File size: 29,925 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 |
"""Spectral Embedding."""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import warnings
from numbers import Integral, Real
import numpy as np
from scipy import sparse
from scipy.linalg import eigh
from scipy.sparse.csgraph import connected_components
from scipy.sparse.linalg import eigsh, lobpcg
from ..base import BaseEstimator, _fit_context
from ..metrics.pairwise import rbf_kernel
from ..neighbors import NearestNeighbors, kneighbors_graph
from ..utils import (
check_array,
check_random_state,
check_symmetric,
)
from ..utils._arpack import _init_arpack_v0
from ..utils._param_validation import Interval, StrOptions, validate_params
from ..utils.extmath import _deterministic_vector_sign_flip
from ..utils.fixes import laplacian as csgraph_laplacian
from ..utils.fixes import parse_version, sp_version
from ..utils.validation import validate_data
def _graph_connected_component(graph, node_id):
"""Find the largest graph connected components that contains one
given node.
Parameters
----------
graph : array-like of shape (n_samples, n_samples)
Adjacency matrix of the graph, non-zero weight means an edge
between the nodes.
node_id : int
The index of the query node of the graph.
Returns
-------
connected_components_matrix : array-like of shape (n_samples,)
An array of bool value indicating the indexes of the nodes
belonging to the largest connected components of the given query
node.
"""
n_node = graph.shape[0]
if sparse.issparse(graph):
# speed up row-wise access to boolean connection mask
graph = graph.tocsr()
connected_nodes = np.zeros(n_node, dtype=bool)
nodes_to_explore = np.zeros(n_node, dtype=bool)
nodes_to_explore[node_id] = True
for _ in range(n_node):
last_num_component = connected_nodes.sum()
np.logical_or(connected_nodes, nodes_to_explore, out=connected_nodes)
if last_num_component >= connected_nodes.sum():
break
indices = np.where(nodes_to_explore)[0]
nodes_to_explore.fill(False)
for i in indices:
if sparse.issparse(graph):
# scipy not yet implemented 1D sparse slices; can be changed back to
# `neighbors = graph[i].toarray().ravel()` once implemented
neighbors = graph[[i], :].toarray().ravel()
else:
neighbors = graph[i]
np.logical_or(nodes_to_explore, neighbors, out=nodes_to_explore)
return connected_nodes
def _graph_is_connected(graph):
"""Return whether the graph is connected (True) or Not (False).
Parameters
----------
graph : {array-like, sparse matrix} of shape (n_samples, n_samples)
Adjacency matrix of the graph, non-zero weight means an edge
between the nodes.
Returns
-------
is_connected : bool
True means the graph is fully connected and False means not.
"""
if sparse.issparse(graph):
# Before Scipy 1.11.3, `connected_components` only supports 32-bit indices.
# PR: https://github.com/scipy/scipy/pull/18913
# First integration in 1.11.3: https://github.com/scipy/scipy/pull/19279
# TODO(jjerphan): Once SciPy 1.11.3 is the minimum supported version, use
# `accept_large_sparse=True`.
accept_large_sparse = sp_version >= parse_version("1.11.3")
graph = check_array(
graph, accept_sparse=True, accept_large_sparse=accept_large_sparse
)
# sparse graph, find all the connected components
n_connected_components, _ = connected_components(graph)
return n_connected_components == 1
else:
# dense graph, find all connected components start from node 0
return _graph_connected_component(graph, 0).sum() == graph.shape[0]
def _set_diag(laplacian, value, norm_laplacian):
"""Set the diagonal of the laplacian matrix and convert it to a
sparse format well suited for eigenvalue decomposition.
Parameters
----------
laplacian : {ndarray, sparse matrix}
The graph laplacian.
value : float
The value of the diagonal.
norm_laplacian : bool
Whether the value of the diagonal should be changed or not.
Returns
-------
laplacian : {array, sparse matrix}
An array of matrix in a form that is well suited to fast
eigenvalue decomposition, depending on the band width of the
matrix.
