File size: 27,693 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 |
"""
Various bayesian regression
"""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
from math import log
from numbers import Integral, Real
import numpy as np
from scipy import linalg
from scipy.linalg import pinvh
from ..base import RegressorMixin, _fit_context
from ..utils import _safe_indexing
from ..utils._param_validation import Interval
from ..utils.extmath import fast_logdet
from ..utils.validation import _check_sample_weight, validate_data
from ._base import LinearModel, _preprocess_data, _rescale_data
###############################################################################
# BayesianRidge regression
class BayesianRidge(RegressorMixin, LinearModel):
"""Bayesian ridge regression.
Fit a Bayesian ridge model. See the Notes section for details on this
implementation and the optimization of the regularization parameters
lambda (precision of the weights) and alpha (precision of the noise).
Read more in the :ref:`User Guide <bayesian_regression>`.
For an intuitive visualization of how the sinusoid is approximated by
a polynomial using different pairs of initial values, see
:ref:`sphx_glr_auto_examples_linear_model_plot_bayesian_ridge_curvefit.py`.
Parameters
----------
max_iter : int, default=300
Maximum number of iterations over the complete dataset before
stopping independently of any early stopping criterion.
.. versionchanged:: 1.3
tol : float, default=1e-3
Stop the algorithm if w has converged.
alpha_1 : float, default=1e-6
Hyper-parameter : shape parameter for the Gamma distribution prior
over the alpha parameter.
alpha_2 : float, default=1e-6
Hyper-parameter : inverse scale parameter (rate parameter) for the
Gamma distribution prior over the alpha parameter.
lambda_1 : float, default=1e-6
Hyper-parameter : shape parameter for the Gamma distribution prior
over the lambda parameter.
lambda_2 : float, default=1e-6
Hyper-parameter : inverse scale parameter (rate parameter) for the
Gamma distribution prior over the lambda parameter.
alpha_init : float, default=None
Initial value for alpha (precision of the noise).
If not set, alpha_init is 1/Var(y).
.. versionadded:: 0.22
lambda_init : float, default=None
Initial value for lambda (precision of the weights).
If not set, lambda_init is 1.
.. versionadded:: 0.22
compute_score : bool, default=False
If True, compute the log marginal likelihood at each iteration of the
optimization.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model.
The intercept is not treated as a probabilistic parameter
and thus has no associated variance. If set
to False, no intercept will be used in calculations
(i.e. data is expected to be centered).
copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.
verbose : bool, default=False
Verbose mode when fitting the model.
Attributes
----------
coef_ : array-like of shape (n_features,)
Coefficients of the regression model (mean of distribution)
intercept_ : float
Independent term in decision function. Set to 0.0 if
`fit_intercept = False`.
alpha_ : float
Estimated precision of the noise.
lambda_ : float
Estimated precision of the weights.
sigma_ : array-like of shape (n_features, n_features)
Estimated variance-covariance matrix of the weights
scores_ : array-like of shape (n_iter_+1,)
If computed_score is True, value of the log marginal likelihood (to be
maximized) at each iteration of the optimization. The array starts
with the value of the log marginal likelihood obtained for the initial
values of alpha and lambda and ends with the value obtained for the
estimated alpha and lambda.
n_iter_ : int
The actual number of iterations to reach the stopping criterion.
X_offset_ : ndarray of shape (n_features,)
If `fit_intercept=True`, offset subtracted for centering data to a
zero mean. Set to np.zeros(n_features) otherwise.
X_scale_ : ndarray of shape (n_features,)
Set to np.ones(n_features).
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
ARDRegression : Bayesian ARD regression.
Notes
-----
There exist several strategies to perform Bayesian ridge regression. This
implementation is based on the algorithm described in Appendix A of
(Tipping, 2001) where updates of the regularization parameters are done as
suggested in (MacKay, 1992). Note that according to A New
View of Automatic Relevance Determination (Wipf and Nagarajan, 2008) these
update rules do not guarantee that the marginal likelihood is increasing
between two consecutive iterations of the optimization.
References
----------
D. J. C. MacKay, Bayesian Interpolation, Computation and Neural Systems,
Vol. 4, No. 3, 1992.
M. E. Tipping, Sparse Bayesian Learning and the Relevance Vector Machine,
Journal of Machine Learning Research, Vol. 1, 2001.
Examples
--------
>>> from sklearn import linear_model
>>> clf = linear_model.BayesianRidge()
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
BayesianRidge()
>>> clf.predict([[1, 1]])
array([1.])
