File size: 35,916 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 |
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
"""Recursive feature elimination for feature ranking"""
import warnings
from copy import deepcopy
from numbers import Integral
import numpy as np
from joblib import effective_n_jobs
from ..base import BaseEstimator, MetaEstimatorMixin, _fit_context, clone, is_classifier
from ..metrics import get_scorer
from ..model_selection import check_cv
from ..model_selection._validation import _score
from ..utils import Bunch, metadata_routing
from ..utils._metadata_requests import (
MetadataRouter,
MethodMapping,
_raise_for_params,
_routing_enabled,
process_routing,
)
from ..utils._param_validation import HasMethods, Interval, RealNotInt
from ..utils._tags import get_tags
from ..utils.metaestimators import _safe_split, available_if
from ..utils.parallel import Parallel, delayed
from ..utils.validation import (
_check_method_params,
_deprecate_positional_args,
_estimator_has,
check_is_fitted,
validate_data,
)
from ._base import SelectorMixin, _get_feature_importances
def _rfe_single_fit(rfe, estimator, X, y, train, test, scorer, routed_params):
"""
Return the score and n_features per step for a fit across one fold.
"""
X_train, y_train = _safe_split(estimator, X, y, train)
X_test, y_test = _safe_split(estimator, X, y, test, train)
fit_params = _check_method_params(
X, params=routed_params.estimator.fit, indices=train
)
score_params = _check_method_params(
X=X, params=routed_params.scorer.score, indices=test
)
rfe._fit(
X_train,
y_train,
lambda estimator, features: _score(
estimator,
X_test[:, features],
y_test,
scorer,
score_params=score_params,
),
**fit_params,
)
return rfe.step_scores_, rfe.step_n_features_
class RFE(SelectorMixin, MetaEstimatorMixin, BaseEstimator):
"""Feature ranking with recursive feature elimination.
Given an external estimator that assigns weights to features (e.g., the
coefficients of a linear model), the goal of recursive feature elimination
(RFE) is to select features by recursively considering smaller and smaller
sets of features. First, the estimator is trained on the initial set of
features and the importance of each feature is obtained either through
any specific attribute or callable.
Then, the least important features are pruned from current set of features.
That procedure is recursively repeated on the pruned set until the desired
number of features to select is eventually reached.
Read more in the :ref:`User Guide <rfe>`.
Parameters
----------
estimator : ``Estimator`` instance
A supervised learning estimator with a ``fit`` method that provides
information about feature importance
(e.g. `coef_`, `feature_importances_`).
n_features_to_select : int or float, default=None
The number of features to select. If `None`, half of the features are
selected. If integer, the parameter is the absolute number of features
to select. If float between 0 and 1, it is the fraction of features to
select.
.. versionchanged:: 0.24
Added float values for fractions.
step : int or float, default=1
If greater than or equal to 1, then ``step`` corresponds to the
(integer) number of features to remove at each iteration.
If within (0.0, 1.0), then ``step`` corresponds to the percentage
(rounded down) of features to remove at each iteration.
verbose : int, default=0
Controls verbosity of output.
importance_getter : str or callable, default='auto'
If 'auto', uses the feature importance either through a `coef_`
or `feature_importances_` attributes of estimator.
Also accepts a string that specifies an attribute name/path
for extracting feature importance (implemented with `attrgetter`).
For example, give `regressor_.coef_` in case of
:class:`~sklearn.compose.TransformedTargetRegressor` or
`named_steps.clf.feature_importances_` in case of
class:`~sklearn.pipeline.Pipeline` with its last step named `clf`.
If `callable`, overrides the default feature importance getter.
The callable is passed with the fitted estimator and it should
return importance for each feature.
.. versionadded:: 0.24
Attributes
----------
classes_ : ndarray of shape (n_classes,)
The classes labels. Only available when `estimator` is a classifier.
estimator_ : ``Estimator`` instance
The fitted estimator used to select features.
n_features_ : int
The number of selected features.
n_features_in_ : int
Number of features seen during :term:`fit`. Only defined if the
underlying estimator exposes such an attribute when fit.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
ranking_ : ndarray of shape (n_features,)
The feature ranking, such that ``ranking_[i]`` corresponds to the
ranking position of the i-th feature. Selected (i.e., estimated
best) features are assigned rank 1.
support_ : ndarray of shape (n_features,)
The mask of selected features.
