releases the GIL, so it's more efficient to use
# a thread-based backend rather than a process-based backend so as
# to avoid suffering from communication overhead and extra memory
# copies. This is only used in the fit method.
return {"prefer": "threads"}
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y=None, sample_weight=None):
"""
Fit estimator.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Use ``dtype=np.float32`` for maximum
efficiency. Sparse matrices are also supported, use sparse
``csc_matrix`` for maximum efficiency.
y : Ignored
Not used, present for API consistency by convention.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If None, then samples are equally weighted.
Returns
-------
self : object
Fitted estimator.
"""
X = validate_data(
self, X, accept_sparse=["csc"], dtype=tree_dtype, ensure_all_finite=False
)
if issparse(X):
# Pre-sort indices to avoid that each individual tree of the
# ensemble sorts the indices.
X.sort_indices()
rnd = check_random_state(self.random_state)
y = rnd.uniform(size=X.shape[0])
# ensure that max_sample is in [1, n_samples]:
n_samples = X.shape[0]
if isinstance(self.max_samples, str) and self.max_samples == "auto":
max_samples = min(256, n_samples)
elif isinstance(self.max_samples, numbers.Integral):
if self.max_samples > n_samples:
warn(
"max_samples (%s) is greater than the "
"total number of samples (%s). max_samples "
"will be set to n_samples for estimation."
% (self.max_samples, n_samples)
)
max_samples = n_samples
else:
max_samples = self.max_samples
else: # max_samples is float
max_samples = int(self.max_samples * X.shape[0])
self.max_samples_ = max_samples
max_depth = int(np.ceil(np.log2(max(max_samples, 2))))
super()._fit(
X,
y,
max_samples,
max_depth=max_depth,
sample_weight=sample_weight,
check_input=False,
)
self._average_path_length_per_tree, self._decision_path_lengths = zip(
*[
(
_average_path_length(tree.tree_.n_node_samples),
tree.tree_.compute_node_depths(),
)
for tree in self.estimators_
]
)
if self.contamination == "auto":
# 0.5 plays a special role as described in the original paper.
# we take the opposite as we consider the opposite of their score.
self.offset_ = -0.5
return self
# Else, define offset_ wrt contamination parameter
# To avoid performing input validation a second time we call
# _score_samples rather than score_samples.
# _score_samples expects a CSR matrix, so we convert if necessary.
if issparse(X):
X = X.tocsr()
self.offset_ = np.percentile(self._score_samples(X), 100.0 * self.contamination)
return self
def predict(self, X):
"""
Predict if a particular sample is an outlier or not.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Returns
-------
is_inlier : ndarray of shape (n_samples,)
For each observation, tells whether or not (+1 or -1) it should
be considered as an inlier according to the fitted model.
Notes
-----
The predict method can be parallelized by setting a joblib context. This
inherently does NOT use the ``n_jobs`` parameter initialized in the class,
which is used during ``fit``. This is because, predict may actually be faster
without parallelization for a small number of samples,
such as for 1000 samples or less. The user can set the
number of jobs in the joblib context to control the number of parallel jobs.
.. code-block:: python
from joblib import parallel_backend
# Note, we use threading here as the predict method is not CPU bound.
with parallel_backend("threading", n_jobs=4):
model.predict(X)
"""
check_is_fitted(self)
decision_func = self.decision_function(X)
is_inlier = np.ones_like(decision_func, dtype=int)
is_inlier[decision_func < 0] = -1
return is_inlier
def decision_function(self, X):
"""
Average anomaly score of X of the base classifiers.
The anomaly score of an input sample is computed as
the mean anomaly score of the trees in the forest.
The measure of normality of an observation given a tree is the depth
of the leaf containing this observation, which is equivalent to
the number of splittings required to isolate this point. In case of
several observations n_left in the leaf, the average path length of
a n_left samples isolation tree is added.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Returns
-------
scores : ndarray of shape (n_samples,)
The anomaly score of the input samples.
The lower, the more abnormal. Negative scores represent outliers,
positive scores represent inliers.
Notes
-----
The decision_function method can be parallelized by setting a joblib context.
This inherently does NOT use the ``n_jobs`` parameter initialized in the class,
which is used during ``fit``. This is because, calculating the score may
actually be faster without parallelization for a small number of samples,
such as for 1000 samples or less.
The user can set the number of jobs in the joblib context to control the
number of parallel jobs.
.. code-block:: python
from joblib import parallel_backend
# Note, we use threading here as the decision_function method is
# not CPU bound.
with parallel_backend("threading", n_jobs=4):
model.decision_function(X)
"""
# We subtract self.offset_ to make 0 be the threshold value for being
# an outlier:
return self.score_samples(X) - self.offset_
def score_samples(self, X):
"""
Opposite of the anomaly score defined in the original paper.
The anomaly score of an input sample is computed as
the mean anomaly score of the trees in the forest.
The measure of normality of an observation given a tree is the depth
of the leaf containing this observation, which is equivalent to
the number of splittings required to isolate this point. In case of
several observations n_left in the leaf, the average path length of
a n_left samples isolation tree is added.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples.