"""
_parameter_constraints: dict = {
"max_iter": [Interval(Integral, 1, None, closed="left")],
"tol": [Interval(Real, 0, None, closed="neither")],
"alpha_1": [Interval(Real, 0, None, closed="left")],
"alpha_2": [Interval(Real, 0, None, closed="left")],
"lambda_1": [Interval(Real, 0, None, closed="left")],
"lambda_2": [Interval(Real, 0, None, closed="left")],
"alpha_init": [None, Interval(Real, 0, None, closed="left")],
"lambda_init": [None, Interval(Real, 0, None, closed="left")],
"compute_score": ["boolean"],
"fit_intercept": ["boolean"],
"copy_X": ["boolean"],
"verbose": ["verbose"],
}
def __init__(
self,
*,
max_iter=300,
tol=1.0e-3,
alpha_1=1.0e-6,
alpha_2=1.0e-6,
lambda_1=1.0e-6,
lambda_2=1.0e-6,
alpha_init=None,
lambda_init=None,
compute_score=False,
fit_intercept=True,
copy_X=True,
verbose=False,
):
self.max_iter = max_iter
self.tol = tol
self.alpha_1 = alpha_1
self.alpha_2 = alpha_2
self.lambda_1 = lambda_1
self.lambda_2 = lambda_2
self.alpha_init = alpha_init
self.lambda_init = lambda_init
self.compute_score = compute_score
self.fit_intercept = fit_intercept
self.copy_X = copy_X
self.verbose = verbose
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y, sample_weight=None):
"""Fit the model.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Training data.
y : ndarray of shape (n_samples,)
Target values. Will be cast to X's dtype if necessary.
sample_weight : ndarray of shape (n_samples,), default=None
Individual weights for each sample.
.. versionadded:: 0.20
parameter *sample_weight* support to BayesianRidge.
Returns
-------
self : object
Returns the instance itself.
"""
X, y = validate_data(
self,
X,
y,
dtype=[np.float64, np.float32],
force_writeable=True,
y_numeric=True,
)
dtype = X.dtype
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X, dtype=dtype)
X, y, X_offset_, y_offset_, X_scale_ = _preprocess_data(
X,
y,
fit_intercept=self.fit_intercept,
copy=self.copy_X,
sample_weight=sample_weight,
)
if sample_weight is not None:
# Sample weight can be implemented via a simple rescaling.
X, y, _ = _rescale_data(X, y, sample_weight)
self.X_offset_ = X_offset_
self.X_scale_ = X_scale_
n_samples, n_features = X.shape
# Initialization of the values of the parameters
eps = np.finfo(np.float64).eps
# Add `eps` in the denominator to omit division by zero if `np.var(y)`
# is zero
alpha_ = self.alpha_init
lambda_ = self.lambda_init
if alpha_ is None:
alpha_ = 1.0 / (np.var(y) + eps)
if lambda_ is None:
lambda_ = 1.0
# Avoid unintended type promotion to float64 with numpy 2
alpha_ = np.asarray(alpha_, dtype=dtype)
lambda_ = np.asarray(lambda_, dtype=dtype)
verbose = self.verbose
lambda_1 = self.lambda_1
lambda_2 = self.lambda_2
alpha_1 = self.alpha_1
alpha_2 = self.alpha_2
self.scores_ = list()
coef_old_ = None
XT_y = np.dot(X.T, y)
U, S, Vh = linalg.svd(X, full_matrices=False)
eigen_vals_ = S**2
# Convergence loop of the bayesian ridge regression
for iter_ in range(self.max_iter):
# update posterior mean coef_ based on alpha_ and lambda_ and
# compute corresponding rmse
coef_, rmse_ = self._update_coef_(
X, y, n_samples, n_features, XT_y, U, Vh, eigen_vals_, alpha_, lambda_
)
if self.compute_score:
# compute the log marginal likelihood
s = self._log_marginal_likelihood(
n_samples, n_features, eigen_vals_, alpha_, lambda_, coef_, rmse_
)
self.scores_.append(s)
# Update alpha and lambda according to (MacKay, 1992)
gamma_ = np.sum((alpha_ * eigen_vals_) / (lambda_ + alpha_ * eigen_vals_))
lambda_ = (gamma_ + 2 * lambda_1) / (np.sum(coef_**2) + 2 * lambda_2)
alpha_ = (n_samples - gamma_ + 2 * alpha_1) / (rmse_ + 2 * alpha_2)
# Check for convergence
if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol:
if verbose:
print("Convergence after ", str(iter_), " iterations")
break
coef_old_ = np.copy(coef_)
self.n_iter_ = iter_ + 1
# return regularization parameters and corresponding posterior mean,
# log marginal likelihood and posterior covariance
self.alpha_ = alpha_
self.lambda_ = lambda_
self.coef_, rmse_ = self._update_coef_(
X, y, n_samples, n_features, XT_y, U, Vh, eigen_vals_, alpha_, lambda_
)
if self.compute_score:
# compute the log marginal likelihood
s = self._log_marginal_likelihood(
n_samples, n_features, eigen_vals_, alpha_, lambda_, coef_, rmse_
)
self.scores_.append(s)
self.scores_ = np.array(self.scores_)
# posterior covariance is given by 1/alpha_ * scaled_sigma_
scaled_sigma_ = np.dot(
Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, np.newaxis]
)
self.sigma_ = (1.0 / alpha_) * scaled_sigma_
self._set_intercept(X_offset_, y_offset_, X_scale_)
return self
def predict(self, X, return_std=False):
"""Predict using the linear model.
