File size: 23,961 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 |
"""
Multi-dimensional Scaling (MDS).
"""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import warnings
from numbers import Integral, Real
import numpy as np
from joblib import effective_n_jobs
from ..base import BaseEstimator, _fit_context
from ..isotonic import IsotonicRegression
from ..metrics import euclidean_distances
from ..utils import check_array, check_random_state, check_symmetric
from ..utils._param_validation import Interval, StrOptions, validate_params
from ..utils.parallel import Parallel, delayed
from ..utils.validation import validate_data
def _smacof_single(
dissimilarities,
metric=True,
n_components=2,
init=None,
max_iter=300,
verbose=0,
eps=1e-3,
random_state=None,
normalized_stress=False,
):
"""Computes multidimensional scaling using SMACOF algorithm.
Parameters
----------
dissimilarities : ndarray of shape (n_samples, n_samples)
Pairwise dissimilarities between the points. Must be symmetric.
metric : bool, default=True
Compute metric or nonmetric SMACOF algorithm.
When ``False`` (i.e. non-metric MDS), dissimilarities with 0 are considered as
missing values.
n_components : int, default=2
Number of dimensions in which to immerse the dissimilarities. If an
``init`` array is provided, this option is overridden and the shape of
``init`` is used to determine the dimensionality of the embedding
space.
init : ndarray of shape (n_samples, n_components), default=None
Starting configuration of the embedding to initialize the algorithm. By
default, the algorithm is initialized with a randomly chosen array.
max_iter : int, default=300
Maximum number of iterations of the SMACOF algorithm for a single run.
verbose : int, default=0
Level of verbosity.
eps : float, default=1e-3
Relative tolerance with respect to stress at which to declare
convergence. The value of `eps` should be tuned separately depending
on whether or not `normalized_stress` is being used.
random_state : int, RandomState instance or None, default=None
Determines the random number generator used to initialize the centers.
Pass an int for reproducible results across multiple function calls.
See :term:`Glossary <random_state>`.
normalized_stress : bool, default=False
Whether use and return normed stress value (Stress-1) instead of raw
stress calculated by default. Only supported in non-metric MDS. The
caller must ensure that if `normalized_stress=True` then `metric=False`
.. versionadded:: 1.2
Returns
-------
X : ndarray of shape (n_samples, n_components)
Coordinates of the points in a ``n_components``-space.
stress : float
The final value of the stress (sum of squared distance of the
disparities and the distances for all constrained points).
If `normalized_stress=True`, and `metric=False` returns Stress-1.
A value of 0 indicates "perfect" fit, 0.025 excellent, 0.05 good,
0.1 fair, and 0.2 poor [1]_.
n_iter : int
The number of iterations corresponding to the best stress.
References
----------
.. [1] "Nonmetric multidimensional scaling: a numerical method" Kruskal, J.
