File size: 105,447 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 |
"""
Ridge regression
"""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import numbers
import warnings
from abc import ABCMeta, abstractmethod
from functools import partial
from numbers import Integral, Real
import numpy as np
from scipy import linalg, optimize, sparse
from scipy.sparse import linalg as sp_linalg
from sklearn.base import BaseEstimator
from ..base import MultiOutputMixin, RegressorMixin, _fit_context, is_classifier
from ..exceptions import ConvergenceWarning
from ..metrics import check_scoring, get_scorer_names
from ..model_selection import GridSearchCV
from ..preprocessing import LabelBinarizer
from ..utils import (
Bunch,
check_array,
check_consistent_length,
check_scalar,
column_or_1d,
compute_sample_weight,
deprecated,
)
from ..utils._array_api import (
_is_numpy_namespace,
_ravel,
device,
get_namespace,
get_namespace_and_device,
)
from ..utils._param_validation import Hidden, Interval, StrOptions, validate_params
from ..utils.extmath import row_norms, safe_sparse_dot
from ..utils.fixes import _sparse_linalg_cg
from ..utils.metadata_routing import (
MetadataRouter,
MethodMapping,
_raise_for_params,
_routing_enabled,
process_routing,
)
from ..utils.sparsefuncs import mean_variance_axis
from ..utils.validation import _check_sample_weight, check_is_fitted, validate_data
from ._base import LinearClassifierMixin, LinearModel, _preprocess_data, _rescale_data
from ._sag import sag_solver
def _get_rescaled_operator(X, X_offset, sample_weight_sqrt):
"""Create LinearOperator for matrix products with implicit centering.
Matrix product `LinearOperator @ coef` returns `(X - X_offset) @ coef`.
"""
def matvec(b):
return X.dot(b) - sample_weight_sqrt * b.dot(X_offset)
def rmatvec(b):
return X.T.dot(b) - X_offset * b.dot(sample_weight_sqrt)
X1 = sparse.linalg.LinearOperator(shape=X.shape, matvec=matvec, rmatvec=rmatvec)
return X1
def _solve_sparse_cg(
X,
y,
alpha,
max_iter=None,
tol=1e-4,
verbose=0,
X_offset=None,
X_scale=None,
sample_weight_sqrt=None,
):
if sample_weight_sqrt is None:
sample_weight_sqrt = np.ones(X.shape[0], dtype=X.dtype)
n_samples, n_features = X.shape
if X_offset is None or X_scale is None:
X1 = sp_linalg.aslinearoperator(X)
else:
X_offset_scale = X_offset / X_scale
X1 = _get_rescaled_operator(X, X_offset_scale, sample_weight_sqrt)
coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)
if n_features > n_samples:
def create_mv(curr_alpha):
def _mv(x):
return X1.matvec(X1.rmatvec(x)) + curr_alpha * x
return _mv
else:
def create_mv(curr_alpha):
def _mv(x):
return X1.rmatvec(X1.matvec(x)) + curr_alpha * x
return _mv
for i in range(y.shape[1]):
y_column = y[:, i]
mv = create_mv(alpha[i])
if n_features > n_samples:
# kernel ridge
# w = X.T * inv(X X^t + alpha*Id) y
C = sp_linalg.LinearOperator(
(n_samples, n_samples), matvec=mv, dtype=X.dtype
)
coef, info = _sparse_linalg_cg(C, y_column, rtol=tol)
coefs[i] = X1.rmatvec(coef)
else:
# linear ridge
# w = inv(X^t X + alpha*Id) * X.T y
y_column = X1.rmatvec(y_column)
C = sp_linalg.LinearOperator(
(n_features, n_features), matvec=mv, dtype=X.dtype
)
coefs[i], info = _sparse_linalg_cg(C, y_column, maxiter=max_iter, rtol=tol)
if info < 0:
raise ValueError("Failed with error code %d" % info)
if max_iter is None and info > 0 and verbose:
warnings.warn(
"sparse_cg did not converge after %d iterations." % info,
ConvergenceWarning,
)
return coefs
def _solve_lsqr(
X,
y,
*,
alpha,
fit_intercept=True,
max_iter=None,
tol=1e-4,
X_offset=None,
X_scale=None,
sample_weight_sqrt=None,
):
"""Solve Ridge regression via LSQR.
We expect that y is always mean centered.
If X is dense, we expect it to be mean centered such that we can solve
||y - Xw||_2^2 + alpha * ||w||_2^2
If X is sparse, we expect X_offset to be given such that we can solve
||y - (X - X_offset)w||_2^2 + alpha * ||w||_2^2
With sample weights S=diag(sample_weight), this becomes
||sqrt(S) (y - (X - X_offset) w)||_2^2 + alpha * ||w||_2^2
and we expect y and X to already be rescaled, i.e. sqrt(S) @ y, sqrt(S) @ X. In
this case, X_offset is the sample_weight weighted mean of X before scaling by
sqrt(S). The objective then reads
||y - (X - sqrt(S) X_offset) w)||_2^2 + alpha * ||w||_2^2
"""
if sample_weight_sqrt is None:
sample_weight_sqrt = np.ones(X.shape[0], dtype=X.dtype)
if sparse.issparse(X) and fit_intercept:
X_offset_scale = X_offset / X_scale
X1 = _get_rescaled_operator(X, X_offset_scale, sample_weight_sqrt)
else:
# No need to touch anything
X1 = X
n_samples, n_features = X.shape
coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)
n_iter = np.empty(y.shape[1], dtype=np.int32)
# According to the lsqr documentation, alpha = damp^2.
sqrt_alpha = np.sqrt(alpha)
for i in range(y.shape[1]):
y_column = y[:, i]
info = sp_linalg.lsqr(
X1, y_column, damp=sqrt_alpha[i], atol=tol, btol=tol, iter_lim=max_iter
)
coefs[i] = info[0]
n_iter[i] = info[2]
return coefs, n_iter
def _solve_cholesky(X, y, alpha):
# w = inv(X^t X + alpha*Id) * X.T y
n_features = X.shape[1]
n_targets = y.shape[1]
A = safe_sparse_dot(X.T, X, dense_output=True)
Xy = safe_sparse_dot(X.T, y, dense_output=True)
one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]])
if one_alpha:
A.flat[:: n_features + 1] += alpha[0]
return linalg.solve(A, Xy, assume_a="pos", overwrite_a=True).T
else:
coefs = np.empty([n_targets, n_features], dtype=X.dtype)
for coef, target, current_alpha in zip(coefs, Xy.T, alpha):
A.flat[:: n_features + 1] += current_alpha
coef[:] = linalg.solve(A, target, assume_a="pos", overwrite_a=False).ravel()
A.flat[:: n_features + 1] -= current_alpha
return coefs
def _solve_cholesky_kernel(K, y, alpha, sample_weight=None, copy=False):
# dual_coef = inv(X X^t + alpha*Id) y
n_samples = K.shape[0]
n_targets = y.shape[1]
if copy:
K = K.copy()
alpha = np.atleast_1d(alpha)
one_alpha = (alpha == alpha[0]).all()
has_sw = isinstance(sample_weight, np.ndarray) or sample_weight not in [1.0, None]
if has_sw:
# Unlike other solvers, we need to support sample_weight directly
# because K might be a pre-computed kernel.
sw = np.sqrt(np.atleast_1d(sample_weight))
y = y * sw[:, np.newaxis]
K *= np.outer(sw, sw)
if one_alpha:
# Only one penalty, we can solve multi-target problems in one time.
K.flat[:: n_samples + 1] += alpha[0]
try:
# Note: we must use overwrite_a=False in order to be able to
# use the fall-back solution below in case a LinAlgError
# is raised
dual_coef = linalg.solve(K, y, assume_a="pos", overwrite_a=False)
except np.linalg.LinAlgError:
warnings.warn(
"Singular matrix in solving dual problem. Using "
"least-squares solution instead."
)
dual_coef = linalg.lstsq(K, y)[0]
# K is expensive to compute and store in memory so change it back in
# case it was user-given.
K.flat[:: n_samples + 1] -= alpha[0]
if has_sw:
dual_coef *= sw[:, np.newaxis]
return dual_coef
else:
# One penalty per target. We need to solve each target separately.
dual_coefs = np.empty([n_targets, n_samples], K.dtype)
for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha):
K.flat[:: n_samples + 1] += current_alpha
dual_coef[:] = linalg.solve(
K, target, assume_a="pos", overwrite_a=False
).ravel()
K.flat[:: n_samples + 1] -= current_alpha
if has_sw:
dual_coefs *= sw[np.newaxis, :]
return dual_coefs.T
def _solve_svd(X, y, alpha, xp=None):
xp, _ = get_namespace(X, xp=xp)
U, s, Vt = xp.linalg.svd(X, full_matrices=False)
idx = s > 1e-15 # same default value as scipy.linalg.pinv
s_nnz = s[idx][:, None]
UTy = U.T @ y
d = xp.zeros((s.shape[0], alpha.shape[0]), dtype=X.dtype, device=device(X))
d[idx] = s_nnz / (s_nnz**2 + alpha)
d_UT_y = d * UTy
return (Vt.T @ d_UT_y).T
def _solve_lbfgs(
X,
y,
alpha,
positive=True,
max_iter=None,
tol=1e-4,
X_offset=None,
X_scale=None,
sample_weight_sqrt=None,
):
"""Solve ridge regression with LBFGS.
The main purpose is fitting with forcing coefficients to be positive.
For unconstrained ridge regression, there are faster dedicated solver methods.
Note that with positive bounds on the coefficients, LBFGS seems faster
than scipy.optimize.lsq_linear.