In addition to the mean of the predictive distribution, also its
standard deviation can be returned.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Samples.
return_std : bool, default=False
Whether to return the standard deviation of posterior prediction.
Returns
-------
y_mean : array-like of shape (n_samples,)
Mean of predictive distribution of query points.
y_std : array-like of shape (n_samples,)
Standard deviation of predictive distribution of query points.
"""
y_mean = self._decision_function(X)
if not return_std:
return y_mean
else:
sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1)
y_std = np.sqrt(sigmas_squared_data + (1.0 / self.alpha_))
return y_mean, y_std
def _update_coef_(
self, X, y, n_samples, n_features, XT_y, U, Vh, eigen_vals_, alpha_, lambda_
):
"""Update posterior mean and compute corresponding rmse.
Posterior mean is given by coef_ = scaled_sigma_ * X.T * y where
scaled_sigma_ = (lambda_/alpha_ * np.eye(n_features)
+ np.dot(X.T, X))^-1
"""
if n_samples > n_features:
coef_ = np.linalg.multi_dot(
[Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, np.newaxis], XT_y]
)
else:
coef_ = np.linalg.multi_dot(
[X.T, U / (eigen_vals_ + lambda_ / alpha_)[None, :], U.T, y]
)
rmse_ = np.sum((y - np.dot(X, coef_)) ** 2)
return coef_, rmse_
def _log_marginal_likelihood(
self, n_samples, n_features, eigen_vals, alpha_, lambda_, coef, rmse
):
"""Log marginal likelihood."""
alpha_1 = self.alpha_1
alpha_2 = self.alpha_2
lambda_1 = self.lambda_1
lambda_2 = self.lambda_2
# compute the log of the determinant of the posterior covariance.
# posterior covariance is given by
# sigma = (lambda_ * np.eye(n_features) + alpha_ * np.dot(X.T, X))^-1
if n_samples > n_features:
logdet_sigma = -np.sum(np.log(lambda_ + alpha_ * eigen_vals))
else:
logdet_sigma = np.full(n_features, lambda_, dtype=np.array(lambda_).dtype)
logdet_sigma[:n_samples] += alpha_ * eigen_vals
logdet_sigma = -np.sum(np.log(logdet_sigma))
score = lambda_1 * log(lambda_) - lambda_2 * lambda_
score += alpha_1 * log(alpha_) - alpha_2 * alpha_
score += 0.5 * (
n_features * log(lambda_)
+ n_samples * log(alpha_)
- alpha_ * rmse
- lambda_ * np.sum(coef**2)
+ logdet_sigma
- n_samples * log(2 * np.pi)
)
return score
###############################################################################
# ARD (Automatic Relevance Determination) regression
class ARDRegression(RegressorMixin, LinearModel):
"""Bayesian ARD regression.
Fit the weights of a regression model, using an ARD prior. The weights of
the regression model are assumed to be in Gaussian distributions.
Also estimate the parameters lambda (precisions of the distributions of the
weights) and alpha (precision of the distribution of the noise).
The estimation is done by an iterative procedures (Evidence Maximization)
Read more in the :ref:`User Guide <bayesian_regression>`.
Parameters
----------
max_iter : int, default=300
Maximum number of iterations.
.. versionchanged:: 1.3
tol : float, default=1e-3
Stop the algorithm if w has converged.
alpha_1 : float, default=1e-6
Hyper-parameter : shape parameter for the Gamma distribution prior
over the alpha parameter.
alpha_2 : float, default=1e-6
Hyper-parameter : inverse scale parameter (rate parameter) for the
Gamma distribution prior over the alpha parameter.
lambda_1 : float, default=1e-6
Hyper-parameter : shape parameter for the Gamma distribution prior
over the lambda parameter.
lambda_2 : float, default=1e-6
Hyper-parameter : inverse scale parameter (rate parameter) for the
Gamma distribution prior over the lambda parameter.
compute_score : bool, default=False
If True, compute the objective function at each step of the model.
threshold_lambda : float, default=10 000
Threshold for removing (pruning) weights with high precision from
the computation.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.
verbose : bool, default=False
Verbose mode when fitting the model.