Psychometrika, 29 (1964)
.. [2] "Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis" Kruskal, J. Psychometrika, 29, (1964)
.. [3] "Modern Multidimensional Scaling - Theory and Applications" Borg, I.;
Groenen P. Springer Series in Statistics (1997)
"""
dissimilarities = check_symmetric(dissimilarities, raise_exception=True)
n_samples = dissimilarities.shape[0]
random_state = check_random_state(random_state)
sim_flat = ((1 - np.tri(n_samples)) * dissimilarities).ravel()
sim_flat_w = sim_flat[sim_flat != 0]
if init is None:
# Randomly choose initial configuration
X = random_state.uniform(size=n_samples * n_components)
X = X.reshape((n_samples, n_components))
else:
# overrides the parameter p
n_components = init.shape[1]
if n_samples != init.shape[0]:
raise ValueError(
"init matrix should be of shape (%d, %d)" % (n_samples, n_components)
)
X = init
old_stress = None
ir = IsotonicRegression()
for it in range(max_iter):
# Compute distance and monotonic regression
dis = euclidean_distances(X)
if metric:
disparities = dissimilarities
else:
dis_flat = dis.ravel()
# dissimilarities with 0 are considered as missing values
dis_flat_w = dis_flat[sim_flat != 0]
# Compute the disparities using a monotonic regression
disparities_flat = ir.fit_transform(sim_flat_w, dis_flat_w)
disparities = dis_flat.copy()
disparities[sim_flat != 0] = disparities_flat
disparities = disparities.reshape((n_samples, n_samples))
disparities *= np.sqrt(
(n_samples * (n_samples - 1) / 2) / (disparities**2).sum()
)
# Compute stress
stress = ((dis.ravel() - disparities.ravel()) ** 2).sum() / 2
if normalized_stress:
stress = np.sqrt(stress / ((disparities.ravel() ** 2).sum() / 2))
# Update X using the Guttman transform
dis[dis == 0] = 1e-5
ratio = disparities / dis
B = -ratio
B[np.arange(len(B)), np.arange(len(B))] += ratio.sum(axis=1)
X = 1.0 / n_samples * np.dot(B, X)
dis = np.sqrt((X**2).sum(axis=1)).sum()
if verbose >= 2:
print("it: %d, stress %s" % (it, stress))
if old_stress is not None:
if (old_stress - stress / dis) < eps:
if verbose:
print("breaking at iteration %d with stress %s" % (it, stress))
break
old_stress = stress / dis
return X, stress, it + 1
@validate_params(
{
"dissimilarities": ["array-like"],
"metric": ["boolean"],
"n_components": [Interval(Integral, 1, None, closed="left")],
"init": ["array-like", None],
"n_init": [Interval(Integral, 1, None, closed="left")],
"n_jobs": [Integral, None],
"max_iter": [Interval(Integral, 1, None, closed="left")],
"verbose": ["verbose"],
"eps": [Interval(Real, 0, None, closed="left")],
"random_state": ["random_state"],
"return_n_iter": ["boolean"],
"normalized_stress": ["boolean", StrOptions({"auto"})],
},
prefer_skip_nested_validation=True,
)
def smacof(
dissimilarities,
*,
metric=True,
n_components=2,
init=None,
n_init=8,
n_jobs=None,
max_iter=300,
verbose=0,
eps=1e-3,
random_state=None,
return_n_iter=False,
normalized_stress="auto",
):
"""Compute multidimensional scaling using the SMACOF algorithm.
The SMACOF (Scaling by MAjorizing a COmplicated Function) algorithm is a
multidimensional scaling algorithm which minimizes an objective function
(the *stress*) using a majorization technique. Stress majorization, also
known as the Guttman Transform, guarantees a monotone convergence of
stress, and is more powerful than traditional techniques such as gradient
descent.
The SMACOF algorithm for metric MDS can be summarized by the following
steps:
1. Set an initial start configuration, randomly or not.
2. Compute the stress
3. Compute the Guttman Transform
4. Iterate 2 and 3 until convergence.
The nonmetric algorithm adds a monotonic regression step before computing
the stress.
Parameters
----------
dissimilarities : array-like of shape (n_samples, n_samples)
Pairwise dissimilarities between the points. Must be symmetric.
metric : bool, default=True
Compute metric or nonmetric SMACOF algorithm.
When ``False`` (i.e. non-metric MDS), dissimilarities with 0 are considered as
missing values.
n_components : int, default=2
Number of dimensions in which to immerse the dissimilarities. If an
``init`` array is provided, this option is overridden and the shape of
``init`` is used to determine the dimensionality of the embedding
space.
init : array-like of shape (n_samples, n_components), default=None
Starting configuration of the embedding to initialize the algorithm. By
default, the algorithm is initialized with a randomly chosen array.
n_init : int, default=8
Number of times the SMACOF algorithm will be run with different
initializations. The final results will be the best output of the runs,
determined by the run with the smallest final stress. If ``init`` is
provided, this option is overridden and a single run is performed.
n_jobs : int, default=None
The number of jobs to use for the computation. If multiple
initializations are used (``n_init``), each run of the algorithm is
computed in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
max_iter : int, default=300
Maximum number of iterations of the SMACOF algorithm for a single run.
verbose : int, default=0
Level of verbosity.
eps : float, default=1e-3
Relative tolerance with respect to stress at which to declare
convergence. The value of `eps` should be tuned separately depending
on whether or not `normalized_stress` is being used.
random_state : int, RandomState instance or None, default=None
Determines the random number generator used to initialize the centers.