"""
n_nodes = laplacian.shape[0]
# We need all entries in the diagonal to values
if not sparse.issparse(laplacian):
if norm_laplacian:
laplacian.flat[:: n_nodes + 1] = value
else:
laplacian = laplacian.tocoo()
if norm_laplacian:
diag_idx = laplacian.row == laplacian.col
laplacian.data[diag_idx] = value
# If the matrix has a small number of diagonals (as in the
# case of structured matrices coming from images), the
# dia format might be best suited for matvec products:
n_diags = np.unique(laplacian.row - laplacian.col).size
if n_diags <= 7:
# 3 or less outer diagonals on each side
laplacian = laplacian.todia()
else:
# csr has the fastest matvec and is thus best suited to
# arpack
laplacian = laplacian.tocsr()
return laplacian
@validate_params(
{
"adjacency": ["array-like", "sparse matrix"],
"n_components": [Interval(Integral, 1, None, closed="left")],
"eigen_solver": [StrOptions({"arpack", "lobpcg", "amg"}), None],
"random_state": ["random_state"],
"eigen_tol": [Interval(Real, 0, None, closed="left"), StrOptions({"auto"})],
"norm_laplacian": ["boolean"],
"drop_first": ["boolean"],
},
prefer_skip_nested_validation=True,
)
def spectral_embedding(
adjacency,
*,
n_components=8,
eigen_solver=None,
random_state=None,
eigen_tol="auto",
norm_laplacian=True,
drop_first=True,
):
"""Project the sample on the first eigenvectors of the graph Laplacian.
The adjacency matrix is used to compute a normalized graph Laplacian
whose spectrum (especially the eigenvectors associated to the
smallest eigenvalues) has an interpretation in terms of minimal
number of cuts necessary to split the graph into comparably sized
components.
This embedding can also 'work' even if the ``adjacency`` variable is
not strictly the adjacency matrix of a graph but more generally
an affinity or similarity matrix between samples (for instance the
heat kernel of a euclidean distance matrix or a k-NN matrix).
However care must taken to always make the affinity matrix symmetric
so that the eigenvector decomposition works as expected.
Note : Laplacian Eigenmaps is the actual algorithm implemented here.
Read more in the :ref:`User Guide <spectral_embedding>`.
Parameters
----------
adjacency : {array-like, sparse graph} of shape (n_samples, n_samples)
The adjacency matrix of the graph to embed.
n_components : int, default=8
The dimension of the projection subspace.
eigen_solver : {'arpack', 'lobpcg', 'amg'}, default=None
The eigenvalue decomposition strategy to use. AMG requires pyamg
to be installed. It can be faster on very large, sparse problems,
but may also lead to instabilities. If None, then ``'arpack'`` is
used.
random_state : int, RandomState instance or None, default=None
A pseudo random number generator used for the initialization
of the lobpcg eigen vectors decomposition when `eigen_solver ==
'amg'`, and for the K-Means initialization. Use an int to make
the results deterministic across calls (See
:term:`Glossary <random_state>`).
.. note::
When using `eigen_solver == 'amg'`,
it is necessary to also fix the global numpy seed with
`np.random.seed(int)` to get deterministic results. See
https://github.com/pyamg/pyamg/issues/139 for further
information.
eigen_tol : float, default="auto"
Stopping criterion for eigendecomposition of the Laplacian matrix.
If `eigen_tol="auto"` then the passed tolerance will depend on the
`eigen_solver`:
- If `eigen_solver="arpack"`, then `eigen_tol=0.0`;
- If `eigen_solver="lobpcg"` or `eigen_solver="amg"`, then
`eigen_tol=None` which configures the underlying `lobpcg` solver to
automatically resolve the value according to their heuristics. See,
:func:`scipy.sparse.linalg.lobpcg` for details.
Note that when using `eigen_solver="amg"` values of `tol<1e-5` may lead
to convergence issues and should be avoided.
.. versionadded:: 1.2
Added 'auto' option.
norm_laplacian : bool, default=True
If True, then compute symmetric normalized Laplacian.
drop_first : bool, default=True
Whether to drop the first eigenvector. For spectral embedding, this
should be True as the first eigenvector should be constant vector for
connected graph, but for spectral clustering, this should be kept as
False to retain the first eigenvector.
Returns
-------
embedding : ndarray of shape (n_samples, n_components)
The reduced samples.
Notes
-----
Spectral Embedding (Laplacian Eigenmaps) is most useful when the graph
has one connected component. If there graph has many components, the first
few eigenvectors will simply uncover the connected components of the graph.