Attributes
----------
coef_ : array-like of shape (n_features,)
Coefficients of the regression model (mean of distribution)
alpha_ : float
estimated precision of the noise.
lambda_ : array-like of shape (n_features,)
estimated precisions of the weights.
sigma_ : array-like of shape (n_features, n_features)
estimated variance-covariance matrix of the weights
scores_ : float
if computed, value of the objective function (to be maximized)
n_iter_ : int
The actual number of iterations to reach the stopping criterion.
.. versionadded:: 1.3
intercept_ : float
Independent term in decision function. Set to 0.0 if
``fit_intercept = False``.
X_offset_ : float
If `fit_intercept=True`, offset subtracted for centering data to a
zero mean. Set to np.zeros(n_features) otherwise.
X_scale_ : float
Set to np.ones(n_features).
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
BayesianRidge : Bayesian ridge regression.
Notes
-----
For an example, see :ref:`examples/linear_model/plot_ard.py
<sphx_glr_auto_examples_linear_model_plot_ard.py>`.
References
----------
D. J. C. MacKay, Bayesian nonlinear modeling for the prediction
competition, ASHRAE Transactions, 1994.
R. Salakhutdinov, Lecture notes on Statistical Machine Learning,
http://www.utstat.toronto.edu/~rsalakhu/sta4273/notes/Lecture2.pdf#page=15
Their beta is our ``self.alpha_``
Their alpha is our ``self.lambda_``
ARD is a little different than the slide: only dimensions/features for
which ``self.lambda_ < self.threshold_lambda`` are kept and the rest are
discarded.
Examples
--------
>>> from sklearn import linear_model
>>> clf = linear_model.ARDRegression()
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
ARDRegression()
>>> clf.predict([[1, 1]])
array([1.])
"""
_parameter_constraints: dict = {
"max_iter": [Interval(Integral, 1, None, closed="left")],
"tol": [Interval(Real, 0, None, closed="left")],
"alpha_1": [Interval(Real, 0, None, closed="left")],
"alpha_2": [Interval(Real, 0, None, closed="left")],
"lambda_1": [Interval(Real, 0, None, closed="left")],
"lambda_2": [Interval(Real, 0, None, closed="left")],
"compute_score": ["boolean"],
"threshold_lambda": [Interval(Real, 0, None, closed="left")],
"fit_intercept": ["boolean"],
"copy_X": ["boolean"],
"verbose": ["verbose"],
}
def __init__(
self,
*,
max_iter=300,
tol=1.0e-3,
alpha_1=1.0e-6,
alpha_2=1.0e-6,
lambda_1=1.0e-6,
lambda_2=1.0e-6,
compute_score=False,
threshold_lambda=1.0e4,
fit_intercept=True,
copy_X=True,
verbose=False,
):
self.max_iter = max_iter
self.tol = tol
self.fit_intercept = fit_intercept
self.alpha_1 = alpha_1
self.alpha_2 = alpha_2
self.lambda_1 = lambda_1
self.lambda_2 = lambda_2
self.compute_score = compute_score
self.threshold_lambda = threshold_lambda
self.copy_X = copy_X
self.verbose = verbose
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y):
"""Fit the model according to the given training data and parameters.
Iterative procedure to maximize the evidence
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training vector, where `n_samples` is the number of samples and
`n_features` is the number of features.
y : array-like of shape (n_samples,)
Target values (integers). Will be cast to X's dtype if necessary.
Returns
-------
self : object
Fitted estimator.
"""
X, y = validate_data(
self,
X,
y,
dtype=[np.float64, np.float32],
force_writeable=True,
y_numeric=True,
ensure_min_samples=2,
)
dtype = X.dtype
n_samples, n_features = X.shape
coef_ = np.zeros(n_features, dtype=dtype)
X, y, X_offset_, y_offset_, X_scale_ = _preprocess_data(
X, y, fit_intercept=self.fit_intercept, copy=self.copy_X
)
self.X_offset_ = X_offset_
self.X_scale_ = X_scale_
# Launch the convergence loop
keep_lambda = np.ones(n_features, dtype=bool)