See Also
--------
RFECV : Recursive feature elimination with built-in cross-validated
selection of the best number of features.
SelectFromModel : Feature selection based on thresholds of importance
weights.
SequentialFeatureSelector : Sequential cross-validation based feature
selection. Does not rely on importance weights.
Notes
-----
Allows NaN/Inf in the input if the underlying estimator does as well.
References
----------
.. [1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene selection
for cancer classification using support vector machines",
Mach. Learn., 46(1-3), 389--422, 2002.
Examples
--------
The following example shows how to retrieve the 5 most informative
features in the Friedman #1 dataset.
>>> from sklearn.datasets import make_friedman1
>>> from sklearn.feature_selection import RFE
>>> from sklearn.svm import SVR
>>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
>>> estimator = SVR(kernel="linear")
>>> selector = RFE(estimator, n_features_to_select=5, step=1)
>>> selector = selector.fit(X, y)
>>> selector.support_
array([ True, True, True, True, True, False, False, False, False,
False])
>>> selector.ranking_
array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5])
"""
_parameter_constraints: dict = {
"estimator": [HasMethods(["fit"])],
"n_features_to_select": [
None,
Interval(RealNotInt, 0, 1, closed="right"),
Interval(Integral, 0, None, closed="neither"),
],
"step": [
Interval(Integral, 0, None, closed="neither"),
Interval(RealNotInt, 0, 1, closed="neither"),
],
"verbose": ["verbose"],
"importance_getter": [str, callable],
}
def __init__(
self,
estimator,
*,
n_features_to_select=None,
step=1,
verbose=0,
importance_getter="auto",
):
self.estimator = estimator
self.n_features_to_select = n_features_to_select
self.step = step
self.importance_getter = importance_getter
self.verbose = verbose
# TODO(1.8) remove this property
@property
def _estimator_type(self):
return self.estimator._estimator_type
@property
def classes_(self):
"""Classes labels available when `estimator` is a classifier.
Returns
-------
ndarray of shape (n_classes,)
"""
return self.estimator_.classes_
@_fit_context(
# RFE.estimator is not validated yet
prefer_skip_nested_validation=False
)
def fit(self, X, y, **fit_params):
"""Fit the RFE model and then the underlying estimator on the selected features.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples.
y : array-like of shape (n_samples,)
The target values.
**fit_params : dict
- If `enable_metadata_routing=False` (default): Parameters directly passed
to the ``fit`` method of the underlying estimator.
- If `enable_metadata_routing=True`: Parameters safely routed to the ``fit``
method of the underlying estimator.
.. versionchanged:: 1.6
See :ref:`Metadata Routing User Guide <metadata_routing>`
for more details.
Returns
-------
self : object
Fitted estimator.
"""
if _routing_enabled():
routed_params = process_routing(self, "fit", **fit_params)
else:
routed_params = Bunch(estimator=Bunch(fit=fit_params))
return self._fit(X, y, **routed_params.estimator.fit)
def _fit(self, X, y, step_score=None, **fit_params):
# Parameter step_score controls the calculation of self.step_scores_
# step_score is not exposed to users and is used when implementing RFECV
# self.step_scores_ will not be calculated when calling _fit through fit
X, y = validate_data(
self,
X,
y,
accept_sparse="csc",
ensure_min_features=2,
ensure_all_finite=False,
multi_output=True,
)
# Initialization
n_features = X.shape[1]
if self.n_features_to_select is None:
n_features_to_select = n_features // 2
elif isinstance(self.n_features_to_select, Integral): # int
n_features_to_select = self.n_features_to_select
if n_features_to_select > n_features:
warnings.warn(
(
f"Found {n_features_to_select=} > {n_features=}. There will be"
" no feature selection and all features will be kept."
