File size: 91,511 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
"""Metrics for pairwise distances and affinity of sets of samples."""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import itertools
import warnings
from functools import partial
from numbers import Integral, Real

import numpy as np
from joblib import effective_n_jobs
from scipy.sparse import csr_matrix, issparse
from scipy.spatial import distance

from .. import config_context
from ..exceptions import DataConversionWarning
from ..preprocessing import normalize
from ..utils import check_array, gen_batches, gen_even_slices
from ..utils._array_api import (
    _fill_or_add_to_diagonal,
    _find_matching_floating_dtype,
    _is_numpy_namespace,
    _max_precision_float_dtype,
    _modify_in_place_if_numpy,
    device,
    get_namespace,
    get_namespace_and_device,
)
from ..utils._chunking import get_chunk_n_rows
from ..utils._mask import _get_mask
from ..utils._missing import is_scalar_nan
from ..utils._param_validation import (
    Hidden,
    Interval,
    MissingValues,
    Options,
    StrOptions,
    validate_params,
)
from ..utils.deprecation import _deprecate_force_all_finite
from ..utils.extmath import row_norms, safe_sparse_dot
from ..utils.fixes import parse_version, sp_base_version
from ..utils.parallel import Parallel, delayed
from ..utils.validation import _num_samples, check_non_negative
from ._pairwise_distances_reduction import ArgKmin
from ._pairwise_fast import _chi2_kernel_fast, _sparse_manhattan


# Utility Functions
def _return_float_dtype(X, Y):
    """
    1. If dtype of X and Y is float32, then dtype float32 is returned.
    2. Else dtype float is returned.
    """
    if not issparse(X) and not isinstance(X, np.ndarray):
        X = np.asarray(X)

    if Y is None:
        Y_dtype = X.dtype
    elif not issparse(Y) and not isinstance(Y, np.ndarray):
        Y = np.asarray(Y)
        Y_dtype = Y.dtype
    else:
        Y_dtype = Y.dtype

    if X.dtype == Y_dtype == np.float32:
        dtype = np.float32
    else:
        dtype = float

    return X, Y, dtype


def check_pairwise_arrays(
    X,
    Y,
    *,
    precomputed=False,
    dtype="infer_float",
    accept_sparse="csr",
    force_all_finite="deprecated",
    ensure_all_finite=None,
    ensure_2d=True,
    copy=False,
):
    """Set X and Y appropriately and checks inputs.

    If Y is None, it is set as a pointer to X (i.e. not a copy).
    If Y is given, this does not happen.
    All distance metrics should use this function first to assert that the
    given parameters are correct and safe to use.

    Specifically, this function first ensures that both X and Y are arrays,
    then checks that they are at least two dimensional while ensuring that
    their elements are floats (or dtype if provided). Finally, the function
    checks that the size of the second dimension of the two arrays is equal, or
    the equivalent check for a precomputed distance matrix.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples_X, n_features)

    Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features)

    precomputed : bool, default=False
        True if X is to be treated as precomputed distances to the samples in
        Y.

    dtype : str, type, list of type or None default="infer_float"
        Data type required for X and Y. If "infer_float", the dtype will be an
        appropriate float type selected by _return_float_dtype. If None, the
        dtype of the input is preserved.

        .. versionadded:: 0.18

    accept_sparse : str, bool or list/tuple of str, default='csr'
        String[s] representing allowed sparse matrix formats, such as 'csc',
        'csr', etc. If the input is sparse but not in the allowed format,
        it will be converted to the first listed format. True allows the input
        to be any format. False means that a sparse matrix input will
        raise an error.

    force_all_finite : bool or 'allow-nan', default=True
        Whether to raise an error on np.inf, np.nan, pd.NA in array. The
        possibilities are:

        - True: Force all values of array to be finite.
        - False: accepts np.inf, np.nan, pd.NA in array.
        - 'allow-nan': accepts only np.nan and pd.NA values in array. Values
          cannot be infinite.

        .. versionadded:: 0.22
           ``force_all_finite`` accepts the string ``'allow-nan'``.