References
----------
* https://en.wikipedia.org/wiki/LOBPCG
* :doi:`"Toward the Optimal Preconditioned Eigensolver: Locally Optimal
Block Preconditioned Conjugate Gradient Method",
Andrew V. Knyazev
<10.1137/S1064827500366124>`
Examples
--------
>>> from sklearn.datasets import load_digits
>>> from sklearn.neighbors import kneighbors_graph
>>> from sklearn.manifold import spectral_embedding
>>> X, _ = load_digits(return_X_y=True)
>>> X = X[:100]
>>> affinity_matrix = kneighbors_graph(
... X, n_neighbors=int(X.shape[0] / 10), include_self=True
... )
>>> # make the matrix symmetric
>>> affinity_matrix = 0.5 * (affinity_matrix + affinity_matrix.T)
>>> embedding = spectral_embedding(affinity_matrix, n_components=2, random_state=42)
>>> embedding.shape
(100, 2)
"""
random_state = check_random_state(random_state)
return _spectral_embedding(
adjacency,
n_components=n_components,
eigen_solver=eigen_solver,
random_state=random_state,
eigen_tol=eigen_tol,
norm_laplacian=norm_laplacian,
drop_first=drop_first,
)
def _spectral_embedding(
adjacency,
*,
n_components=8,
eigen_solver=None,
random_state=None,
eigen_tol="auto",
norm_laplacian=True,
drop_first=True,
):
adjacency = check_symmetric(adjacency)
if eigen_solver == "amg":
try:
from pyamg import smoothed_aggregation_solver
except ImportError as e:
raise ValueError(
"The eigen_solver was set to 'amg', but pyamg is not available."
) from e
if eigen_solver is None:
eigen_solver = "arpack"
n_nodes = adjacency.shape[0]
# Whether to drop the first eigenvector
if drop_first:
n_components = n_components + 1
if not _graph_is_connected(adjacency):
warnings.warn(
"Graph is not fully connected, spectral embedding may not work as expected."
)
laplacian, dd = csgraph_laplacian(
adjacency, normed=norm_laplacian, return_diag=True
)
if (
eigen_solver == "arpack"
or eigen_solver != "lobpcg"
and (not sparse.issparse(laplacian) or n_nodes < 5 * n_components)
):
# lobpcg used with eigen_solver='amg' has bugs for low number of nodes
# for details see the source code in scipy:
# https://github.com/scipy/scipy/blob/v0.11.0/scipy/sparse/linalg/eigen
# /lobpcg/lobpcg.py#L237
# or matlab:
# https://www.mathworks.com/matlabcentral/fileexchange/48-lobpcg-m
laplacian = _set_diag(laplacian, 1, norm_laplacian)
# Here we'll use shift-invert mode for fast eigenvalues
# (see https://docs.scipy.org/doc/scipy/reference/tutorial/arpack.html
# for a short explanation of what this means)
# Because the normalized Laplacian has eigenvalues between 0 and 2,
# I - L has eigenvalues between -1 and 1. ARPACK is most efficient
# when finding eigenvalues of largest magnitude (keyword which='LM')
# and when these eigenvalues are very large compared to the rest.
# For very large, very sparse graphs, I - L can have many, many
# eigenvalues very near 1.0. This leads to slow convergence. So
# instead, we'll use ARPACK's shift-invert mode, asking for the
# eigenvalues near 1.0. This effectively spreads-out the spectrum
# near 1.0 and leads to much faster convergence: potentially an
# orders-of-magnitude speedup over simply using keyword which='LA'
# in standard mode.
try:
# We are computing the opposite of the laplacian inplace so as
# to spare a memory allocation of a possibly very large array
tol = 0 if eigen_tol == "auto" else eigen_tol
laplacian *= -1
v0 = _init_arpack_v0(laplacian.shape[0], random_state)
laplacian = check_array(
laplacian, accept_sparse="csr", accept_large_sparse=False
)
_, diffusion_map = eigsh(
laplacian, k=n_components, sigma=1.0, which="LM", tol=tol, v0=v0
)
embedding = diffusion_map.T[n_components::-1]
if norm_laplacian:
# recover u = D^-1/2 x from the eigenvector output x
embedding = embedding / dd
except RuntimeError:
# When submatrices are exactly singular, an LU decomposition
# in arpack fails. We fallback to lobpcg
eigen_solver = "lobpcg"
# Revert the laplacian to its opposite to have lobpcg work
laplacian *= -1
elif eigen_solver == "amg":