),
UserWarning,
)
else: # float
n_features_to_select = int(n_features * self.n_features_to_select)
if 0.0 < self.step < 1.0:
step = int(max(1, self.step * n_features))
else:
step = int(self.step)
support_ = np.ones(n_features, dtype=bool)
ranking_ = np.ones(n_features, dtype=int)
if step_score:
self.step_n_features_ = []
self.step_scores_ = []
# Elimination
while np.sum(support_) > n_features_to_select:
# Remaining features
features = np.arange(n_features)[support_]
# Rank the remaining features
estimator = clone(self.estimator)
if self.verbose > 0:
print("Fitting estimator with %d features." % np.sum(support_))
estimator.fit(X[:, features], y, **fit_params)
# Get importance and rank them
importances = _get_feature_importances(
estimator,
self.importance_getter,
transform_func="square",
)
ranks = np.argsort(importances)
# for sparse case ranks is matrix
ranks = np.ravel(ranks)
# Eliminate the worse features
threshold = min(step, np.sum(support_) - n_features_to_select)
# Compute step score on the previous selection iteration
# because 'estimator' must use features
# that have not been eliminated yet
if step_score:
self.step_n_features_.append(len(features))
self.step_scores_.append(step_score(estimator, features))
support_[features[ranks][:threshold]] = False
ranking_[np.logical_not(support_)] += 1
# Set final attributes
features = np.arange(n_features)[support_]
self.estimator_ = clone(self.estimator)
self.estimator_.fit(X[:, features], y, **fit_params)
# Compute step score when only n_features_to_select features left
if step_score:
self.step_n_features_.append(len(features))
self.step_scores_.append(step_score(self.estimator_, features))
self.n_features_ = support_.sum()
self.support_ = support_
self.ranking_ = ranking_
return self
@available_if(_estimator_has("predict"))
def predict(self, X, **predict_params):
"""Reduce X to the selected features and predict using the estimator.
Parameters
----------
X : array of shape [n_samples, n_features]
The input samples.
**predict_params : dict
Parameters to route to the ``predict`` method of the
underlying estimator.
.. versionadded:: 1.6
Only available if `enable_metadata_routing=True`,
which can be set by using
``sklearn.set_config(enable_metadata_routing=True)``.
See :ref:`Metadata Routing User Guide <metadata_routing>`
for more details.
Returns
-------
y : array of shape [n_samples]
The predicted target values.
"""
_raise_for_params(predict_params, self, "predict")
check_is_fitted(self)
if _routing_enabled():
routed_params = process_routing(self, "predict", **predict_params)
else:
routed_params = Bunch(estimator=Bunch(predict={}))
return self.estimator_.predict(
self.transform(X), **routed_params.estimator.predict
)
@available_if(_estimator_has("score"))
def score(self, X, y, **score_params):
"""Reduce X to the selected features and return the score of the estimator.
Parameters
----------
X : array of shape [n_samples, n_features]
The input samples.
y : array of shape [n_samples]
The target values.
**score_params : dict
- If `enable_metadata_routing=False` (default): Parameters directly passed
to the ``score`` method of the underlying estimator.
- If `enable_metadata_routing=True`: Parameters safely routed to the `score`
method of the underlying estimator.
.. versionadded:: 1.0
.. versionchanged:: 1.6
See :ref:`Metadata Routing User Guide <metadata_routing>`
for more details.
Returns
-------
score : float
Score of the underlying base estimator computed with the selected
features returned by `rfe.transform(X)` and `y`.
"""
check_is_fitted(self)
if _routing_enabled():
routed_params = process_routing(self, "score", **score_params)
else:
routed_params = Bunch(estimator=Bunch(score=score_params))
return self.estimator_.score(
self.transform(X), y, **routed_params.estimator.score
)
def _get_support_mask(self):
check_is_fitted(self)
return self.support_
@available_if(_estimator_has("decision_function"))
def decision_function(self, X):
"""Compute the decision function of ``X``.
Parameters
----------
X : {array-like or sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Returns
-------
score : array, shape = [n_samples, n_classes] or [n_samples]
The decision function of the input samples. The order of the
classes corresponds to that in the attribute :term:`classes_`.
Regression and binary classification produce an array of shape
[n_samples].
"""
check_is_fitted(self)
return self.estimator_.decision_function(self.transform(X))
@available_if(_estimator_has("predict_proba"))
def predict_proba(self, X):
"""Predict class probabilities for X.
Parameters
----------
X : {array-like or sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Returns
-------
p : array of shape (n_samples, n_classes)
The class probabilities of the input samples. The order of the
classes corresponds to that in the attribute :term:`classes_`.
"""
check_is_fitted(self)
return self.estimator_.predict_proba(self.transform(X))
@available_if(_estimator_has("predict_log_proba"))
def predict_log_proba(self, X):
"""Predict class log-probabilities for X.
Parameters
----------
X : array of shape [n_samples, n_features]
The input samples.