Returns
-------
scores : ndarray of shape (n_samples,)
The anomaly score of the input samples.
The lower, the more abnormal.
Notes
-----
The score function method can be parallelized by setting a joblib context. This
inherently does NOT use the ``n_jobs`` parameter initialized in the class,
which is used during ``fit``. This is because, calculating the score may
actually be faster without parallelization for a small number of samples,
such as for 1000 samples or less.
The user can set the number of jobs in the joblib context to control the
number of parallel jobs.
.. code-block:: python
from joblib import parallel_backend
# Note, we use threading here as the score_samples method is not CPU bound.
with parallel_backend("threading", n_jobs=4):
model.score(X)
"""
# Check data
X = validate_data(
self,
X,
accept_sparse="csr",
dtype=tree_dtype,
reset=False,
ensure_all_finite=False,
)
return self._score_samples(X)
def _score_samples(self, X):
"""Private version of score_samples without input validation.
Input validation would remove feature names, so we disable it.
"""
# Code structure from ForestClassifier/predict_proba
check_is_fitted(self)
# Take the opposite of the scores as bigger is better (here less abnormal)
return -self._compute_chunked_score_samples(X)
def _compute_chunked_score_samples(self, X):
n_samples = _num_samples(X)
if self._max_features == X.shape[1]:
subsample_features = False
else:
subsample_features = True
# We get as many rows as possible within our working_memory budget
# (defined by sklearn.get_config()['working_memory']) to store
# self._max_features in each row during computation.
#
# Note:
# - this will get at least 1 row, even if 1 row of score will
# exceed working_memory.
# - this does only account for temporary memory usage while loading
# the data needed to compute the scores -- the returned scores
# themselves are 1D.
chunk_n_rows = get_chunk_n_rows(
row_bytes=16 * self._max_features, max_n_rows=n_samples
)
slices = gen_batches(n_samples, chunk_n_rows)
scores = np.zeros(n_samples, order="f")
for sl in slices:
# compute score on the slices of test samples:
scores[sl] = self._compute_score_samples(X[sl], subsample_features)
return scores
def _compute_score_samples(self, X, subsample_features):
"""
Compute the score of each samples in X going through the extra trees.
Parameters
----------
X : array-like or sparse matrix
Data matrix.
subsample_features : bool
Whether features should be subsampled.
Returns
-------
scores : ndarray of shape (n_samples,)
The score of each sample in X.
"""
n_samples = X.shape[0]
depths = np.zeros(n_samples, order="f")
average_path_length_max_samples = _average_path_length([self._max_samples])
# Note: we use default n_jobs value, i.e. sequential computation, which
# we expect to be more performant that parallelizing for small number
# of samples, e.g. < 1k samples. Default n_jobs value can be overriden
# by using joblib.parallel_backend context manager around
# ._compute_score_samples. Using a higher n_jobs may speed up the
# computation of the scores, e.g. for > 1k samples. See
# https://github.com/scikit-learn/scikit-learn/pull/28622 for more
# details.
lock = threading.Lock()
Parallel(
verbose=self.verbose,
require="sharedmem",
)(
delayed(_parallel_compute_tree_depths)(
tree,
X,
features if subsample_features else None,
self._decision_path_lengths[tree_idx],
self._average_path_length_per_tree[tree_idx],
depths,
lock,
)
for tree_idx, (tree, features) in enumerate(
zip(self.estimators_, self.estimators_features_)
)
)
denominator = len(self.estimators_) * average_path_length_max_samples
scores = 2 ** (
# For a single training sample, denominator and depth are 0.
# Therefore, we set the score manually to 1.
-np.divide(
depths, denominator, out=np.ones_like(depths), where=denominator != 0
)
)
return scores
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.input_tags.allow_nan = True
return tags
def _average_path_length(n_samples_leaf):
"""
The average path length in a n_samples iTree, which is equal to
the average path length of an unsuccessful BST search since the
latter has the same structure as an isolation tree.
Parameters
----------
n_samples_leaf : array-like of shape (n_samples,)
The number of training samples in each test sample leaf, for
each estimators.
Returns
-------
average_path_length : ndarray of shape (n_samples,)
"""
n_samples_leaf = check_array(n_samples_leaf, ensure_2d=False)
n_samples_leaf_shape = n_samples_leaf.shape
n_samples_leaf = n_samples_leaf.reshape((1, -1))
average_path_length = np.zeros(n_samples_leaf.shape)
mask_1 = n_samples_leaf <= 1
mask_2 = n_samples_leaf == 2
not_mask = ~np.logical_or(mask_1, mask_2)
average_path_length[mask_1] = 0.0
average_path_length[mask_2] = 1.0
average_path_length[not_mask] = (
2.0 * (np.log(n_samples_leaf[not_mask] - 1.0) + np.euler_gamma)
- 2.0 * (n_samples_leaf[not_mask] - 1.0) / n_samples_leaf[not_mask]
)
return average_path_length.reshape(n_samples_leaf_shape)
|