# Use AMG to get a preconditioner and speed up the eigenvalue
# problem.
if not sparse.issparse(laplacian):
warnings.warn("AMG works better for sparse matrices")
laplacian = check_array(
laplacian, dtype=[np.float64, np.float32], accept_sparse=True
)
laplacian = _set_diag(laplacian, 1, norm_laplacian)
# The Laplacian matrix is always singular, having at least one zero
# eigenvalue, corresponding to the trivial eigenvector, which is a
# constant. Using a singular matrix for preconditioning may result in
# random failures in LOBPCG and is not supported by the existing
# theory:
# see https://doi.org/10.1007/s10208-015-9297-1
# Shift the Laplacian so its diagononal is not all ones. The shift
# does change the eigenpairs however, so we'll feed the shifted
# matrix to the solver and afterward set it back to the original.
diag_shift = 1e-5 * sparse.eye(laplacian.shape[0])
laplacian += diag_shift
if hasattr(sparse, "csr_array") and isinstance(laplacian, sparse.csr_array):
# `pyamg` does not work with `csr_array` and we need to convert it to a
# `csr_matrix` object.
laplacian = sparse.csr_matrix(laplacian)
ml = smoothed_aggregation_solver(check_array(laplacian, accept_sparse="csr"))
laplacian -= diag_shift
M = ml.aspreconditioner()
# Create initial approximation X to eigenvectors
X = random_state.standard_normal(size=(laplacian.shape[0], n_components + 1))
X[:, 0] = dd.ravel()
X = X.astype(laplacian.dtype)
tol = None if eigen_tol == "auto" else eigen_tol
_, diffusion_map = lobpcg(laplacian, X, M=M, tol=tol, largest=False)
embedding = diffusion_map.T
if norm_laplacian:
# recover u = D^-1/2 x from the eigenvector output x
embedding = embedding / dd
if embedding.shape[0] == 1:
raise ValueError
if eigen_solver == "lobpcg":
laplacian = check_array(
laplacian, dtype=[np.float64, np.float32], accept_sparse=True
)
if n_nodes < 5 * n_components + 1:
# see note above under arpack why lobpcg has problems with small
# number of nodes
# lobpcg will fallback to eigh, so we short circuit it
if sparse.issparse(laplacian):
laplacian = laplacian.toarray()
_, diffusion_map = eigh(laplacian, check_finite=False)
embedding = diffusion_map.T[:n_components]
if norm_laplacian:
# recover u = D^-1/2 x from the eigenvector output x
embedding = embedding / dd
else:
laplacian = _set_diag(laplacian, 1, norm_laplacian)
# We increase the number of eigenvectors requested, as lobpcg
# doesn't behave well in low dimension and create initial
# approximation X to eigenvectors
X = random_state.standard_normal(
size=(laplacian.shape[0], n_components + 1)
)
X[:, 0] = dd.ravel()
X = X.astype(laplacian.dtype)
tol = None if eigen_tol == "auto" else eigen_tol
_, diffusion_map = lobpcg(
laplacian, X, tol=tol, largest=False, maxiter=2000
)
embedding = diffusion_map.T[:n_components]
if norm_laplacian:
# recover u = D^-1/2 x from the eigenvector output x
embedding = embedding / dd
if embedding.shape[0] == 1:
raise ValueError
embedding = _deterministic_vector_sign_flip(embedding)
if drop_first:
return embedding[1:n_components].T
else:
return embedding[:n_components].T
class SpectralEmbedding(BaseEstimator):
"""Spectral embedding for non-linear dimensionality reduction.
Forms an affinity matrix given by the specified function and
applies spectral decomposition to the corresponding graph laplacian.
The resulting transformation is given by the value of the
eigenvectors for each data point.
Note : Laplacian Eigenmaps is the actual algorithm implemented here.
Read more in the :ref:`User Guide <spectral_embedding>`.