        .. versionchanged:: 0.23
           Accepts `pd.NA` and converts it into `np.nan`.

        .. deprecated:: 1.6
           `force_all_finite` was renamed to `ensure_all_finite` and will be removed
           in 1.8.

    ensure_all_finite : bool or 'allow-nan', default=True
        Whether to raise an error on np.inf, np.nan, pd.NA in array. The
        possibilities are:

        - True: Force all values of array to be finite.
        - False: accepts np.inf, np.nan, pd.NA in array.
        - 'allow-nan': accepts only np.nan and pd.NA values in array. Values
          cannot be infinite.

        .. versionadded:: 1.6
           `force_all_finite` was renamed to `ensure_all_finite`.

    ensure_2d : bool, default=True
        Whether to raise an error when the input arrays are not 2-dimensional. Setting
        this to `False` is necessary when using a custom metric with certain
        non-numerical inputs (e.g. a list of strings).

        .. versionadded:: 1.5

    copy : bool, default=False
        Whether a forced copy will be triggered. If copy=False, a copy might
        be triggered by a conversion.

        .. versionadded:: 0.22

    Returns
    -------
    safe_X : {array-like, sparse matrix} of shape (n_samples_X, n_features)
        An array equal to X, guaranteed to be a numpy array.

    safe_Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features)
        An array equal to Y if Y was not None, guaranteed to be a numpy array.
        If Y was None, safe_Y will be a pointer to X.
    """
    ensure_all_finite = _deprecate_force_all_finite(force_all_finite, ensure_all_finite)

    xp, _ = get_namespace(X, Y)
    if any([issparse(X), issparse(Y)]) or _is_numpy_namespace(xp):
        X, Y, dtype_float = _return_float_dtype(X, Y)
    else:
        dtype_float = _find_matching_floating_dtype(X, Y, xp=xp)

    estimator = "check_pairwise_arrays"
    if dtype == "infer_float":
        dtype = dtype_float

    if Y is X or Y is None:
        X = Y = check_array(
            X,
            accept_sparse=accept_sparse,
            dtype=dtype,
            copy=copy,
            ensure_all_finite=ensure_all_finite,
            estimator=estimator,
            ensure_2d=ensure_2d,
        )
    else:
        X = check_array(
            X,
            accept_sparse=accept_sparse,
            dtype=dtype,
            copy=copy,
            ensure_all_finite=ensure_all_finite,
            estimator=estimator,
            ensure_2d=ensure_2d,
        )
        Y = check_array(
            Y,
            accept_sparse=accept_sparse,
            dtype=dtype,
            copy=copy,
            ensure_all_finite=ensure_all_finite,
            estimator=estimator,
            ensure_2d=ensure_2d,
        )

    if precomputed:
        if X.shape[1] != Y.shape[0]:
            raise ValueError(
                "Precomputed metric requires shape "
                "(n_queries, n_indexed). Got (%d, %d) "
                "for %d indexed." % (X.shape[0], X.shape[1], Y.shape[0])
            )
    elif ensure_2d and X.shape[1] != Y.shape[1]:
        # Only check the number of features if 2d arrays are enforced. Otherwise,
        # validation is left to the user for custom metrics.
        raise ValueError(
            "Incompatible dimension for X and Y matrices: "
            "X.shape[1] == %d while Y.shape[1] == %d" % (X.shape[1], Y.shape[1])
        )

    return X, Y


def check_paired_arrays(X, Y):
    """Set X and Y appropriately and checks inputs for paired distances.

    All paired distance metrics should use this function first to assert that
    the given parameters are correct and safe to use.