lambda_1 = self.lambda_1
lambda_2 = self.lambda_2
alpha_1 = self.alpha_1
alpha_2 = self.alpha_2
verbose = self.verbose
# Initialization of the values of the parameters
eps = np.finfo(np.float64).eps
# Add `eps` in the denominator to omit division by zero if `np.var(y)`
# is zero.
# Explicitly set dtype to avoid unintended type promotion with numpy 2.
alpha_ = np.asarray(1.0 / (np.var(y) + eps), dtype=dtype)
lambda_ = np.ones(n_features, dtype=dtype)
self.scores_ = list()
coef_old_ = None
def update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_):
coef_[keep_lambda] = alpha_ * np.linalg.multi_dot(
[sigma_, X[:, keep_lambda].T, y]
)
return coef_
update_sigma = (
self._update_sigma
if n_samples >= n_features
else self._update_sigma_woodbury
)
# Iterative procedure of ARDRegression
for iter_ in range(self.max_iter):
sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda)
coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_)
# Update alpha and lambda
rmse_ = np.sum((y - np.dot(X, coef_)) ** 2)
gamma_ = 1.0 - lambda_[keep_lambda] * np.diag(sigma_)
lambda_[keep_lambda] = (gamma_ + 2.0 * lambda_1) / (
(coef_[keep_lambda]) ** 2 + 2.0 * lambda_2
)
alpha_ = (n_samples - gamma_.sum() + 2.0 * alpha_1) / (
rmse_ + 2.0 * alpha_2
)
# Prune the weights with a precision over a threshold
keep_lambda = lambda_ < self.threshold_lambda
coef_[~keep_lambda] = 0
# Compute the objective function
if self.compute_score:
s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum()
s += alpha_1 * log(alpha_) - alpha_2 * alpha_
s += 0.5 * (
fast_logdet(sigma_)
+ n_samples * log(alpha_)
+ np.sum(np.log(lambda_))
)
s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_**2).sum())
self.scores_.append(s)
# Check for convergence
if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol:
if verbose:
print("Converged after %s iterations" % iter_)
break
coef_old_ = np.copy(coef_)
if not keep_lambda.any():
break
self.n_iter_ = iter_ + 1
if keep_lambda.any():
# update sigma and mu using updated params from the last iteration
sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda)
coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_)
else:
sigma_ = np.array([]).reshape(0, 0)
self.coef_ = coef_
self.alpha_ = alpha_
self.sigma_ = sigma_
self.lambda_ = lambda_
self._set_intercept(X_offset_, y_offset_, X_scale_)
return self
def _update_sigma_woodbury(self, X, alpha_, lambda_, keep_lambda):
# See slides as referenced in the docstring note
# this function is used when n_samples < n_features and will invert
# a matrix of shape (n_samples, n_samples) making use of the
# woodbury formula:
# https://en.wikipedia.org/wiki/Woodbury_matrix_identity
n_samples = X.shape[0]
X_keep = X[:, keep_lambda]
inv_lambda = 1 / lambda_[keep_lambda].reshape(1, -1)
sigma_ = pinvh(
np.eye(n_samples, dtype=X.dtype) / alpha_
+ np.dot(X_keep * inv_lambda, X_keep.T)
)
sigma_ = np.dot(sigma_, X_keep * inv_lambda)
sigma_ = -np.dot(inv_lambda.reshape(-1, 1) * X_keep.T, sigma_)
sigma_[np.diag_indices(sigma_.shape[1])] += 1.0 / lambda_[keep_lambda]
return sigma_
def _update_sigma(self, X, alpha_, lambda_, keep_lambda):
# See slides as referenced in the docstring note
# this function is used when n_samples >= n_features and will
# invert a matrix of shape (n_features, n_features)
X_keep = X[:, keep_lambda]
gram = np.dot(X_keep.T, X_keep)
eye = np.eye(gram.shape[0], dtype=X.dtype)
sigma_inv = lambda_[keep_lambda] * eye + alpha_ * gram
sigma_ = pinvh(sigma_inv)
return sigma_
def predict(self, X, return_std=False):
"""Predict using the linear model.
In addition to the mean of the predictive distribution, also its
standard deviation can be returned.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Samples.
return_std : bool, default=False
Whether to return the standard deviation of posterior prediction.
Returns
-------
y_mean : array-like of shape (n_samples,)
Mean of predictive distribution of query points.
y_std : array-like of shape (n_samples,)
Standard deviation of predictive distribution of query points.
"""
y_mean = self._decision_function(X)
if return_std is False:
return y_mean
else:
col_index = self.lambda_ < self.threshold_lambda
X = _safe_indexing(X, indices=col_index, axis=1)
sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1)
y_std = np.sqrt(sigmas_squared_data + (1.0 / self.alpha_))
return y_mean, y_std
|