Parameters
----------
n_components : int, default=2
The dimension of the projected subspace.
affinity : {'nearest_neighbors', 'rbf', 'precomputed', \
'precomputed_nearest_neighbors'} or callable, \
default='nearest_neighbors'
How to construct the affinity matrix.
- 'nearest_neighbors' : construct the affinity matrix by computing a
graph of nearest neighbors.
- 'rbf' : construct the affinity matrix by computing a radial basis
function (RBF) kernel.
- 'precomputed' : interpret ``X`` as a precomputed affinity matrix.
- 'precomputed_nearest_neighbors' : interpret ``X`` as a sparse graph
of precomputed nearest neighbors, and constructs the affinity matrix
by selecting the ``n_neighbors`` nearest neighbors.
- callable : use passed in function as affinity
the function takes in data matrix (n_samples, n_features)
and return affinity matrix (n_samples, n_samples).
gamma : float, default=None
Kernel coefficient for rbf kernel. If None, gamma will be set to
1/n_features.
random_state : int, RandomState instance or None, default=None
A pseudo random number generator used for the initialization
of the lobpcg eigen vectors decomposition when `eigen_solver ==
'amg'`, and for the K-Means initialization. Use an int to make
the results deterministic across calls (See
:term:`Glossary <random_state>`).
.. note::
When using `eigen_solver == 'amg'`,
it is necessary to also fix the global numpy seed with
`np.random.seed(int)` to get deterministic results. See
https://github.com/pyamg/pyamg/issues/139 for further
information.
eigen_solver : {'arpack', 'lobpcg', 'amg'}, default=None
The eigenvalue decomposition strategy to use. AMG requires pyamg
to be installed. It can be faster on very large, sparse problems.
If None, then ``'arpack'`` is used.
eigen_tol : float, default="auto"
Stopping criterion for eigendecomposition of the Laplacian matrix.
If `eigen_tol="auto"` then the passed tolerance will depend on the
`eigen_solver`:
- If `eigen_solver="arpack"`, then `eigen_tol=0.0`;
- If `eigen_solver="lobpcg"` or `eigen_solver="amg"`, then
`eigen_tol=None` which configures the underlying `lobpcg` solver to
automatically resolve the value according to their heuristics. See,
:func:`scipy.sparse.linalg.lobpcg` for details.
Note that when using `eigen_solver="lobpcg"` or `eigen_solver="amg"`
values of `tol<1e-5` may lead to convergence issues and should be
avoided.
.. versionadded:: 1.2
n_neighbors : int, default=None
Number of nearest neighbors for nearest_neighbors graph building.
If None, n_neighbors will be set to max(n_samples/10, 1).
n_jobs : int, default=None
The number of parallel jobs to run.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
Attributes
----------
embedding_ : ndarray of shape (n_samples, n_components)
Spectral embedding of the training matrix.
affinity_matrix_ : ndarray of shape (n_samples, n_samples)
Affinity_matrix constructed from samples or precomputed.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
n_neighbors_ : int
Number of nearest neighbors effectively used.
See Also
--------
Isomap : Non-linear dimensionality reduction through Isometric Mapping.