Returns
-------
p : array of shape (n_samples, n_classes)
The class log-probabilities of the input samples. The order of the
classes corresponds to that in the attribute :term:`classes_`.
"""
check_is_fitted(self)
return self.estimator_.predict_log_proba(self.transform(X))
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
sub_estimator_tags = get_tags(self.estimator)
tags.estimator_type = sub_estimator_tags.estimator_type
tags.classifier_tags = deepcopy(sub_estimator_tags.classifier_tags)
tags.regressor_tags = deepcopy(sub_estimator_tags.regressor_tags)
if tags.classifier_tags is not None:
tags.classifier_tags.poor_score = True
if tags.regressor_tags is not None:
tags.regressor_tags.poor_score = True
tags.target_tags.required = True
tags.input_tags.sparse = sub_estimator_tags.input_tags.sparse
tags.input_tags.allow_nan = sub_estimator_tags.input_tags.allow_nan
return tags
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.6
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = MetadataRouter(owner=self.__class__.__name__).add(
estimator=self.estimator,
method_mapping=MethodMapping()
.add(caller="fit", callee="fit")
.add(caller="predict", callee="predict")
.add(caller="score", callee="score"),
)
return router
class RFECV(RFE):
"""Recursive feature elimination with cross-validation to select features.
The number of features selected is tuned automatically by fitting an :class:`RFE`
selector on the different cross-validation splits (provided by the `cv` parameter).
The performance of the :class:`RFE` selector are evaluated using `scorer` for
different number of selected features and aggregated together. Finally, the scores
are averaged across folds and the number of features selected is set to the number
of features that maximize the cross-validation score.
See glossary entry for :term:`cross-validation estimator`.
Read more in the :ref:`User Guide <rfe>`.
Parameters
----------
estimator : ``Estimator`` instance
A supervised learning estimator with a ``fit`` method that provides
information about feature importance either through a ``coef_``
attribute or through a ``feature_importances_`` attribute.
step : int or float, default=1
If greater than or equal to 1, then ``step`` corresponds to the
(integer) number of features to remove at each iteration.
If within (0.0, 1.0), then ``step`` corresponds to the percentage
(rounded down) of features to remove at each iteration.
Note that the last iteration may remove fewer than ``step`` features in
order to reach ``min_features_to_select``.
min_features_to_select : int, default=1
The minimum number of features to be selected. This number of features
will always be scored, even if the difference between the original
feature count and ``min_features_to_select`` isn't divisible by
``step``.
.. versionadded:: 0.20
cv : int, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross-validation,
- integer, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs, if ``y`` is binary or multiclass,
:class:`~sklearn.model_selection.StratifiedKFold` is used. If the
estimator is not a classifier or if ``y`` is neither binary nor multiclass,
:class:`~sklearn.model_selection.KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.22
``cv`` default value of None changed from 3-fold to 5-fold.
scoring : str, callable or None, default=None
A string (see :ref:`scoring_parameter`) or
a scorer callable object / function with signature
``scorer(estimator, X, y)``.
verbose : int, default=0
Controls verbosity of output.
n_jobs : int or None, default=None
Number of cores to run in parallel while fitting across folds.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
.. versionadded:: 0.18
importance_getter : str or callable, default='auto'
If 'auto', uses the feature importance either through a `coef_`
or `feature_importances_` attributes of estimator.
Also accepts a string that specifies an attribute name/path
for extracting feature importance.
For example, give `regressor_.coef_` in case of
:class:`~sklearn.compose.TransformedTargetRegressor` or
`named_steps.clf.feature_importances_` in case of
:class:`~sklearn.pipeline.Pipeline` with its last step named `clf`.
If `callable`, overrides the default feature importance getter.
The callable is passed with the fitted estimator and it should
return importance for each feature.
.. versionadded:: 0.24
Attributes
----------
classes_ : ndarray of shape (n_classes,)
The classes labels. Only available when `estimator` is a classifier.
estimator_ : ``Estimator`` instance
The fitted estimator used to select features.
cv_results_ : dict of ndarrays
All arrays (values of the dictionary) are sorted in ascending order
by the number of features used (i.e., the first element of the array
represents the models that used the least number of features, while the
last element represents the models that used all available features).