Pass an int for reproducible results across multiple function calls.
See :term:`Glossary <random_state>`.
return_n_iter : bool, default=False
Whether or not to return the number of iterations.
normalized_stress : bool or "auto" default="auto"
Whether use and return normed stress value (Stress-1) instead of raw
stress calculated by default. Only supported in non-metric MDS.
.. versionadded:: 1.2
.. versionchanged:: 1.4
The default value changed from `False` to `"auto"` in version 1.4.
Returns
-------
X : ndarray of shape (n_samples, n_components)
Coordinates of the points in a ``n_components``-space.
stress : float
The final value of the stress (sum of squared distance of the
disparities and the distances for all constrained points).
If `normalized_stress=True`, and `metric=False` returns Stress-1.
A value of 0 indicates "perfect" fit, 0.025 excellent, 0.05 good,
0.1 fair, and 0.2 poor [1]_.
n_iter : int
The number of iterations corresponding to the best stress. Returned
only if ``return_n_iter`` is set to ``True``.
References
----------
.. [1] "Nonmetric multidimensional scaling: a numerical method" Kruskal, J.
Psychometrika, 29 (1964)
.. [2] "Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis" Kruskal, J. Psychometrika, 29, (1964)
.. [3] "Modern Multidimensional Scaling - Theory and Applications" Borg, I.;
Groenen P. Springer Series in Statistics (1997)
Examples
--------
>>> import numpy as np
>>> from sklearn.manifold import smacof
>>> from sklearn.metrics import euclidean_distances
>>> X = np.array([[0, 1, 2], [1, 0, 3],[2, 3, 0]])
>>> dissimilarities = euclidean_distances(X)
>>> mds_result, stress = smacof(dissimilarities, n_components=2, random_state=42)
>>> mds_result
array([[ 0.05... -1.07... ],
[ 1.74..., -0.75...],
[-1.79..., 1.83...]])
>>> stress
np.float64(0.0012...)
"""
dissimilarities = check_array(dissimilarities)
random_state = check_random_state(random_state)
if normalized_stress == "auto":
normalized_stress = not metric
if normalized_stress and metric:
raise ValueError(
"Normalized stress is not supported for metric MDS. Either set"
" `normalized_stress=False` or use `metric=False`."
)
if hasattr(init, "__array__"):
init = np.asarray(init).copy()
if not n_init == 1:
warnings.warn(
"Explicit initial positions passed: "
"performing only one init of the MDS instead of %d" % n_init
)
n_init = 1
best_pos, best_stress = None, None
if effective_n_jobs(n_jobs) == 1:
for it in range(n_init):
pos, stress, n_iter_ = _smacof_single(
dissimilarities,
metric=metric,
n_components=n_components,
init=init,
max_iter=max_iter,
verbose=verbose,
eps=eps,
random_state=random_state,
normalized_stress=normalized_stress,
)
if best_stress is None or stress < best_stress:
best_stress = stress
best_pos = pos.copy()
best_iter = n_iter_
else:
seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init)
results = Parallel(n_jobs=n_jobs, verbose=max(verbose - 1, 0))(
delayed(_smacof_single)(
dissimilarities,
metric=metric,
n_components=n_components,
init=init,
max_iter=max_iter,
verbose=verbose,
eps=eps,
random_state=seed,
normalized_stress=normalized_stress,
)
for seed in seeds
)
positions, stress, n_iters = zip(*results)
best = np.argmin(stress)
best_stress = stress[best]
best_pos = positions[best]
best_iter = n_iters[best]
if return_n_iter:
return best_pos, best_stress, best_iter
else:
return best_pos, best_stress
class MDS(BaseEstimator):
"""Multidimensional scaling.