"""
n_samples, n_features = X.shape
options = {}
if max_iter is not None:
options["maxiter"] = max_iter
config = {
"method": "L-BFGS-B",
"tol": tol,
"jac": True,
"options": options,
}
if positive:
config["bounds"] = [(0, np.inf)] * n_features
if X_offset is not None and X_scale is not None:
X_offset_scale = X_offset / X_scale
else:
X_offset_scale = None
if sample_weight_sqrt is None:
sample_weight_sqrt = np.ones(X.shape[0], dtype=X.dtype)
coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)
for i in range(y.shape[1]):
x0 = np.zeros((n_features,))
y_column = y[:, i]
def func(w):
residual = X.dot(w) - y_column
if X_offset_scale is not None:
residual -= sample_weight_sqrt * w.dot(X_offset_scale)
f = 0.5 * residual.dot(residual) + 0.5 * alpha[i] * w.dot(w)
grad = X.T @ residual + alpha[i] * w
if X_offset_scale is not None:
grad -= X_offset_scale * residual.dot(sample_weight_sqrt)
return f, grad
result = optimize.minimize(func, x0, **config)
if not result["success"]:
warnings.warn(
(
"The lbfgs solver did not converge. Try increasing max_iter "
f"or tol. Currently: max_iter={max_iter} and tol={tol}"
),
ConvergenceWarning,
)
coefs[i] = result["x"]
return coefs
def _get_valid_accept_sparse(is_X_sparse, solver):
if is_X_sparse and solver in ["auto", "sag", "saga"]:
return "csr"
else:
return ["csr", "csc", "coo"]
@validate_params(
{
"X": ["array-like", "sparse matrix", sp_linalg.LinearOperator],
"y": ["array-like"],
"alpha": [Interval(Real, 0, None, closed="left"), "array-like"],
"sample_weight": [
Interval(Real, None, None, closed="neither"),
"array-like",
None,
],
"solver": [
StrOptions(
{"auto", "svd", "cholesky", "lsqr", "sparse_cg", "sag", "saga", "lbfgs"}
)
],
"max_iter": [Interval(Integral, 0, None, closed="left"), None],
"tol": [Interval(Real, 0, None, closed="left")],
"verbose": ["verbose"],
"positive": ["boolean"],
"random_state": ["random_state"],
"return_n_iter": ["boolean"],
"return_intercept": ["boolean"],
"check_input": ["boolean"],
},
prefer_skip_nested_validation=True,
)
def ridge_regression(
X,
y,
alpha,
*,
sample_weight=None,
solver="auto",
max_iter=None,
tol=1e-4,
verbose=0,
positive=False,
random_state=None,
return_n_iter=False,
return_intercept=False,
check_input=True,
):
"""Solve the ridge equation by the method of normal equations.
Read more in the :ref:`User Guide <ridge_regression>`.
Parameters
----------
X : {array-like, sparse matrix, LinearOperator} of shape \
(n_samples, n_features)
Training data.
y : array-like of shape (n_samples,) or (n_samples, n_targets)
Target values.
alpha : float or array-like of shape (n_targets,)
Constant that multiplies the L2 term, controlling regularization
strength. `alpha` must be a non-negative float i.e. in `[0, inf)`.
When `alpha = 0`, the objective is equivalent to ordinary least
squares, solved by the :class:`LinearRegression` object. For numerical
reasons, using `alpha = 0` with the `Ridge` object is not advised.
Instead, you should use the :class:`LinearRegression` object.
If an array is passed, penalties are assumed to be specific to the
targets. Hence they must correspond in number.
sample_weight : float or array-like of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample
will have the same weight. If sample_weight is not None and
solver='auto', the solver will be set to 'cholesky'.
.. versionadded:: 0.17
solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', \
'sag', 'saga', 'lbfgs'}, default='auto'
Solver to use in the computational routines:
- 'auto' chooses the solver automatically based on the type of data.
- 'svd' uses a Singular Value Decomposition of X to compute the Ridge
coefficients. It is the most stable solver, in particular more stable
for singular matrices than 'cholesky' at the cost of being slower.
- 'cholesky' uses the standard scipy.linalg.solve function to
obtain a closed-form solution via a Cholesky decomposition of
dot(X.T, X)
- 'sparse_cg' uses the conjugate gradient solver as found in
scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
more appropriate than 'cholesky' for large-scale data
(possibility to set `tol` and `max_iter`).
- 'lsqr' uses the dedicated regularized least-squares routine
scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
procedure.
- 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
its improved, unbiased version named SAGA. Both methods also use an
iterative procedure, and are often faster than other solvers when
both n_samples and n_features are large. Note that 'sag' and
'saga' fast convergence is only guaranteed on features with
approximately the same scale. You can preprocess the data with a
scaler from sklearn.preprocessing.
- 'lbfgs' uses L-BFGS-B algorithm implemented in
`scipy.optimize.minimize`. It can be used only when `positive`
is True.
All solvers except 'svd' support both dense and sparse data. However, only
'lsqr', 'sag', 'sparse_cg', and 'lbfgs' support sparse input when
`fit_intercept` is True.
.. versionadded:: 0.17
Stochastic Average Gradient descent solver.
.. versionadded:: 0.19
SAGA solver.
max_iter : int, default=None
Maximum number of iterations for conjugate gradient solver.
For the 'sparse_cg' and 'lsqr' solvers, the default value is determined
by scipy.sparse.linalg. For 'sag' and saga solver, the default value is
1000. For 'lbfgs' solver, the default value is 15000.
tol : float, default=1e-4
Precision of the solution. Note that `tol` has no effect for solvers 'svd' and
'cholesky'.
.. versionchanged:: 1.2
Default value changed from 1e-3 to 1e-4 for consistency with other linear
models.
verbose : int, default=0
Verbosity level. Setting verbose > 0 will display additional
information depending on the solver used.
positive : bool, default=False
When set to ``True``, forces the coefficients to be positive.
Only 'lbfgs' solver is supported in this case.
random_state : int, RandomState instance, default=None
Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
See :term:`Glossary <random_state>` for details.
return_n_iter : bool, default=False
If True, the method also returns `n_iter`, the actual number of
iteration performed by the solver.
.. versionadded:: 0.17
return_intercept : bool, default=False
If True and if X is sparse, the method also returns the intercept,
and the solver is automatically changed to 'sag'. This is only a
temporary fix for fitting the intercept with sparse data. For dense
data, use sklearn.linear_model._preprocess_data before your regression.
.. versionadded:: 0.17
check_input : bool, default=True
If False, the input arrays X and y will not be checked.
.. versionadded:: 0.21
Returns
-------
coef : ndarray of shape (n_features,) or (n_targets, n_features)
Weight vector(s).
n_iter : int, optional
The actual number of iteration performed by the solver.
Only returned if `return_n_iter` is True.
intercept : float or ndarray of shape (n_targets,)
The intercept of the model. Only returned if `return_intercept`
is True and if X is a scipy sparse array.
Notes
-----
This function won't compute the intercept.
Regularization improves the conditioning of the problem and
reduces the variance of the estimates. Larger values specify stronger
regularization. Alpha corresponds to ``1 / (2C)`` in other linear
models such as :class:`~sklearn.linear_model.LogisticRegression` or
:class:`~sklearn.svm.LinearSVC`. If an array is passed, penalties are
assumed to be specific to the targets. Hence they must correspond in
number.
Examples
--------
>>> import numpy as np
>>> from sklearn.datasets import make_regression
>>> from sklearn.linear_model import ridge_regression
>>> rng = np.random.RandomState(0)
>>> X = rng.randn(100, 4)
>>> y = 2.0 * X[:, 0] - 1.0 * X[:, 1] + 0.1 * rng.standard_normal(100)
>>> coef, intercept = ridge_regression(X, y, alpha=1.0, return_intercept=True)
>>> list(coef)
[np.float64(1.9...), np.float64(-1.0...), np.float64(-0.0...), np.float64(-0.0...)]
>>> intercept
np.float64(-0.0...)
"""
return _ridge_regression(
X,
y,
alpha,
sample_weight=sample_weight,
solver=solver,
max_iter=max_iter,
tol=tol,
verbose=verbose,
positive=positive,
random_state=random_state,
return_n_iter=return_n_iter,
return_intercept=return_intercept,
X_scale=None,
X_offset=None,
check_input=check_input,
)
def _ridge_regression(
X,
y,
alpha,
sample_weight=None,
solver="auto",
max_iter=None,
tol=1e-4,
verbose=0,
positive=False,
random_state=None,
return_n_iter=False,
return_intercept=False,
return_solver=False,
X_scale=None,
X_offset=None,
check_input=True,
fit_intercept=False,
):
xp, is_array_api_compliant, device_ = get_namespace_and_device(
X, y, sample_weight, X_scale, X_offset
)
is_numpy_namespace = _is_numpy_namespace(xp)
X_is_sparse = sparse.issparse(X)
has_sw = sample_weight is not None
solver = resolve_solver(solver, positive, return_intercept, X_is_sparse, xp)
if is_numpy_namespace and not X_is_sparse:
X = np.asarray(X)
if not is_numpy_namespace and solver != "svd":
raise ValueError(
f"Array API dispatch to namespace {xp.__name__} only supports "
f"solver 'svd'. Got '{solver}'."
)
if positive and solver != "lbfgs":
raise ValueError(
"When positive=True, only 'lbfgs' solver can be used. "
f"Please change solver {solver} to 'lbfgs' "
"or set positive=False."
)
if solver == "lbfgs" and not positive:
raise ValueError(
"'lbfgs' solver can be used only when positive=True. "
"Please use another solver."
)
if return_intercept and solver != "sag":
raise ValueError(
"In Ridge, only 'sag' solver can directly fit the "
"intercept. Please change solver to 'sag' or set "
"return_intercept=False."
)
if check_input:
_dtype = [xp.float64, xp.float32]
_accept_sparse = _get_valid_accept_sparse(X_is_sparse, solver)
X = check_array(X, accept_sparse=_accept_sparse, dtype=_dtype, order="C")
y = check_array(y, dtype=X.dtype, ensure_2d=False, order=None)
check_consistent_length(X, y)
n_samples, n_features = X.shape
if y.ndim > 2:
raise ValueError("Target y has the wrong shape %s" % str(y.shape))
if y.ndim == 1:
y = xp.reshape(y, (-1, 1))
n_samples_, n_targets = y.shape
if n_samples != n_samples_:
raise ValueError(
"Number of samples in X and y does not correspond: %d != %d"
% (n_samples, n_samples_)
)
if has_sw:
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
if solver not in ["sag", "saga"]:
# SAG supports sample_weight directly. For other solvers,
# we implement sample_weight via a simple rescaling.
X, y, sample_weight_sqrt = _rescale_data(X, y, sample_weight)
# Some callers of this method might pass alpha as single
# element array which already has been validated.
if alpha is not None and not isinstance(alpha, type(xp.asarray([0.0]))):
alpha = check_scalar(
alpha,
"alpha",
target_type=numbers.Real,
min_val=0.0,
include_boundaries="left",
)
# There should be either 1 or n_targets penalties
alpha = _ravel(xp.asarray(alpha, device=device_, dtype=X.dtype), xp=xp)
if alpha.shape[0] not in [1, n_targets]:
raise ValueError(
"Number of targets and number of penalties do not correspond: %d != %d"
% (alpha.shape[0], n_targets)
)
if alpha.shape[0] == 1 and n_targets > 1:
alpha = xp.full(
shape=(n_targets,), fill_value=alpha[0], dtype=alpha.dtype, device=device_
)
n_iter = None
if solver == "sparse_cg":
coef = _solve_sparse_cg(
X,
y,
alpha,
max_iter=max_iter,
tol=tol,
verbose=verbose,
X_offset=X_offset,
X_scale=X_scale,
sample_weight_sqrt=sample_weight_sqrt if has_sw else None,
)
elif solver == "lsqr":
coef, n_iter = _solve_lsqr(
X,
y,
alpha=alpha,
fit_intercept=fit_intercept,
max_iter=max_iter,
tol=tol,
X_offset=X_offset,
X_scale=X_scale,
sample_weight_sqrt=sample_weight_sqrt if has_sw else None,
)
elif solver == "cholesky":
if n_features > n_samples:
K = safe_sparse_dot(X, X.T, dense_output=True)
try:
dual_coef = _solve_cholesky_kernel(K, y, alpha)
coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T
except linalg.LinAlgError:
# use SVD solver if matrix is singular
solver = "svd"
else:
try:
coef = _solve_cholesky(X, y, alpha)
except linalg.LinAlgError:
# use SVD solver if matrix is singular
solver = "svd"
elif solver in ["sag", "saga"]:
# precompute max_squared_sum for all targets
max_squared_sum = row_norms(X, squared=True).max()
coef = np.empty((y.shape[1], n_features), dtype=X.dtype)
n_iter = np.empty(y.shape[1], dtype=np.int32)
intercept = np.zeros((y.shape[1],), dtype=X.dtype)
for i, (alpha_i, target) in enumerate(zip(alpha, y.T)):
init = {
"coef": np.zeros((n_features + int(return_intercept), 1), dtype=X.dtype)
}
coef_, n_iter_, _ = sag_solver(
X,
target.ravel(),
sample_weight,
"squared",
alpha_i,
0,
max_iter,
tol,
verbose,
random_state,
False,
max_squared_sum,
init,
is_saga=solver == "saga",
)
if return_intercept:
coef[i] = coef_[:-1]
intercept[i] = coef_[-1]
else:
coef[i] = coef_
n_iter[i] = n_iter_
if intercept.shape[0] == 1:
intercept = intercept[0]
elif solver == "lbfgs":
coef = _solve_lbfgs(
X,
y,
alpha,
positive=positive,
tol=tol,
max_iter=max_iter,
X_offset=X_offset,
X_scale=X_scale,
sample_weight_sqrt=sample_weight_sqrt if has_sw else None,
)
if solver == "svd":
if X_is_sparse:
raise TypeError("SVD solver does not support sparse inputs currently")
coef = _solve_svd(X, y, alpha, xp)
if n_targets == 1:
coef = _ravel(coef)
coef = xp.asarray(coef)
if return_n_iter and return_intercept:
res = coef, n_iter, intercept
elif return_intercept:
res = coef, intercept
elif return_n_iter:
res = coef, n_iter
else:
res = coef
return (*res, solver) if return_solver else res
def resolve_solver(solver, positive, return_intercept, is_sparse, xp):
if solver != "auto":
return solver
is_numpy_namespace = _is_numpy_namespace(xp)
auto_solver_np = resolve_solver_for_numpy(positive, return_intercept, is_sparse)
if is_numpy_namespace:
return auto_solver_np
if positive:
raise ValueError(
"The solvers that support positive fitting do not support "
f"Array API dispatch to namespace {xp.__name__}. Please "
"either disable Array API dispatch, or use a numpy-like "
"namespace, or set `positive=False`."
)
# At the moment, Array API dispatch only supports the "svd" solver.
solver = "svd"
if solver != auto_solver_np:
warnings.warn(
f"Using Array API dispatch to namespace {xp.__name__} with "
f"`solver='auto'` will result in using the solver '{solver}'. "
"The results may differ from those when using a Numpy array, "
f"because in that case the preferred solver would be {auto_solver_np}. "
f"Set `solver='{solver}'` to suppress this warning."
)
return solver
def resolve_solver_for_numpy(positive, return_intercept, is_sparse):
if positive:
return "lbfgs"
if return_intercept:
# sag supports fitting intercept directly
return "sag"
if not is_sparse:
return "cholesky"
return "sparse_cg"
class _BaseRidge(LinearModel, metaclass=ABCMeta):
_parameter_constraints: dict = {
"alpha": [Interval(Real, 0, None, closed="left"), np.ndarray],
"fit_intercept": ["boolean"],
"copy_X": ["boolean"],
"max_iter": [Interval(Integral, 1, None, closed="left"), None],
"tol": [Interval(Real, 0, None, closed="left")],
"solver": [
StrOptions(
{"auto", "svd", "cholesky", "lsqr", "sparse_cg", "sag", "saga", "lbfgs"}
)
],
"positive": ["boolean"],
"random_state": ["random_state"],
}
@abstractmethod
def __init__(
self,
alpha=1.0,
*,
fit_intercept=True,
copy_X=True,
max_iter=None,
tol=1e-4,
solver="auto",
positive=False,
random_state=None,
):
self.alpha = alpha
self.fit_intercept = fit_intercept
self.copy_X = copy_X
self.max_iter = max_iter
self.tol = tol
self.solver = solver
self.positive = positive
self.random_state = random_state
def fit(self, X, y, sample_weight=None):
xp, is_array_api_compliant = get_namespace(X, y, sample_weight)
if self.solver == "lbfgs" and not self.positive:
raise ValueError(
"'lbfgs' solver can be used only when positive=True. "
"Please use another solver."
)
if self.positive:
if self.solver not in ["auto", "lbfgs"]:
raise ValueError(
f"solver='{self.solver}' does not support positive fitting. Please"
" set the solver to 'auto' or 'lbfgs', or set `positive=False`"
)
else:
solver = self.solver
elif sparse.issparse(X) and self.fit_intercept:
if self.solver not in ["auto", "lbfgs", "lsqr", "sag", "sparse_cg"]:
raise ValueError(
"solver='{}' does not support fitting the intercept "
"on sparse data. Please set the solver to 'auto' or "
"'lsqr', 'sparse_cg', 'sag', 'lbfgs' "
"or set `fit_intercept=False`".format(self.solver)
)
if self.solver in ["lsqr", "lbfgs"]:
solver = self.solver
elif self.solver == "sag" and self.max_iter is None and self.tol > 1e-4:
warnings.warn(
'"sag" solver requires many iterations to fit '
"an intercept with sparse inputs. Either set the "
'solver to "auto" or "sparse_cg", or set a low '
'"tol" and a high "max_iter" (especially if inputs are '
"not standardized)."
)
solver = "sag"
else:
solver = "sparse_cg"
else:
solver = self.solver
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
# when X is sparse we only remove offset from y
X, y, X_offset, y_offset, X_scale = _preprocess_data(
X,
y,
fit_intercept=self.fit_intercept,
copy=self.copy_X,
sample_weight=sample_weight,
)
if solver == "sag" and sparse.issparse(X) and self.fit_intercept:
self.coef_, self.n_iter_, self.intercept_, self.solver_ = _ridge_regression(
X,
y,
alpha=self.alpha,
sample_weight=sample_weight,
max_iter=self.max_iter,
tol=self.tol,
solver="sag",
positive=self.positive,
random_state=self.random_state,
return_n_iter=True,
return_intercept=True,
return_solver=True,
check_input=False,
)
# add the offset which was subtracted by _preprocess_data
self.intercept_ += y_offset
else:
if sparse.issparse(X) and self.fit_intercept:
# required to fit intercept with sparse_cg and lbfgs solver
params = {"X_offset": X_offset, "X_scale": X_scale}
else:
# for dense matrices or when intercept is set to 0
params = {}
self.coef_, self.n_iter_, self.solver_ = _ridge_regression(
X,
y,
alpha=self.alpha,
sample_weight=sample_weight,
max_iter=self.max_iter,
tol=self.tol,
solver=solver,
positive=self.positive,
random_state=self.random_state,
return_n_iter=True,
return_intercept=False,
return_solver=True,
check_input=False,
fit_intercept=self.fit_intercept,
**params,
)
self._set_intercept(X_offset, y_offset, X_scale)
return self
class Ridge(MultiOutputMixin, RegressorMixin, _BaseRidge):
"""Linear least squares with l2 regularization.
Minimizes the objective function::
||y - Xw||^2_2 + alpha * ||w||^2_2
This model solves a regression model where the loss function is
the linear least squares function and regularization is given by
the l2-norm. Also known as Ridge Regression or Tikhonov regularization.
This estimator has built-in support for multi-variate regression
(i.e., when y is a 2d-array of shape (n_samples, n_targets)).
Read more in the :ref:`User Guide <ridge_regression>`.
Parameters
----------
alpha : {float, ndarray of shape (n_targets,)}, default=1.0
Constant that multiplies the L2 term, controlling regularization
strength. `alpha` must be a non-negative float i.e. in `[0, inf)`.
When `alpha = 0`, the objective is equivalent to ordinary least
squares, solved by the :class:`LinearRegression` object. For numerical
reasons, using `alpha = 0` with the `Ridge` object is not advised.
Instead, you should use the :class:`LinearRegression` object.
If an array is passed, penalties are assumed to be specific to the
targets. Hence they must correspond in number.
fit_intercept : bool, default=True
Whether to fit the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. ``X`` and ``y`` are expected to be centered).
copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.
max_iter : int, default=None
Maximum number of iterations for conjugate gradient solver.
For 'sparse_cg' and 'lsqr' solvers, the default value is determined
by scipy.sparse.linalg. For 'sag' solver, the default value is 1000.
For 'lbfgs' solver, the default value is 15000.
tol : float, default=1e-4
The precision of the solution (`coef_`) is determined by `tol` which
specifies a different convergence criterion for each solver:
- 'svd': `tol` has no impact.
- 'cholesky': `tol` has no impact.
- 'sparse_cg': norm of residuals smaller than `tol`.
- 'lsqr': `tol` is set as atol and btol of scipy.sparse.linalg.lsqr,
which control the norm of the residual vector in terms of the norms of
matrix and coefficients.
- 'sag' and 'saga': relative change of coef smaller than `tol`.
- 'lbfgs': maximum of the absolute (projected) gradient=max|residuals|
smaller than `tol`.
.. versionchanged:: 1.2
Default value changed from 1e-3 to 1e-4 for consistency with other linear
models.
solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', \
'sag', 'saga', 'lbfgs'}, default='auto'
Solver to use in the computational routines:
- 'auto' chooses the solver automatically based on the type of data.
- 'svd' uses a Singular Value Decomposition of X to compute the Ridge
coefficients. It is the most stable solver, in particular more stable
for singular matrices than 'cholesky' at the cost of being slower.
- 'cholesky' uses the standard scipy.linalg.solve function to
obtain a closed-form solution.
- 'sparse_cg' uses the conjugate gradient solver as found in
scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
more appropriate than 'cholesky' for large-scale data
(possibility to set `tol` and `max_iter`).