.. versionadded:: 1.0
This dictionary contains the following keys:
split(k)_test_score : ndarray of shape (n_subsets_of_features,)
The cross-validation scores across (k)th fold.
mean_test_score : ndarray of shape (n_subsets_of_features,)
Mean of scores over the folds.
std_test_score : ndarray of shape (n_subsets_of_features,)
Standard deviation of scores over the folds.
n_features : ndarray of shape (n_subsets_of_features,)
Number of features used at each step.
.. versionadded:: 1.5
n_features_ : int
The number of selected features with cross-validation.
n_features_in_ : int
Number of features seen during :term:`fit`. Only defined if the
underlying estimator exposes such an attribute when fit.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
ranking_ : narray of shape (n_features,)
The feature ranking, such that `ranking_[i]`
corresponds to the ranking
position of the i-th feature.
Selected (i.e., estimated best)
features are assigned rank 1.
support_ : ndarray of shape (n_features,)
The mask of selected features.
See Also
--------
RFE : Recursive feature elimination.
Notes
-----
The size of all values in ``cv_results_`` is equal to
``ceil((n_features - min_features_to_select) / step) + 1``,
where step is the number of features removed at each iteration.
Allows NaN/Inf in the input if the underlying estimator does as well.
References
----------
.. [1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene selection
for cancer classification using support vector machines",
Mach. Learn., 46(1-3), 389--422, 2002.
Examples
--------
The following example shows how to retrieve the a-priori not known 5
informative features in the Friedman #1 dataset.
>>> from sklearn.datasets import make_friedman1
>>> from sklearn.feature_selection import RFECV
>>> from sklearn.svm import SVR
>>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
>>> estimator = SVR(kernel="linear")
>>> selector = RFECV(estimator, step=1, cv=5)
>>> selector = selector.fit(X, y)
>>> selector.support_
array([ True, True, True, True, True, False, False, False, False,
False])
>>> selector.ranking_
array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5])
"""
_parameter_constraints: dict = {
**RFE._parameter_constraints,
"min_features_to_select": [Interval(Integral, 0, None, closed="neither")],
"cv": ["cv_object"],
"scoring": [None, str, callable],
"n_jobs": [None, Integral],
}
_parameter_constraints.pop("n_features_to_select")
__metadata_request__fit = {"groups": metadata_routing.UNUSED}
def __init__(
self,
estimator,
*,
step=1,
min_features_to_select=1,
cv=None,
scoring=None,
verbose=0,
n_jobs=None,
importance_getter="auto",
):
self.estimator = estimator
self.step = step
self.importance_getter = importance_getter
self.cv = cv
self.scoring = scoring
self.verbose = verbose
self.n_jobs = n_jobs
self.min_features_to_select = min_features_to_select
# TODO(1.8): remove `groups` from the signature after deprecation cycle.
@_deprecate_positional_args(version="1.8")
@_fit_context(
# RFECV.estimator is not validated yet
prefer_skip_nested_validation=False
)
def fit(self, X, y, *, groups=None, **params):
"""Fit the RFE model and automatically tune the number of selected features.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vector, where `n_samples` is the number of samples and
`n_features` is the total number of features.
y : array-like of shape (n_samples,)
Target values (integers for classification, real numbers for
regression).
groups : array-like of shape (n_samples,) or None, default=None
Group labels for the samples used while splitting the dataset into
train/test set. Only used in conjunction with a "Group" :term:`cv`
instance (e.g., :class:`~sklearn.model_selection.GroupKFold`).
.. versionadded:: 0.20
**params : dict of str -> object
Parameters passed to the ``fit`` method of the estimator,
the scorer, and the CV splitter.
.. versionadded:: 1.6
Only available if `enable_metadata_routing=True`,
which can be set by using
``sklearn.set_config(enable_metadata_routing=True)``.
See :ref:`Metadata Routing User Guide <metadata_routing>`
for more details.
Returns
-------
self : object
Fitted estimator.
"""
_raise_for_params(params, self, "fit")
X, y = validate_data(
self,
X,
y,
accept_sparse="csr",
ensure_min_features=2,
ensure_all_finite=False,
multi_output=True,
)
if _routing_enabled():
if groups is not None:
params.update({"groups": groups})
routed_params = process_routing(self, "fit", **params)
else:
routed_params = Bunch(
estimator=Bunch(fit={}),
splitter=Bunch(split={"groups": groups}),
scorer=Bunch(score={}),
)
# Initialization
cv = check_cv(self.cv, y, classifier=is_classifier(self.estimator))
scorer = self._get_scorer()
# Build an RFE object, which will evaluate and score each possible
# feature count, down to self.min_features_to_select
n_features = X.shape[1]
if self.min_features_to_select > n_features:
warnings.warn(
(
f"Found min_features_to_select={self.min_features_to_select} > "
f"{n_features=}. There will be no feature selection and all "
"features will be kept."