Read more in the :ref:`User Guide <multidimensional_scaling>`.
Parameters
----------
n_components : int, default=2
Number of dimensions in which to immerse the dissimilarities.
metric : bool, default=True
If ``True``, perform metric MDS; otherwise, perform nonmetric MDS.
When ``False`` (i.e. non-metric MDS), dissimilarities with 0 are considered as
missing values.
n_init : int, default=4
Number of times the SMACOF algorithm will be run with different
initializations. The final results will be the best output of the runs,
determined by the run with the smallest final stress.
max_iter : int, default=300
Maximum number of iterations of the SMACOF algorithm for a single run.
verbose : int, default=0
Level of verbosity.
eps : float, default=1e-3
Relative tolerance with respect to stress at which to declare
convergence. The value of `eps` should be tuned separately depending
on whether or not `normalized_stress` is being used.
n_jobs : int, default=None
The number of jobs to use for the computation. If multiple
initializations are used (``n_init``), each run of the algorithm is
computed in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
random_state : int, RandomState instance or None, default=None
Determines the random number generator used to initialize the centers.
Pass an int for reproducible results across multiple function calls.
See :term:`Glossary <random_state>`.
dissimilarity : {'euclidean', 'precomputed'}, default='euclidean'
Dissimilarity measure to use:
- 'euclidean':
Pairwise Euclidean distances between points in the dataset.
- 'precomputed':
Pre-computed dissimilarities are passed directly to ``fit`` and
``fit_transform``.
normalized_stress : bool or "auto" default="auto"
Whether use and return normed stress value (Stress-1) instead of raw
stress calculated by default. Only supported in non-metric MDS.
.. versionadded:: 1.2
.. versionchanged:: 1.4
The default value changed from `False` to `"auto"` in version 1.4.
Attributes
----------
embedding_ : ndarray of shape (n_samples, n_components)
Stores the position of the dataset in the embedding space.
stress_ : float
The final value of the stress (sum of squared distance of the
disparities and the distances for all constrained points).
If `normalized_stress=True`, and `metric=False` returns Stress-1.
A value of 0 indicates "perfect" fit, 0.025 excellent, 0.05 good,
0.1 fair, and 0.2 poor [1]_.
dissimilarity_matrix_ : ndarray of shape (n_samples, n_samples)
Pairwise dissimilarities between the points. Symmetric matrix that:
- either uses a custom dissimilarity matrix by setting `dissimilarity`
to 'precomputed';
- or constructs a dissimilarity matrix from data using
Euclidean distances.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
n_iter_ : int
The number of iterations corresponding to the best stress.
See Also
--------
sklearn.decomposition.PCA : Principal component analysis that is a linear
dimensionality reduction method.
sklearn.decomposition.KernelPCA : Non-linear dimensionality reduction using
kernels and PCA.
TSNE : T-distributed Stochastic Neighbor Embedding.
Isomap : Manifold learning based on Isometric Mapping.
LocallyLinearEmbedding : Manifold learning using Locally Linear Embedding.
SpectralEmbedding : Spectral embedding for non-linear dimensionality.
References
----------
.. [1] "Nonmetric multidimensional scaling: a numerical method" Kruskal, J.
Psychometrika, 29 (1964)
.. [2] "Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis" Kruskal, J. Psychometrika, 29, (1964)
.. [3] "Modern Multidimensional Scaling - Theory and Applications" Borg, I.;
Groenen P. Springer Series in Statistics (1997)
Examples
--------
>>> from sklearn.datasets import load_digits
>>> from sklearn.manifold import MDS
>>> X, _ = load_digits(return_X_y=True)
>>> X.shape
(1797, 64)
>>> embedding = MDS(n_components=2, normalized_stress='auto')
>>> X_transformed = embedding.fit_transform(X[:100])
>>> X_transformed.shape
(100, 2)
For a more detailed example of usage, see
:ref:`sphx_glr_auto_examples_manifold_plot_mds.py`.