- 'lsqr' uses the dedicated regularized least-squares routine
scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
procedure.
- 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
its improved, unbiased version named SAGA. Both methods also use an
iterative procedure, and are often faster than other solvers when
both n_samples and n_features are large. Note that 'sag' and
'saga' fast convergence is only guaranteed on features with
approximately the same scale. You can preprocess the data with a
scaler from sklearn.preprocessing.
- 'lbfgs' uses L-BFGS-B algorithm implemented in
`scipy.optimize.minimize`. It can be used only when `positive`
is True.
All solvers except 'svd' support both dense and sparse data. However, only
'lsqr', 'sag', 'sparse_cg', and 'lbfgs' support sparse input when
`fit_intercept` is True.
.. versionadded:: 0.17
Stochastic Average Gradient descent solver.
.. versionadded:: 0.19
SAGA solver.
positive : bool, default=False
When set to ``True``, forces the coefficients to be positive.
Only 'lbfgs' solver is supported in this case.
random_state : int, RandomState instance, default=None
Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
See :term:`Glossary <random_state>` for details.
.. versionadded:: 0.17
`random_state` to support Stochastic Average Gradient.
Attributes
----------
coef_ : ndarray of shape (n_features,) or (n_targets, n_features)
Weight vector(s).
intercept_ : float or ndarray of shape (n_targets,)
Independent term in decision function. Set to 0.0 if
``fit_intercept = False``.
n_iter_ : None or ndarray of shape (n_targets,)
Actual number of iterations for each target. Available only for
sag and lsqr solvers. Other solvers will return None.
.. versionadded:: 0.17
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
solver_ : str
The solver that was used at fit time by the computational
routines.
.. versionadded:: 1.5
See Also
--------
RidgeClassifier : Ridge classifier.
RidgeCV : Ridge regression with built-in cross validation.
:class:`~sklearn.kernel_ridge.KernelRidge` : Kernel ridge regression
combines ridge regression with the kernel trick.
Notes
-----
Regularization improves the conditioning of the problem and
reduces the variance of the estimates. Larger values specify stronger
regularization. Alpha corresponds to ``1 / (2C)`` in other linear
models such as :class:`~sklearn.linear_model.LogisticRegression` or
:class:`~sklearn.svm.LinearSVC`.
Examples
--------
>>> from sklearn.linear_model import Ridge
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> rng = np.random.RandomState(0)
>>> y = rng.randn(n_samples)
>>> X = rng.randn(n_samples, n_features)
>>> clf = Ridge(alpha=1.0)
>>> clf.fit(X, y)
Ridge()
"""
def __init__(
self,
alpha=1.0,
*,
fit_intercept=True,
copy_X=True,
max_iter=None,
tol=1e-4,
solver="auto",
positive=False,
random_state=None,
):
super().__init__(
alpha=alpha,
fit_intercept=fit_intercept,
copy_X=copy_X,
max_iter=max_iter,
tol=tol,
solver=solver,
positive=positive,
random_state=random_state,
)
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y, sample_weight=None):
"""Fit Ridge regression model.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
Training data.
y : ndarray of shape (n_samples,) or (n_samples, n_targets)
Target values.
sample_weight : float or ndarray of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample
will have the same weight.
Returns
-------
self : object
Fitted estimator.
"""
_accept_sparse = _get_valid_accept_sparse(sparse.issparse(X), self.solver)
xp, _ = get_namespace(X, y, sample_weight)
X, y = validate_data(
self,
X,
y,
accept_sparse=_accept_sparse,
dtype=[xp.float64, xp.float32],
force_writeable=True,
multi_output=True,
y_numeric=True,
)
return super().fit(X, y, sample_weight=sample_weight)
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.array_api_support = True
tags.input_tags.sparse = (self.solver != "svd") and (
self.solver != "cholesky" or not self.fit_intercept
)
return tags
class _RidgeClassifierMixin(LinearClassifierMixin):
def _prepare_data(self, X, y, sample_weight, solver):
"""Validate `X` and `y` and binarize `y`.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
Training data.
y : ndarray of shape (n_samples,)
Target values.
sample_weight : float or ndarray of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample
will have the same weight.
solver : str
The solver used in `Ridge` to know which sparse format to support.
Returns
-------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
Validated training data.
y : ndarray of shape (n_samples,)
Validated target values.
sample_weight : ndarray of shape (n_samples,)
Validated sample weights.
Y : ndarray of shape (n_samples, n_classes)
The binarized version of `y`.
"""
accept_sparse = _get_valid_accept_sparse(sparse.issparse(X), solver)
X, y = validate_data(
self,
X,
y,
accept_sparse=accept_sparse,
multi_output=True,
y_numeric=False,
force_writeable=True,
)
self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1)
Y = self._label_binarizer.fit_transform(y)
if not self._label_binarizer.y_type_.startswith("multilabel"):
y = column_or_1d(y, warn=True)
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
if self.class_weight:
sample_weight = sample_weight * compute_sample_weight(self.class_weight, y)
return X, y, sample_weight, Y
def predict(self, X):
"""Predict class labels for samples in `X`.
Parameters
----------
X : {array-like, spare matrix} of shape (n_samples, n_features)
The data matrix for which we want to predict the targets.
Returns
-------
y_pred : ndarray of shape (n_samples,) or (n_samples, n_outputs)
Vector or matrix containing the predictions. In binary and
multiclass problems, this is a vector containing `n_samples`. In
a multilabel problem, it returns a matrix of shape
`(n_samples, n_outputs)`.
"""
check_is_fitted(self, attributes=["_label_binarizer"])
if self._label_binarizer.y_type_.startswith("multilabel"):
# Threshold such that the negative label is -1 and positive label
# is 1 to use the inverse transform of the label binarizer fitted
# during fit.
scores = 2 * (self.decision_function(X) > 0) - 1
return self._label_binarizer.inverse_transform(scores)
return super().predict(X)
@property
def classes_(self):
"""Classes labels."""
return self._label_binarizer.classes_
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.classifier_tags.multi_label = True
return tags
class RidgeClassifier(_RidgeClassifierMixin, _BaseRidge):
"""Classifier using Ridge regression.
This classifier first converts the target values into ``{-1, 1}`` and
then treats the problem as a regression task (multi-output regression in
the multiclass case).
Read more in the :ref:`User Guide <ridge_regression>`.
Parameters
----------
alpha : float, default=1.0
Regularization strength; must be a positive float. Regularization
improves the conditioning of the problem and reduces the variance of
the estimates. Larger values specify stronger regularization.
Alpha corresponds to ``1 / (2C)`` in other linear models such as
:class:`~sklearn.linear_model.LogisticRegression` or
:class:`~sklearn.svm.LinearSVC`.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set to false, no
intercept will be used in calculations (e.g. data is expected to be
already centered).
copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.
max_iter : int, default=None
Maximum number of iterations for conjugate gradient solver.
The default value is determined by scipy.sparse.linalg.
tol : float, default=1e-4
The precision of the solution (`coef_`) is determined by `tol` which
specifies a different convergence criterion for each solver:
- 'svd': `tol` has no impact.
- 'cholesky': `tol` has no impact.
- 'sparse_cg': norm of residuals smaller than `tol`.
- 'lsqr': `tol` is set as atol and btol of scipy.sparse.linalg.lsqr,
which control the norm of the residual vector in terms of the norms of
matrix and coefficients.
- 'sag' and 'saga': relative change of coef smaller than `tol`.
- 'lbfgs': maximum of the absolute (projected) gradient=max|residuals|
smaller than `tol`.
.. versionchanged:: 1.2
Default value changed from 1e-3 to 1e-4 for consistency with other linear
models.
class_weight : dict or 'balanced', default=None
Weights associated with classes in the form ``{class_label: weight}``.
If not given, all classes are supposed to have weight one.
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``.
solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', \
'sag', 'saga', 'lbfgs'}, default='auto'
Solver to use in the computational routines:
- 'auto' chooses the solver automatically based on the type of data.
- 'svd' uses a Singular Value Decomposition of X to compute the Ridge
coefficients. It is the most stable solver, in particular more stable
for singular matrices than 'cholesky' at the cost of being slower.
- 'cholesky' uses the standard scipy.linalg.solve function to
obtain a closed-form solution.
- 'sparse_cg' uses the conjugate gradient solver as found in
scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
more appropriate than 'cholesky' for large-scale data
(possibility to set `tol` and `max_iter`).
- 'lsqr' uses the dedicated regularized least-squares routine
scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
procedure.
- 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
its unbiased and more flexible version named SAGA. Both methods
use an iterative procedure, and are often faster than other solvers
when both n_samples and n_features are large. Note that 'sag' and
'saga' fast convergence is only guaranteed on features with
approximately the same scale. You can preprocess the data with a
scaler from sklearn.preprocessing.
.. versionadded:: 0.17
Stochastic Average Gradient descent solver.
.. versionadded:: 0.19
SAGA solver.
- 'lbfgs' uses L-BFGS-B algorithm implemented in
`scipy.optimize.minimize`. It can be used only when `positive`
is True.
positive : bool, default=False
When set to ``True``, forces the coefficients to be positive.
Only 'lbfgs' solver is supported in this case.
random_state : int, RandomState instance, default=None
Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
See :term:`Glossary <random_state>` for details.
Attributes
----------
coef_ : ndarray of shape (1, n_features) or (n_classes, n_features)
Coefficient of the features in the decision function.
``coef_`` is of shape (1, n_features) when the given problem is binary.
intercept_ : float or ndarray of shape (n_targets,)
Independent term in decision function. Set to 0.0 if
``fit_intercept = False``.
n_iter_ : None or ndarray of shape (n_targets,)
Actual number of iterations for each target. Available only for
sag and lsqr solvers. Other solvers will return None.
classes_ : ndarray of shape (n_classes,)
The classes labels.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
solver_ : str
The solver that was used at fit time by the computational
routines.
.. versionadded:: 1.5
See Also
--------
Ridge : Ridge regression.
RidgeClassifierCV : Ridge classifier with built-in cross validation.
Notes
-----
For multi-class classification, n_class classifiers are trained in
a one-versus-all approach. Concretely, this is implemented by taking
advantage of the multi-variate response support in Ridge.
Examples
--------
>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.linear_model import RidgeClassifier
>>> X, y = load_breast_cancer(return_X_y=True)
>>> clf = RidgeClassifier().fit(X, y)
>>> clf.score(X, y)
0.9595...