),
UserWarning,
)
rfe = RFE(
estimator=self.estimator,
n_features_to_select=min(self.min_features_to_select, n_features),
importance_getter=self.importance_getter,
step=self.step,
verbose=self.verbose,
)
# Determine the number of subsets of features by fitting across
# the train folds and choosing the "features_to_select" parameter
# that gives the least averaged error across all folds.
# Note that joblib raises a non-picklable error for bound methods
# even if n_jobs is set to 1 with the default multiprocessing
# backend.
# This branching is done so that to
# make sure that user code that sets n_jobs to 1
# and provides bound methods as scorers is not broken with the
# addition of n_jobs parameter in version 0.18.
if effective_n_jobs(self.n_jobs) == 1:
parallel, func = list, _rfe_single_fit
else:
parallel = Parallel(n_jobs=self.n_jobs)
func = delayed(_rfe_single_fit)
scores_features = parallel(
func(clone(rfe), self.estimator, X, y, train, test, scorer, routed_params)
for train, test in cv.split(X, y, **routed_params.splitter.split)
)
scores, step_n_features = zip(*scores_features)
step_n_features_rev = np.array(step_n_features[0])[::-1]
scores = np.array(scores)
# Reverse order such that lowest number of features is selected in case of tie.
scores_sum_rev = np.sum(scores, axis=0)[::-1]
n_features_to_select = step_n_features_rev[np.argmax(scores_sum_rev)]
# Re-execute an elimination with best_k over the whole set
rfe = RFE(
estimator=self.estimator,
n_features_to_select=n_features_to_select,
step=self.step,
importance_getter=self.importance_getter,
verbose=self.verbose,
)
rfe.fit(X, y, **routed_params.estimator.fit)
# Set final attributes
self.support_ = rfe.support_
self.n_features_ = rfe.n_features_
self.ranking_ = rfe.ranking_
self.estimator_ = clone(self.estimator)
self.estimator_.fit(self._transform(X), y, **routed_params.estimator.fit)
# reverse to stay consistent with before
scores_rev = scores[:, ::-1]
self.cv_results_ = {
"mean_test_score": np.mean(scores_rev, axis=0),
"std_test_score": np.std(scores_rev, axis=0),
**{f"split{i}_test_score": scores_rev[i] for i in range(scores.shape[0])},
"n_features": step_n_features_rev,
}
return self
def score(self, X, y, **score_params):
"""Score using the `scoring` option on the given test data and labels.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Test samples.
y : array-like of shape (n_samples,)
True labels for X.
**score_params : dict
Parameters to pass to the `score` method of the underlying scorer.
.. versionadded:: 1.6
Only available if `enable_metadata_routing=True`,
which can be set by using
``sklearn.set_config(enable_metadata_routing=True)``.
See :ref:`Metadata Routing User Guide <metadata_routing>`
for more details.
Returns
-------
score : float
Score of self.predict(X) w.r.t. y defined by `scoring`.
"""
_raise_for_params(score_params, self, "score")
scoring = self._get_scorer()
if _routing_enabled():
routed_params = process_routing(self, "score", **score_params)
else:
routed_params = Bunch()
routed_params.scorer = Bunch(score={})
return scoring(self, X, y, **routed_params.scorer.score)
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.6
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = MetadataRouter(owner=self.__class__.__name__)
router.add(
estimator=self.estimator,
method_mapping=MethodMapping().add(caller="fit", callee="fit"),
)
router.add(
splitter=check_cv(self.cv),
method_mapping=MethodMapping().add(
caller="fit",
callee="split",
),
)
router.add(
scorer=self._get_scorer(),
method_mapping=MethodMapping()
.add(caller="fit", callee="score")
.add(caller="score", callee="score"),
)
return router
def _get_scorer(self):
if self.scoring is None:
scoring = "accuracy" if is_classifier(self.estimator) else "r2"
else:
scoring = self.scoring
return get_scorer(scoring)
|