References
----------
- :doi:`A Tutorial on Spectral Clustering, 2007
Ulrike von Luxburg
<10.1007/s11222-007-9033-z>`
- `On Spectral Clustering: Analysis and an algorithm, 2001
Andrew Y. Ng, Michael I. Jordan, Yair Weiss
<https://citeseerx.ist.psu.edu/doc_view/pid/796c5d6336fc52aa84db575fb821c78918b65f58>`_
- :doi:`Normalized cuts and image segmentation, 2000
Jianbo Shi, Jitendra Malik
<10.1109/34.868688>`
Examples
--------
>>> from sklearn.datasets import load_digits
>>> from sklearn.manifold import SpectralEmbedding
>>> X, _ = load_digits(return_X_y=True)
>>> X.shape
(1797, 64)
>>> embedding = SpectralEmbedding(n_components=2)
>>> X_transformed = embedding.fit_transform(X[:100])
>>> X_transformed.shape
(100, 2)
"""
_parameter_constraints: dict = {
"n_components": [Interval(Integral, 1, None, closed="left")],
"affinity": [
StrOptions(
{
"nearest_neighbors",
"rbf",
"precomputed",
"precomputed_nearest_neighbors",
},
),
callable,
],
"gamma": [Interval(Real, 0, None, closed="left"), None],
"random_state": ["random_state"],
"eigen_solver": [StrOptions({"arpack", "lobpcg", "amg"}), None],
"eigen_tol": [Interval(Real, 0, None, closed="left"), StrOptions({"auto"})],
"n_neighbors": [Interval(Integral, 1, None, closed="left"), None],
"n_jobs": [None, Integral],
}
def __init__(
self,
n_components=2,
*,
affinity="nearest_neighbors",
gamma=None,
random_state=None,
eigen_solver=None,
eigen_tol="auto",
n_neighbors=None,
n_jobs=None,
):
self.n_components = n_components
self.affinity = affinity
self.gamma = gamma
self.random_state = random_state
self.eigen_solver = eigen_solver
self.eigen_tol = eigen_tol
self.n_neighbors = n_neighbors
self.n_jobs = n_jobs
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.input_tags.sparse = True
tags.input_tags.pairwise = self.affinity in [
"precomputed",
"precomputed_nearest_neighbors",
]
return tags
def _get_affinity_matrix(self, X, Y=None):
"""Calculate the affinity matrix from data
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training vector, where `n_samples` is the number of samples
and `n_features` is the number of features.
If affinity is "precomputed"
X : array-like of shape (n_samples, n_samples),
Interpret X as precomputed adjacency graph computed from
samples.
Y: Ignored
Returns
-------
affinity_matrix of shape (n_samples, n_samples)
"""
if self.affinity == "precomputed":
self.affinity_matrix_ = X
return self.affinity_matrix_
if self.affinity == "precomputed_nearest_neighbors":
estimator = NearestNeighbors(
n_neighbors=self.n_neighbors, n_jobs=self.n_jobs, metric="precomputed"
).fit(X)
connectivity = estimator.kneighbors_graph(X=X, mode="connectivity")
self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T)
return self.affinity_matrix_
if self.affinity == "nearest_neighbors":
if sparse.issparse(X):
warnings.warn(
"Nearest neighbors affinity currently does "
"not support sparse input, falling back to "
"rbf affinity"
)
self.affinity = "rbf"
else:
self.n_neighbors_ = (
self.n_neighbors
if self.n_neighbors is not None
else max(int(X.shape[0] / 10), 1)
)
self.affinity_matrix_ = kneighbors_graph(
X, self.n_neighbors_, include_self=True, n_jobs=self.n_jobs
)
# currently only symmetric affinity_matrix supported
self.affinity_matrix_ = 0.5 * (
self.affinity_matrix_ + self.affinity_matrix_.T
)
return self.affinity_matrix_
if self.affinity == "rbf":
self.gamma_ = self.gamma if self.gamma is not None else 1.0 / X.shape[1]
self.affinity_matrix_ = rbf_kernel(X, gamma=self.gamma_)
return self.affinity_matrix_
self.affinity_matrix_ = self.affinity(X)
return self.affinity_matrix_
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y=None):
"""Fit the model from data in X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vector, where `n_samples` is the number of samples
and `n_features` is the number of features.
If affinity is "precomputed"
X : {array-like, sparse matrix}, shape (n_samples, n_samples),
Interpret X as precomputed adjacency graph computed from
samples.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
self : object
Returns the instance itself.
"""
X = validate_data(self, X, accept_sparse="csr", ensure_min_samples=2)
random_state = check_random_state(self.random_state)
affinity_matrix = self._get_affinity_matrix(X)
self.embedding_ = _spectral_embedding(
affinity_matrix,
n_components=self.n_components,
eigen_solver=self.eigen_solver,
eigen_tol=self.eigen_tol,
random_state=random_state,
)
return self
def fit_transform(self, X, y=None):
"""Fit the model from data in X and transform X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vector, where `n_samples` is the number of samples
and `n_features` is the number of features.
If affinity is "precomputed"
X : {array-like, sparse matrix} of shape (n_samples, n_samples),
Interpret X as precomputed adjacency graph computed from
samples.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
X_new : array-like of shape (n_samples, n_components)
Spectral embedding of the training matrix.
"""
self.fit(X)
return self.embedding_
|