"""
_parameter_constraints: dict = {
**_BaseRidge._parameter_constraints,
"class_weight": [dict, StrOptions({"balanced"}), None],
}
def __init__(
self,
alpha=1.0,
*,
fit_intercept=True,
copy_X=True,
max_iter=None,
tol=1e-4,
class_weight=None,
solver="auto",
positive=False,
random_state=None,
):
super().__init__(
alpha=alpha,
fit_intercept=fit_intercept,
copy_X=copy_X,
max_iter=max_iter,
tol=tol,
solver=solver,
positive=positive,
random_state=random_state,
)
self.class_weight = class_weight
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y, sample_weight=None):
"""Fit Ridge classifier model.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
Training data.
y : ndarray of shape (n_samples,)
Target values.
sample_weight : float or ndarray of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample
will have the same weight.
.. versionadded:: 0.17
*sample_weight* support to RidgeClassifier.
Returns
-------
self : object
Instance of the estimator.
"""
X, y, sample_weight, Y = self._prepare_data(X, y, sample_weight, self.solver)
super().fit(X, Y, sample_weight=sample_weight)
return self
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.input_tags.sparse = (self.solver != "svd") and (
self.solver != "cholesky" or not self.fit_intercept
)
return tags
def _check_gcv_mode(X, gcv_mode):
if gcv_mode in ["eigen", "svd"]:
return gcv_mode
# if X has more rows than columns, use decomposition of X^T.X,
# otherwise X.X^T
if X.shape[0] > X.shape[1]:
return "svd"
return "eigen"
def _find_smallest_angle(query, vectors):
"""Find the column of vectors that is most aligned with the query.
Both query and the columns of vectors must have their l2 norm equal to 1.
Parameters
----------
query : ndarray of shape (n_samples,)
Normalized query vector.
vectors : ndarray of shape (n_samples, n_features)
Vectors to which we compare query, as columns. Must be normalized.
"""
abs_cosine = np.abs(query.dot(vectors))
index = np.argmax(abs_cosine)
return index
class _X_CenterStackOp(sparse.linalg.LinearOperator):
"""Behaves as centered and scaled X with an added intercept column.
This operator behaves as
np.hstack([X - sqrt_sw[:, None] * X_mean, sqrt_sw[:, None]])
"""
def __init__(self, X, X_mean, sqrt_sw):
n_samples, n_features = X.shape
super().__init__(X.dtype, (n_samples, n_features + 1))
self.X = X
self.X_mean = X_mean
self.sqrt_sw = sqrt_sw
def _matvec(self, v):
v = v.ravel()
return (
safe_sparse_dot(self.X, v[:-1], dense_output=True)
- self.sqrt_sw * self.X_mean.dot(v[:-1])
+ v[-1] * self.sqrt_sw
)
def _matmat(self, v):
return (
safe_sparse_dot(self.X, v[:-1], dense_output=True)
- self.sqrt_sw[:, None] * self.X_mean.dot(v[:-1])
+ v[-1] * self.sqrt_sw[:, None]
)
def _transpose(self):
return _XT_CenterStackOp(self.X, self.X_mean, self.sqrt_sw)
class _XT_CenterStackOp(sparse.linalg.LinearOperator):
"""Behaves as transposed centered and scaled X with an intercept column.
This operator behaves as
np.hstack([X - sqrt_sw[:, None] * X_mean, sqrt_sw[:, None]]).T
"""
def __init__(self, X, X_mean, sqrt_sw):
n_samples, n_features = X.shape
super().__init__(X.dtype, (n_features + 1, n_samples))
self.X = X
self.X_mean = X_mean
self.sqrt_sw = sqrt_sw
def _matvec(self, v):
v = v.ravel()
n_features = self.shape[0]
res = np.empty(n_features, dtype=self.X.dtype)
res[:-1] = safe_sparse_dot(self.X.T, v, dense_output=True) - (
self.X_mean * self.sqrt_sw.dot(v)
)
res[-1] = np.dot(v, self.sqrt_sw)
return res
def _matmat(self, v):
n_features = self.shape[0]
res = np.empty((n_features, v.shape[1]), dtype=self.X.dtype)
res[:-1] = safe_sparse_dot(self.X.T, v, dense_output=True) - self.X_mean[
:, None
] * self.sqrt_sw.dot(v)
res[-1] = np.dot(self.sqrt_sw, v)
return res
class _IdentityRegressor(RegressorMixin, BaseEstimator):
"""Fake regressor which will directly output the prediction."""
def decision_function(self, y_predict):
return y_predict
def predict(self, y_predict):
return y_predict
class _IdentityClassifier(LinearClassifierMixin, BaseEstimator):
"""Fake classifier which will directly output the prediction.
We inherit from LinearClassifierMixin to get the proper shape for the
output `y`.
"""
def __init__(self, classes):
self.classes_ = classes
def decision_function(self, y_predict):
return y_predict
class _RidgeGCV(LinearModel):
"""Ridge regression with built-in Leave-one-out Cross-Validation.
This class is not intended to be used directly. Use RidgeCV instead.
`_RidgeGCV` uses a Generalized Cross-Validation for model selection. It's an
efficient approximation of leave-one-out cross-validation (LOO-CV), where instead of
computing multiple models by excluding one data point at a time, it uses an
algebraic shortcut to approximate the LOO-CV error, making it faster and
computationally more efficient.
Using a naive grid-search approach with a leave-one-out cross-validation in contrast
requires to fit `n_samples` models to compute the prediction error for each sample
and then to repeat this process for each alpha in the grid.
Here, the prediction error for each sample is computed by solving a **single**
linear system (in other words a single model) via a matrix factorization (i.e.
eigendecomposition or SVD) solving the problem stated in the Notes section. Finally,
we need to repeat this process for each alpha in the grid. The detailed complexity
is further discussed in Sect. 4 in [1].
This algebraic approach is only applicable for regularized least squares
problems. It could potentially be extended to kernel ridge regression.
See the Notes section and references for more details regarding the formulation
and the linear system that is solved.
Notes
-----
We want to solve (K + alpha*Id)c = y,
where K = X X^T is the kernel matrix.
Let G = (K + alpha*Id).
Dual solution: c = G^-1y
Primal solution: w = X^T c
Compute eigendecomposition K = Q V Q^T.
Then G^-1 = Q (V + alpha*Id)^-1 Q^T,
where (V + alpha*Id) is diagonal.
It is thus inexpensive to inverse for many alphas.
Let loov be the vector of prediction values for each example
when the model was fitted with all examples but this example.
loov = (KG^-1Y - diag(KG^-1)Y) / diag(I-KG^-1)
Let looe be the vector of prediction errors for each example
when the model was fitted with all examples but this example.
looe = y - loov = c / diag(G^-1)
The best score (negative mean squared error or user-provided scoring) is
stored in the `best_score_` attribute, and the selected hyperparameter in
`alpha_`.
References
----------
[1] http://cbcl.mit.edu/publications/ps/MIT-CSAIL-TR-2007-025.pdf
[2] https://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf
"""
def __init__(
self,
alphas=(0.1, 1.0, 10.0),
*,
fit_intercept=True,
scoring=None,
copy_X=True,
gcv_mode=None,
store_cv_results=False,
is_clf=False,
alpha_per_target=False,
):
self.alphas = alphas
self.fit_intercept = fit_intercept
self.scoring = scoring
self.copy_X = copy_X
self.gcv_mode = gcv_mode
self.store_cv_results = store_cv_results
self.is_clf = is_clf
self.alpha_per_target = alpha_per_target
@staticmethod
def _decomp_diag(v_prime, Q):
# compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T))
return (v_prime * Q**2).sum(axis=-1)
@staticmethod
def _diag_dot(D, B):
# compute dot(diag(D), B)
if len(B.shape) > 1:
# handle case where B is > 1-d
D = D[(slice(None),) + (np.newaxis,) * (len(B.shape) - 1)]
return D * B
def _compute_gram(self, X, sqrt_sw):
"""Computes the Gram matrix XX^T with possible centering.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
The preprocessed design matrix.
sqrt_sw : ndarray of shape (n_samples,)
square roots of sample weights
Returns
-------
gram : ndarray of shape (n_samples, n_samples)
The Gram matrix.
X_mean : ndarray of shape (n_feature,)
The weighted mean of ``X`` for each feature.
Notes
-----
When X is dense the centering has been done in preprocessing
so the mean is 0 and we just compute XX^T.
When X is sparse it has not been centered in preprocessing, but it has
been scaled by sqrt(sample weights).
When self.fit_intercept is False no centering is done.
The centered X is never actually computed because centering would break
the sparsity of X.
"""
center = self.fit_intercept and sparse.issparse(X)
if not center:
# in this case centering has been done in preprocessing
# or we are not fitting an intercept.
X_mean = np.zeros(X.shape[1], dtype=X.dtype)
return safe_sparse_dot(X, X.T, dense_output=True), X_mean
# X is sparse
n_samples = X.shape[0]
sample_weight_matrix = sparse.dia_matrix(
(sqrt_sw, 0), shape=(n_samples, n_samples)
)
X_weighted = sample_weight_matrix.dot(X)
X_mean, _ = mean_variance_axis(X_weighted, axis=0)
X_mean *= n_samples / sqrt_sw.dot(sqrt_sw)
X_mX = sqrt_sw[:, None] * safe_sparse_dot(X_mean, X.T, dense_output=True)
X_mX_m = np.outer(sqrt_sw, sqrt_sw) * np.dot(X_mean, X_mean)
return (
safe_sparse_dot(X, X.T, dense_output=True) + X_mX_m - X_mX - X_mX.T,
X_mean,
)
def _compute_covariance(self, X, sqrt_sw):
"""Computes covariance matrix X^TX with possible centering.
Parameters
----------
X : sparse matrix of shape (n_samples, n_features)
The preprocessed design matrix.
sqrt_sw : ndarray of shape (n_samples,)
square roots of sample weights
Returns
-------
covariance : ndarray of shape (n_features, n_features)
The covariance matrix.
X_mean : ndarray of shape (n_feature,)
The weighted mean of ``X`` for each feature.
Notes
-----
Since X is sparse it has not been centered in preprocessing, but it has
been scaled by sqrt(sample weights).
When self.fit_intercept is False no centering is done.
The centered X is never actually computed because centering would break
the sparsity of X.