    Specifically, this function first ensures that both X and Y are arrays,
    then checks that they are at least two dimensional while ensuring that
    their elements are floats. Finally, the function checks that the size
    of the dimensions of the two arrays are equal.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples_X, n_features)

    Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features)

    Returns
    -------
    safe_X : {array-like, sparse matrix} of shape (n_samples_X, n_features)
        An array equal to X, guaranteed to be a numpy array.

    safe_Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features)
        An array equal to Y if Y was not None, guaranteed to be a numpy array.
        If Y was None, safe_Y will be a pointer to X.
    """
    X, Y = check_pairwise_arrays(X, Y)
    if X.shape != Y.shape:
        raise ValueError(
            "X and Y should be of same shape. They were respectively %r and %r long."
            % (X.shape, Y.shape)
        )
    return X, Y


# Pairwise distances
@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "Y": ["array-like", "sparse matrix", None],
        "Y_norm_squared": ["array-like", None],
        "squared": ["boolean"],
        "X_norm_squared": ["array-like", None],
    },
    prefer_skip_nested_validation=True,
)
def euclidean_distances(
    X, Y=None, *, Y_norm_squared=None, squared=False, X_norm_squared=None
):
    """
    Compute the distance matrix between each pair from a vector array X and Y.

    For efficiency reasons, the euclidean distance between a pair of row
    vector x and y is computed as::

        dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y))

    This formulation has two advantages over other ways of computing distances.
    First, it is computationally efficient when dealing with sparse data.
    Second, if one argument varies but the other remains unchanged, then
    `dot(x, x)` and/or `dot(y, y)` can be pre-computed.

    However, this is not the most precise way of doing this computation,
    because this equation potentially suffers from "catastrophic cancellation".
    Also, the distance matrix returned by this function may not be exactly
    symmetric as required by, e.g., ``scipy.spatial.distance`` functions.

    Read more in the :ref:`User Guide <metrics>`.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples_X, n_features)
        An array where each row is a sample and each column is a feature.

    Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), \
            default=None
        An array where each row is a sample and each column is a feature.
        If `None`, method uses `Y=X`.

    Y_norm_squared : array-like of shape (n_samples_Y,) or (n_samples_Y, 1) \
            or (1, n_samples_Y), default=None
        Pre-computed dot-products of vectors in Y (e.g.,
        ``(Y**2).sum(axis=1)``)
        May be ignored in some cases, see the note below.

    squared : bool, default=False
        Return squared Euclidean distances.

    X_norm_squared : array-like of shape (n_samples_X,) or (n_samples_X, 1) \
            or (1, n_samples_X), default=None
        Pre-computed dot-products of vectors in X (e.g.,
        ``(X**2).sum(axis=1)``)
        May be ignored in some cases, see the note below.

    Returns
    -------
    distances : ndarray of shape (n_samples_X, n_samples_Y)
        Returns the distances between the row vectors of `X`
        and the row vectors of `Y`.

    See Also
    --------
    paired_distances : Distances between pairs of elements of X and Y.

    Notes
    -----
    To achieve a better accuracy, `X_norm_squared` and `Y_norm_squared` may be
    unused if they are passed as `np.float32`.

    Examples
    --------
    >>> from sklearn.metrics.pairwise import euclidean_distances
    >>> X = [[0, 1], [1, 1]]
    >>> # distance between rows of X
    >>> euclidean_distances(X, X)
    array([[0., 1.],
           [1., 0.]])
    >>> # get distance to origin
    >>> euclidean_distances(X, [[0, 0]])
    array([[1.        ],
           [1.41421356]])
    """
    xp, _ = get_namespace(X, Y)
    X, Y = check_pairwise_arrays(X, Y)

    if X_norm_squared is not None:
        X_norm_squared = check_array(X_norm_squared, ensure_2d=False)
        original_shape = X_norm_squared.shape
        if X_norm_squared.shape == (X.shape[0],):
            X_norm_squared = xp.reshape(X_norm_squared, (-1, 1))
        if X_norm_squared.shape == (1, X.shape[0]):
            X_norm_squared = X_norm_squared.T
        if X_norm_squared.shape != (X.shape[0], 1):
            raise ValueError(
                f"Incompatible dimensions for X of shape {X.shape} and "
                f"X_norm_squared of shape {original_shape}."
            )