For a comparison of manifold learning techniques, see
:ref:`sphx_glr_auto_examples_manifold_plot_compare_methods.py`.
"""
_parameter_constraints: dict = {
"n_components": [Interval(Integral, 1, None, closed="left")],
"metric": ["boolean"],
"n_init": [Interval(Integral, 1, None, closed="left")],
"max_iter": [Interval(Integral, 1, None, closed="left")],
"verbose": ["verbose"],
"eps": [Interval(Real, 0.0, None, closed="left")],
"n_jobs": [None, Integral],
"random_state": ["random_state"],
"dissimilarity": [StrOptions({"euclidean", "precomputed"})],
"normalized_stress": ["boolean", StrOptions({"auto"})],
}
def __init__(
self,
n_components=2,
*,
metric=True,
n_init=4,
max_iter=300,
verbose=0,
eps=1e-3,
n_jobs=None,
random_state=None,
dissimilarity="euclidean",
normalized_stress="auto",
):
self.n_components = n_components
self.dissimilarity = dissimilarity
self.metric = metric
self.n_init = n_init
self.max_iter = max_iter
self.eps = eps
self.verbose = verbose
self.n_jobs = n_jobs
self.random_state = random_state
self.normalized_stress = normalized_stress
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.input_tags.pairwise = self.dissimilarity == "precomputed"
return tags
def fit(self, X, y=None, init=None):
"""
Compute the position of the points in the embedding space.
Parameters
----------
X : array-like of shape (n_samples, n_features) or \
(n_samples, n_samples)
Input data. If ``dissimilarity=='precomputed'``, the input should
be the dissimilarity matrix.
y : Ignored
Not used, present for API consistency by convention.
init : ndarray of shape (n_samples, n_components), default=None
Starting configuration of the embedding to initialize the SMACOF
algorithm. By default, the algorithm is initialized with a randomly
chosen array.
Returns
-------
self : object
Fitted estimator.
"""
self.fit_transform(X, init=init)
return self
@_fit_context(prefer_skip_nested_validation=True)
def fit_transform(self, X, y=None, init=None):
"""
Fit the data from `X`, and returns the embedded coordinates.
Parameters
----------
X : array-like of shape (n_samples, n_features) or \
(n_samples, n_samples)
Input data. If ``dissimilarity=='precomputed'``, the input should
be the dissimilarity matrix.
y : Ignored
Not used, present for API consistency by convention.
init : ndarray of shape (n_samples, n_components), default=None
Starting configuration of the embedding to initialize the SMACOF
algorithm. By default, the algorithm is initialized with a randomly
chosen array.
Returns
-------
X_new : ndarray of shape (n_samples, n_components)
X transformed in the new space.
"""
X = validate_data(self, X)
if X.shape[0] == X.shape[1] and self.dissimilarity != "precomputed":
warnings.warn(
"The MDS API has changed. ``fit`` now constructs an"
" dissimilarity matrix from data. To use a custom "
"dissimilarity matrix, set "
"``dissimilarity='precomputed'``."
)
if self.dissimilarity == "precomputed":
self.dissimilarity_matrix_ = X
elif self.dissimilarity == "euclidean":
self.dissimilarity_matrix_ = euclidean_distances(X)
self.embedding_, self.stress_, self.n_iter_ = smacof(
self.dissimilarity_matrix_,
metric=self.metric,
n_components=self.n_components,
init=init,
n_init=self.n_init,
n_jobs=self.n_jobs,
max_iter=self.max_iter,
verbose=self.verbose,
eps=self.eps,
random_state=self.random_state,
return_n_iter=True,
normalized_stress=self.normalized_stress,
)
return self.embedding_
|