"""
if not self.fit_intercept:
# in this case centering has been done in preprocessing
# or we are not fitting an intercept.
X_mean = np.zeros(X.shape[1], dtype=X.dtype)
return safe_sparse_dot(X.T, X, dense_output=True), X_mean
# this function only gets called for sparse X
n_samples = X.shape[0]
sample_weight_matrix = sparse.dia_matrix(
(sqrt_sw, 0), shape=(n_samples, n_samples)
)
X_weighted = sample_weight_matrix.dot(X)
X_mean, _ = mean_variance_axis(X_weighted, axis=0)
X_mean = X_mean * n_samples / sqrt_sw.dot(sqrt_sw)
weight_sum = sqrt_sw.dot(sqrt_sw)
return (
safe_sparse_dot(X.T, X, dense_output=True)
- weight_sum * np.outer(X_mean, X_mean),
X_mean,
)
def _sparse_multidot_diag(self, X, A, X_mean, sqrt_sw):
"""Compute the diagonal of (X - X_mean).dot(A).dot((X - X_mean).T)
without explicitly centering X nor computing X.dot(A)
when X is sparse.
Parameters
----------
X : sparse matrix of shape (n_samples, n_features)
A : ndarray of shape (n_features, n_features)
X_mean : ndarray of shape (n_features,)
sqrt_sw : ndarray of shape (n_features,)
square roots of sample weights
Returns
-------
diag : np.ndarray, shape (n_samples,)
The computed diagonal.
"""
intercept_col = scale = sqrt_sw
batch_size = X.shape[1]
diag = np.empty(X.shape[0], dtype=X.dtype)
for start in range(0, X.shape[0], batch_size):
batch = slice(start, min(X.shape[0], start + batch_size), 1)
X_batch = np.empty(
(X[batch].shape[0], X.shape[1] + self.fit_intercept), dtype=X.dtype
)
if self.fit_intercept:
X_batch[:, :-1] = X[batch].toarray() - X_mean * scale[batch][:, None]
X_batch[:, -1] = intercept_col[batch]
else:
X_batch = X[batch].toarray()
diag[batch] = (X_batch.dot(A) * X_batch).sum(axis=1)
return diag
def _eigen_decompose_gram(self, X, y, sqrt_sw):
"""Eigendecomposition of X.X^T, used when n_samples <= n_features."""
# if X is dense it has already been centered in preprocessing
K, X_mean = self._compute_gram(X, sqrt_sw)
if self.fit_intercept:
# to emulate centering X with sample weights,
# ie removing the weighted average, we add a column
# containing the square roots of the sample weights.
# by centering, it is orthogonal to the other columns
K += np.outer(sqrt_sw, sqrt_sw)
eigvals, Q = linalg.eigh(K)
QT_y = np.dot(Q.T, y)
return X_mean, eigvals, Q, QT_y
def _solve_eigen_gram(self, alpha, y, sqrt_sw, X_mean, eigvals, Q, QT_y):
"""Compute dual coefficients and diagonal of G^-1.
Used when we have a decomposition of X.X^T (n_samples <= n_features).
"""
w = 1.0 / (eigvals + alpha)
if self.fit_intercept:
# the vector containing the square roots of the sample weights (1
# when no sample weights) is the eigenvector of XX^T which
# corresponds to the intercept; we cancel the regularization on
# this dimension. the corresponding eigenvalue is
# sum(sample_weight).
normalized_sw = sqrt_sw / np.linalg.norm(sqrt_sw)
intercept_dim = _find_smallest_angle(normalized_sw, Q)
w[intercept_dim] = 0 # cancel regularization for the intercept
c = np.dot(Q, self._diag_dot(w, QT_y))
G_inverse_diag = self._decomp_diag(w, Q)
# handle case where y is 2-d
if len(y.shape) != 1:
G_inverse_diag = G_inverse_diag[:, np.newaxis]
return G_inverse_diag, c
def _eigen_decompose_covariance(self, X, y, sqrt_sw):
"""Eigendecomposition of X^T.X, used when n_samples > n_features
and X is sparse.
"""
n_samples, n_features = X.shape
cov = np.empty((n_features + 1, n_features + 1), dtype=X.dtype)
cov[:-1, :-1], X_mean = self._compute_covariance(X, sqrt_sw)
if not self.fit_intercept:
cov = cov[:-1, :-1]
# to emulate centering X with sample weights,
# ie removing the weighted average, we add a column
# containing the square roots of the sample weights.
# by centering, it is orthogonal to the other columns
# when all samples have the same weight we add a column of 1
else:
cov[-1] = 0
cov[:, -1] = 0
cov[-1, -1] = sqrt_sw.dot(sqrt_sw)
nullspace_dim = max(0, n_features - n_samples)
eigvals, V = linalg.eigh(cov)
# remove eigenvalues and vectors in the null space of X^T.X
eigvals = eigvals[nullspace_dim:]
V = V[:, nullspace_dim:]
return X_mean, eigvals, V, X
def _solve_eigen_covariance_no_intercept(
self, alpha, y, sqrt_sw, X_mean, eigvals, V, X
):
"""Compute dual coefficients and diagonal of G^-1.
Used when we have a decomposition of X^T.X
(n_samples > n_features and X is sparse), and not fitting an intercept.
"""
w = 1 / (eigvals + alpha)
A = (V * w).dot(V.T)
AXy = A.dot(safe_sparse_dot(X.T, y, dense_output=True))
y_hat = safe_sparse_dot(X, AXy, dense_output=True)
hat_diag = self._sparse_multidot_diag(X, A, X_mean, sqrt_sw)
if len(y.shape) != 1:
# handle case where y is 2-d
hat_diag = hat_diag[:, np.newaxis]
return (1 - hat_diag) / alpha, (y - y_hat) / alpha
def _solve_eigen_covariance_intercept(
self, alpha, y, sqrt_sw, X_mean, eigvals, V, X
):
"""Compute dual coefficients and diagonal of G^-1.
Used when we have a decomposition of X^T.X
(n_samples > n_features and X is sparse),
and we are fitting an intercept.
"""
# the vector [0, 0, ..., 0, 1]
# is the eigenvector of X^TX which
# corresponds to the intercept; we cancel the regularization on
# this dimension. the corresponding eigenvalue is
# sum(sample_weight), e.g. n when uniform sample weights.
intercept_sv = np.zeros(V.shape[0])
intercept_sv[-1] = 1
intercept_dim = _find_smallest_angle(intercept_sv, V)
w = 1 / (eigvals + alpha)
w[intercept_dim] = 1 / eigvals[intercept_dim]
A = (V * w).dot(V.T)
# add a column to X containing the square roots of sample weights
X_op = _X_CenterStackOp(X, X_mean, sqrt_sw)
AXy = A.dot(X_op.T.dot(y))
y_hat = X_op.dot(AXy)
hat_diag = self._sparse_multidot_diag(X, A, X_mean, sqrt_sw)
# return (1 - hat_diag), (y - y_hat)
if len(y.shape) != 1:
# handle case where y is 2-d
hat_diag = hat_diag[:, np.newaxis]
return (1 - hat_diag) / alpha, (y - y_hat) / alpha
def _solve_eigen_covariance(self, alpha, y, sqrt_sw, X_mean, eigvals, V, X):
"""Compute dual coefficients and diagonal of G^-1.
Used when we have a decomposition of X^T.X
(n_samples > n_features and X is sparse).
"""
if self.fit_intercept:
return self._solve_eigen_covariance_intercept(
alpha, y, sqrt_sw, X_mean, eigvals, V, X
)
return self._solve_eigen_covariance_no_intercept(
alpha, y, sqrt_sw, X_mean, eigvals, V, X
)
def _svd_decompose_design_matrix(self, X, y, sqrt_sw):
# X already centered
X_mean = np.zeros(X.shape[1], dtype=X.dtype)
if self.fit_intercept:
# to emulate fit_intercept=True situation, add a column
# containing the square roots of the sample weights
# by centering, the other columns are orthogonal to that one
intercept_column = sqrt_sw[:, None]
X = np.hstack((X, intercept_column))
U, singvals, _ = linalg.svd(X, full_matrices=0)
singvals_sq = singvals**2
UT_y = np.dot(U.T, y)
return X_mean, singvals_sq, U, UT_y
def _solve_svd_design_matrix(self, alpha, y, sqrt_sw, X_mean, singvals_sq, U, UT_y):
"""Compute dual coefficients and diagonal of G^-1.
Used when we have an SVD decomposition of X
(n_samples > n_features and X is dense).
"""
w = ((singvals_sq + alpha) ** -1) - (alpha**-1)
if self.fit_intercept:
# detect intercept column
normalized_sw = sqrt_sw / np.linalg.norm(sqrt_sw)
intercept_dim = _find_smallest_angle(normalized_sw, U)
# cancel the regularization for the intercept
w[intercept_dim] = -(alpha**-1)
c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha**-1) * y
G_inverse_diag = self._decomp_diag(w, U) + (alpha**-1)
if len(y.shape) != 1:
# handle case where y is 2-d
G_inverse_diag = G_inverse_diag[:, np.newaxis]
return G_inverse_diag, c
def fit(self, X, y, sample_weight=None, score_params=None):
"""Fit Ridge regression model with gcv.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
Training data. Will be cast to float64 if necessary.
y : ndarray of shape (n_samples,) or (n_samples, n_targets)
Target values. Will be cast to float64 if necessary.
sample_weight : float or ndarray of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample
will have the same weight. Note that the scale of `sample_weight`
has an impact on the loss; i.e. multiplying all weights by `k`
is equivalent to setting `alpha / k`.
score_params : dict, default=None
Parameters to be passed to the underlying scorer.
.. versionadded:: 1.5
See :ref:`Metadata Routing User Guide <metadata_routing>` for
more details.
Returns
-------
self : object
"""
X, y = validate_data(
self,
X,
y,
accept_sparse=["csr", "csc", "coo"],
dtype=[np.float64],
multi_output=True,
y_numeric=True,
)
# alpha_per_target cannot be used in classifier mode. All subclasses
# of _RidgeGCV that are classifiers keep alpha_per_target at its
# default value: False, so the condition below should never happen.
assert not (self.is_clf and self.alpha_per_target)
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
self.alphas = np.asarray(self.alphas)
unscaled_y = y
X, y, X_offset, y_offset, X_scale = _preprocess_data(
X,
y,
fit_intercept=self.fit_intercept,
copy=self.copy_X,
sample_weight=sample_weight,
)
gcv_mode = _check_gcv_mode(X, self.gcv_mode)
if gcv_mode == "eigen":
decompose = self._eigen_decompose_gram
solve = self._solve_eigen_gram
elif gcv_mode == "svd":
if sparse.issparse(X):
decompose = self._eigen_decompose_covariance
solve = self._solve_eigen_covariance
else:
decompose = self._svd_decompose_design_matrix
solve = self._solve_svd_design_matrix
n_samples = X.shape[0]
if sample_weight is not None:
X, y, sqrt_sw = _rescale_data(X, y, sample_weight)
else:
sqrt_sw = np.ones(n_samples, dtype=X.dtype)
X_mean, *decomposition = decompose(X, y, sqrt_sw)
n_y = 1 if len(y.shape) == 1 else y.shape[1]
n_alphas = 1 if np.ndim(self.alphas) == 0 else len(self.alphas)
if self.store_cv_results:
self.cv_results_ = np.empty((n_samples * n_y, n_alphas), dtype=X.dtype)
best_coef, best_score, best_alpha = None, None, None
for i, alpha in enumerate(np.atleast_1d(self.alphas)):
G_inverse_diag, c = solve(float(alpha), y, sqrt_sw, X_mean, *decomposition)
if self.scoring is None:
squared_errors = (c / G_inverse_diag) ** 2
alpha_score = self._score_without_scorer(squared_errors=squared_errors)
if self.store_cv_results:
self.cv_results_[:, i] = squared_errors.ravel()
else:
predictions = y - (c / G_inverse_diag)
# Rescale predictions back to original scale
if sample_weight is not None: # avoid the unecessary division by ones
if predictions.ndim > 1:
predictions /= sqrt_sw[:, None]
else:
predictions /= sqrt_sw
predictions += y_offset
if self.store_cv_results:
self.cv_results_[:, i] = predictions.ravel()
score_params = score_params or {}
alpha_score = self._score(
predictions=predictions,
y=unscaled_y,
n_y=n_y,
scorer=self.scoring,
score_params=score_params,
)
# Keep track of the best model
if best_score is None:
# initialize
if self.alpha_per_target and n_y > 1:
best_coef = c
best_score = np.atleast_1d(alpha_score)
best_alpha = np.full(n_y, alpha)
else:
best_coef = c
best_score = alpha_score
best_alpha = alpha
else:
# update
if self.alpha_per_target and n_y > 1:
to_update = alpha_score > best_score
best_coef[:, to_update] = c[:, to_update]
best_score[to_update] = alpha_score[to_update]
best_alpha[to_update] = alpha
elif alpha_score > best_score:
best_coef, best_score, best_alpha = c, alpha_score, alpha
self.alpha_ = best_alpha
self.best_score_ = best_score
self.dual_coef_ = best_coef
self.coef_ = safe_sparse_dot(self.dual_coef_.T, X)
if y.ndim == 1 or y.shape[1] == 1:
self.coef_ = self.coef_.ravel()
if sparse.issparse(X):
X_offset = X_mean * X_scale
else:
X_offset += X_mean * X_scale
self._set_intercept(X_offset, y_offset, X_scale)
if self.store_cv_results:
if len(y.shape) == 1:
cv_results_shape = n_samples, n_alphas
else:
cv_results_shape = n_samples, n_y, n_alphas
self.cv_results_ = self.cv_results_.reshape(cv_results_shape)
return self
def _score_without_scorer(self, squared_errors):
"""Performs scoring using squared errors when the scorer is None."""
if self.alpha_per_target:
_score = -squared_errors.mean(axis=0)
else:
_score = -squared_errors.mean()
return _score
def _score(self, *, predictions, y, n_y, scorer, score_params):
"""Performs scoring with the specified scorer using the
predictions and the true y values.
"""
if self.is_clf:
identity_estimator = _IdentityClassifier(classes=np.arange(n_y))
_score = scorer(
identity_estimator,
predictions,
y.argmax(axis=1),
**score_params,
)
else:
identity_estimator = _IdentityRegressor()
if self.alpha_per_target:
_score = np.array(
[
scorer(
identity_estimator,
predictions[:, j],
y[:, j],
**score_params,
)
for j in range(n_y)
]
)
else:
_score = scorer(identity_estimator, predictions, y, **score_params)
return _score
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
# Required since this is neither a RegressorMixin nor a ClassifierMixin
tags.target_tags.required = True
return tags
class _BaseRidgeCV(LinearModel):
_parameter_constraints: dict = {
"alphas": ["array-like", Interval(Real, 0, None, closed="neither")],
"fit_intercept": ["boolean"],
"scoring": [StrOptions(set(get_scorer_names())), callable, None],
"cv": ["cv_object"],
"gcv_mode": [StrOptions({"auto", "svd", "eigen"}), None],
"store_cv_results": ["boolean", Hidden(None)],
"alpha_per_target": ["boolean"],
"store_cv_values": ["boolean", Hidden(StrOptions({"deprecated"}))],
}
def __init__(
self,
alphas=(0.1, 1.0, 10.0),
*,
fit_intercept=True,
scoring=None,
cv=None,
gcv_mode=None,
store_cv_results=None,
alpha_per_target=False,
store_cv_values="deprecated",
):
self.alphas = alphas
self.fit_intercept = fit_intercept
self.scoring = scoring
self.cv = cv
self.gcv_mode = gcv_mode
self.store_cv_results = store_cv_results
self.alpha_per_target = alpha_per_target
self.store_cv_values = store_cv_values
def fit(self, X, y, sample_weight=None, **params):
"""Fit Ridge regression model with cv.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Training data. If using GCV, will be cast to float64
if necessary.
y : ndarray of shape (n_samples,) or (n_samples, n_targets)
Target values. Will be cast to X's dtype if necessary.
sample_weight : float or ndarray of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample
will have the same weight.
**params : dict, default=None
Extra parameters for the underlying scorer.
.. versionadded:: 1.5
Only available if `enable_metadata_routing=True`,
which can be set by using
``sklearn.set_config(enable_metadata_routing=True)``.
See :ref:`Metadata Routing User Guide <metadata_routing>` for
more details.
Returns
-------
self : object
Fitted estimator.
Notes
-----
When sample_weight is provided, the selected hyperparameter may depend
on whether we use leave-one-out cross-validation (cv=None or cv='auto')
or another form of cross-validation, because only leave-one-out
cross-validation takes the sample weights into account when computing
the validation score.
"""
_raise_for_params(params, self, "fit")
cv = self.cv
scorer = self._get_scorer()
# TODO(1.7): Remove in 1.7
# Also change `store_cv_results` default back to False
if self.store_cv_values != "deprecated":
if self.store_cv_results is not None:
raise ValueError(
"Both 'store_cv_values' and 'store_cv_results' were set. "
"'store_cv_values' is deprecated in version 1.5 and will be "
"removed in 1.7. To avoid this error, only set 'store_cv_results'."
)
warnings.warn(
(
"'store_cv_values' is deprecated in version 1.5 and will be "
"removed in 1.7. Use 'store_cv_results' instead."
),
FutureWarning,
)
self._store_cv_results = self.store_cv_values
elif self.store_cv_results is None:
self._store_cv_results = False
else:
self._store_cv_results = self.store_cv_results
# `_RidgeGCV` does not work for alpha = 0
if cv is None:
check_scalar_alpha = partial(
check_scalar,
target_type=numbers.Real,
min_val=0.0,
include_boundaries="neither",
)
else:
check_scalar_alpha = partial(
check_scalar,
target_type=numbers.Real,
min_val=0.0,
include_boundaries="left",
)
if isinstance(self.alphas, (np.ndarray, list, tuple)):
n_alphas = 1 if np.ndim(self.alphas) == 0 else len(self.alphas)
if n_alphas != 1:
for index, alpha in enumerate(self.alphas):
alpha = check_scalar_alpha(alpha, f"alphas[{index}]")
else:
self.alphas[0] = check_scalar_alpha(self.alphas[0], "alphas")
alphas = np.asarray(self.alphas)
if sample_weight is not None:
params["sample_weight"] = sample_weight
if cv is None:
if _routing_enabled():
routed_params = process_routing(
self,
"fit",
**params,
)
else:
routed_params = Bunch(scorer=Bunch(score={}))
if sample_weight is not None:
routed_params.scorer.score["sample_weight"] = sample_weight
# reset `scorer` variable to original user-intend if no scoring is passed
if self.scoring is None:
scorer = None
estimator = _RidgeGCV(
alphas,
fit_intercept=self.fit_intercept,
scoring=scorer,
gcv_mode=self.gcv_mode,
store_cv_results=self._store_cv_results,
is_clf=is_classifier(self),
alpha_per_target=self.alpha_per_target,
)
estimator.fit(
X,
y,
sample_weight=sample_weight,
score_params=routed_params.scorer.score,
)
self.alpha_ = estimator.alpha_
self.best_score_ = estimator.best_score_
if self._store_cv_results:
self.cv_results_ = estimator.cv_results_
else:
if self._store_cv_results:
raise ValueError("cv!=None and store_cv_results=True are incompatible")
if self.alpha_per_target:
raise ValueError("cv!=None and alpha_per_target=True are incompatible")
parameters = {"alpha": alphas}
solver = "sparse_cg" if sparse.issparse(X) else "auto"
model = RidgeClassifier if is_classifier(self) else Ridge
estimator = model(
fit_intercept=self.fit_intercept,
solver=solver,
)
if _routing_enabled():
estimator.set_fit_request(sample_weight=True)
grid_search = GridSearchCV(
estimator,
parameters,
cv=cv,
scoring=scorer,
)
grid_search.fit(X, y, **params)
estimator = grid_search.best_estimator_
self.alpha_ = grid_search.best_estimator_.alpha
self.best_score_ = grid_search.best_score_
self.coef_ = estimator.coef_
self.intercept_ = estimator.intercept_
self.n_features_in_ = estimator.n_features_in_
if hasattr(estimator, "feature_names_in_"):
self.feature_names_in_ = estimator.feature_names_in_
return self
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.5
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = (
MetadataRouter(owner=self.__class__.__name__)
.add_self_request(self)
.add(
scorer=self.scoring,
method_mapping=MethodMapping().add(caller="fit", callee="score"),
)
.add(
splitter=self.cv,
method_mapping=MethodMapping().add(caller="fit", callee="split"),
)
)
return router
def _get_scorer(self):
scorer = check_scoring(estimator=self, scoring=self.scoring, allow_none=True)
if _routing_enabled() and self.scoring is None:
# This estimator passes an array of 1s as sample_weight even if
# sample_weight is not provided by the user. Therefore we need to
# always request it. But we don't set it if it's passed explicitly
# by the user.
scorer.set_score_request(sample_weight=True)
return scorer
# TODO(1.7): Remove
# mypy error: Decorated property not supported
@deprecated( # type: ignore
"Attribute `cv_values_` is deprecated in version 1.5 and will be removed "
"in 1.7. Use `cv_results_` instead."
)
@property
def cv_values_(self):
return self.cv_results_
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.input_tags.sparse = True
return tags
class RidgeCV(MultiOutputMixin, RegressorMixin, _BaseRidgeCV):
"""Ridge regression with built-in cross-validation.
See glossary entry for :term:`cross-validation estimator`.
By default, it performs efficient Leave-One-Out Cross-Validation.
Read more in the :ref:`User Guide <ridge_regression>`.
Parameters
----------
alphas : array-like of shape (n_alphas,), default=(0.1, 1.0, 10.0)
Array of alpha values to try.
Regularization strength; must be a positive float. Regularization
improves the conditioning of the problem and reduces the variance of
the estimates. Larger values specify stronger regularization.
Alpha corresponds to ``1 / (2C)`` in other linear models such as
:class:`~sklearn.linear_model.LogisticRegression` or
:class:`~sklearn.svm.LinearSVC`.
If using Leave-One-Out cross-validation, alphas must be strictly positive.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
scoring : str, callable, default=None
A string (see :ref:`scoring_parameter`) or a scorer callable object /
function with signature ``scorer(estimator, X, y)``. If None, the
negative mean squared error if cv is 'auto' or None (i.e. when using
leave-one-out cross-validation), and r2 score otherwise.
cv : int, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the efficient Leave-One-Out cross-validation
- integer, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs, if ``y`` is binary or multiclass,
:class:`~sklearn.model_selection.StratifiedKFold` is used, else,
:class:`~sklearn.model_selection.KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
gcv_mode : {'auto', 'svd', 'eigen'}, default='auto'
Flag indicating which strategy to use when performing
Leave-One-Out Cross-Validation. Options are::
'auto' : use 'svd' if n_samples > n_features, otherwise use 'eigen'
'svd' : force use of singular value decomposition of X when X is
dense, eigenvalue decomposition of X^T.X when X is sparse.
'eigen' : force computation via eigendecomposition of X.X^T
The 'auto' mode is the default and is intended to pick the cheaper
option of the two depending on the shape of the training data.
store_cv_results : bool, default=False
Flag indicating if the cross-validation values corresponding to
each alpha should be stored in the ``cv_results_`` attribute (see
below). This flag is only compatible with ``cv=None`` (i.e. using
Leave-One-Out Cross-Validation).
.. versionchanged:: 1.5
Parameter name changed from `store_cv_values` to `store_cv_results`.
alpha_per_target : bool, default=False
Flag indicating whether to optimize the alpha value (picked from the
`alphas` parameter list) for each target separately (for multi-output
settings: multiple prediction targets). When set to `True`, after
fitting, the `alpha_` attribute will contain a value for each target.
When set to `False`, a single alpha is used for all targets.
.. versionadded:: 0.24
store_cv_values : bool
Flag indicating if the cross-validation values corresponding to
each alpha should be stored in the ``cv_values_`` attribute (see
below). This flag is only compatible with ``cv=None`` (i.e. using
Leave-One-Out Cross-Validation).
.. deprecated:: 1.5
`store_cv_values` is deprecated in version 1.5 in favor of
`store_cv_results` and will be removed in version 1.7.
Attributes
----------
cv_results_ : ndarray of shape (n_samples, n_alphas) or \
shape (n_samples, n_targets, n_alphas), optional
Cross-validation values for each alpha (only available if
``store_cv_results=True`` and ``cv=None``). After ``fit()`` has been
called, this attribute will contain the mean squared errors if
`scoring is None` otherwise it will contain standardized per point
prediction values.
.. versionchanged:: 1.5
`cv_values_` changed to `cv_results_`.
coef_ : ndarray of shape (n_features) or (n_targets, n_features)
Weight vector(s).
intercept_ : float or ndarray of shape (n_targets,)
Independent term in decision function. Set to 0.0 if
``fit_intercept = False``.
alpha_ : float or ndarray of shape (n_targets,)
Estimated regularization parameter, or, if ``alpha_per_target=True``,
the estimated regularization parameter for each target.
best_score_ : float or ndarray of shape (n_targets,)
Score of base estimator with best alpha, or, if
``alpha_per_target=True``, a score for each target.
.. versionadded:: 0.23
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
Ridge : Ridge regression.
RidgeClassifier : Classifier based on ridge regression on {-1, 1} labels.
RidgeClassifierCV : Ridge classifier with built-in cross validation.
Examples
--------
>>> from sklearn.datasets import load_diabetes
>>> from sklearn.linear_model import RidgeCV
>>> X, y = load_diabetes(return_X_y=True)
>>> clf = RidgeCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y)
>>> clf.score(X, y)
0.5166...
"""
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y, sample_weight=None, **params):
"""Fit Ridge regression model with cv.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Training data. If using GCV, will be cast to float64
if necessary.
y : ndarray of shape (n_samples,) or (n_samples, n_targets)
Target values. Will be cast to X's dtype if necessary.
sample_weight : float or ndarray of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample
will have the same weight.
**params : dict, default=None
Parameters to be passed to the underlying scorer.
.. versionadded:: 1.5
Only available if `enable_metadata_routing=True`,
which can be set by using
``sklearn.set_config(enable_metadata_routing=True)``.
See :ref:`Metadata Routing User Guide <metadata_routing>` for
more details.
Returns
-------
self : object
Fitted estimator.
Notes
-----
When sample_weight is provided, the selected hyperparameter may depend
on whether we use leave-one-out cross-validation (cv=None or cv='auto')
or another form of cross-validation, because only leave-one-out
cross-validation takes the sample weights into account when computing
the validation score.
"""
super().fit(X, y, sample_weight=sample_weight, **params)
return self
class RidgeClassifierCV(_RidgeClassifierMixin, _BaseRidgeCV):
"""Ridge classifier with built-in cross-validation.
See glossary entry for :term:`cross-validation estimator`.
By default, it performs Leave-One-Out Cross-Validation. Currently,
only the n_features > n_samples case is handled efficiently.
Read more in the :ref:`User Guide <ridge_regression>`.
Parameters
----------
alphas : array-like of shape (n_alphas,), default=(0.1, 1.0, 10.0)
Array of alpha values to try.
Regularization strength; must be a positive float. Regularization
improves the conditioning of the problem and reduces the variance of
the estimates. Larger values specify stronger regularization.
Alpha corresponds to ``1 / (2C)`` in other linear models such as
:class:`~sklearn.linear_model.LogisticRegression` or
:class:`~sklearn.svm.LinearSVC`.
If using Leave-One-Out cross-validation, alphas must be strictly positive.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
scoring : str, callable, default=None
A string (see :ref:`scoring_parameter`) or a scorer callable object /
function with signature ``scorer(estimator, X, y)``.
cv : int, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the efficient Leave-One-Out cross-validation
- integer, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
class_weight : dict or 'balanced', default=None
Weights associated with classes in the form ``{class_label: weight}``.
If not given, all classes are supposed to have weight one.
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``.
store_cv_results : bool, default=False
Flag indicating if the cross-validation results corresponding to
each alpha should be stored in the ``cv_results_`` attribute (see
below). This flag is only compatible with ``cv=None`` (i.e. using
Leave-One-Out Cross-Validation).
.. versionchanged:: 1.5
Parameter name changed from `store_cv_values` to `store_cv_results`.
store_cv_values : bool
Flag indicating if the cross-validation values corresponding to
each alpha should be stored in the ``cv_values_`` attribute (see
below). This flag is only compatible with ``cv=None`` (i.e. using
Leave-One-Out Cross-Validation).
.. deprecated:: 1.5
`store_cv_values` is deprecated in version 1.5 in favor of
`store_cv_results` and will be removed in version 1.7.
Attributes
----------
cv_results_ : ndarray of shape (n_samples, n_targets, n_alphas), optional
Cross-validation results for each alpha (only if ``store_cv_results=True`` and
``cv=None``). After ``fit()`` has been called, this attribute will
contain the mean squared errors if `scoring is None` otherwise it
will contain standardized per point prediction values.
.. versionchanged:: 1.5
`cv_values_` changed to `cv_results_`.
coef_ : ndarray of shape (1, n_features) or (n_targets, n_features)
Coefficient of the features in the decision function.
``coef_`` is of shape (1, n_features) when the given problem is binary.
intercept_ : float or ndarray of shape (n_targets,)
Independent term in decision function. Set to 0.0 if
``fit_intercept = False``.
alpha_ : float
Estimated regularization parameter.
best_score_ : float
Score of base estimator with best alpha.
.. versionadded:: 0.23
classes_ : ndarray of shape (n_classes,)
The classes labels.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
Ridge : Ridge regression.
RidgeClassifier : Ridge classifier.
RidgeCV : Ridge regression with built-in cross validation.
Notes
-----
For multi-class classification, n_class classifiers are trained in
a one-versus-all approach. Concretely, this is implemented by taking
advantage of the multi-variate response support in Ridge.
Examples
--------
>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.linear_model import RidgeClassifierCV
>>> X, y = load_breast_cancer(return_X_y=True)
>>> clf = RidgeClassifierCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y)
>>> clf.score(X, y)
0.9630...
"""
_parameter_constraints: dict = {
**_BaseRidgeCV._parameter_constraints,
"class_weight": [dict, StrOptions({"balanced"}), None],
}
for param in ("gcv_mode", "alpha_per_target"):
_parameter_constraints.pop(param)
def __init__(
self,
alphas=(0.1, 1.0, 10.0),
*,
fit_intercept=True,
scoring=None,
cv=None,
class_weight=None,
store_cv_results=None,
store_cv_values="deprecated",
):
super().__init__(
alphas=alphas,
fit_intercept=fit_intercept,
scoring=scoring,
cv=cv,
store_cv_results=store_cv_results,
store_cv_values=store_cv_values,
)
self.class_weight = class_weight
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y, sample_weight=None, **params):
"""Fit Ridge classifier with cv.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Training vectors, where `n_samples` is the number of samples
and `n_features` is the number of features. When using GCV,
will be cast to float64 if necessary.
y : ndarray of shape (n_samples,)
Target values. Will be cast to X's dtype if necessary.
sample_weight : float or ndarray of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample
will have the same weight.
**params : dict, default=None
Parameters to be passed to the underlying scorer.
.. versionadded:: 1.5
Only available if `enable_metadata_routing=True`,
which can be set by using
``sklearn.set_config(enable_metadata_routing=True)``.
See :ref:`Metadata Routing User Guide <metadata_routing>` for
more details.
Returns
-------
self : object
Fitted estimator.
"""
# `RidgeClassifier` does not accept "sag" or "saga" solver and thus support
# csr, csc, and coo sparse matrices. By using solver="eigen" we force to accept
# all sparse format.
X, y, sample_weight, Y = self._prepare_data(X, y, sample_weight, solver="eigen")
# If cv is None, gcv mode will be used and we used the binarized Y
# since y will not be binarized in _RidgeGCV estimator.
# If cv is not None, a GridSearchCV with some RidgeClassifier
# estimators are used where y will be binarized. Thus, we pass y
# instead of the binarized Y.
target = Y if self.cv is None else y
super().fit(X, target, sample_weight=sample_weight, **params)
return self
|