    if Y_norm_squared is not None:
        Y_norm_squared = check_array(Y_norm_squared, ensure_2d=False)
        original_shape = Y_norm_squared.shape
        if Y_norm_squared.shape == (Y.shape[0],):
            Y_norm_squared = xp.reshape(Y_norm_squared, (1, -1))
        if Y_norm_squared.shape == (Y.shape[0], 1):
            Y_norm_squared = Y_norm_squared.T
        if Y_norm_squared.shape != (1, Y.shape[0]):
            raise ValueError(
                f"Incompatible dimensions for Y of shape {Y.shape} and "
                f"Y_norm_squared of shape {original_shape}."
            )

    return _euclidean_distances(X, Y, X_norm_squared, Y_norm_squared, squared)


def _euclidean_distances(X, Y, X_norm_squared=None, Y_norm_squared=None, squared=False):
    """Computational part of euclidean_distances

    Assumes inputs are already checked.

    If norms are passed as float32, they are unused. If arrays are passed as
    float32, norms needs to be recomputed on upcast chunks.
    TODO: use a float64 accumulator in row_norms to avoid the latter.
    """
    xp, _, device_ = get_namespace_and_device(X, Y)
    if X_norm_squared is not None and X_norm_squared.dtype != xp.float32:
        XX = xp.reshape(X_norm_squared, (-1, 1))
    elif X.dtype != xp.float32:
        XX = row_norms(X, squared=True)[:, None]
    else:
        XX = None

    if Y is X:
        YY = None if XX is None else XX.T
    else:
        if Y_norm_squared is not None and Y_norm_squared.dtype != xp.float32:
            YY = xp.reshape(Y_norm_squared, (1, -1))
        elif Y.dtype != xp.float32:
            YY = row_norms(Y, squared=True)[None, :]
        else:
            YY = None

    if X.dtype == xp.float32 or Y.dtype == xp.float32:
        # To minimize precision issues with float32, we compute the distance
        # matrix on chunks of X and Y upcast to float64
        distances = _euclidean_distances_upcast(X, XX, Y, YY)
    else:
        # if dtype is already float64, no need to chunk and upcast
        distances = -2 * safe_sparse_dot(X, Y.T, dense_output=True)
        distances += XX
        distances += YY

    xp_zero = xp.asarray(0, device=device_, dtype=distances.dtype)
    distances = _modify_in_place_if_numpy(
        xp, xp.maximum, distances, xp_zero, out=distances
    )

    # Ensure that distances between vectors and themselves are set to 0.0.
    # This may not be the case due to floating point rounding errors.
    if X is Y:
        _fill_or_add_to_diagonal(distances, 0, xp=xp, add_value=False)

    if squared:
        return distances

    distances = _modify_in_place_if_numpy(xp, xp.sqrt, distances, out=distances)
    return distances


@validate_params(
    {
        "X": ["array-like"],
        "Y": ["array-like", None],
        "squared": ["boolean"],
        "missing_values": [MissingValues(numeric_only=True)],
        "copy": ["boolean"],
    },
    prefer_skip_nested_validation=True,
)
def nan_euclidean_distances(
    X, Y=None, *, squared=False, missing_values=np.nan, copy=True
):
    """Calculate the euclidean distances in the presence of missing values.

    Compute the euclidean distance between each pair of samples in X and Y,
    where Y=X is assumed if Y=None. When calculating the distance between a
    pair of samples, this formulation ignores feature coordinates with a
    missing value in either sample and scales up the weight of the remaining
    coordinates:

    .. code-block:: text

        dist(x,y) = sqrt(weight * sq. distance from present coordinates)

    where:

    .. code-block:: text

        weight = Total # of coordinates / # of present coordinates

    For example, the distance between ``[3, na, na, 6]`` and ``[1, na, 4, 5]`` is:

    .. math::
        \\sqrt{\\frac{4}{2}((3-1)^2 + (6-5)^2)}

    If all the coordinates are missing or if there are no common present
    coordinates then NaN is returned for that pair.

    Read more in the :ref:`User Guide <metrics>`.

    .. versionadded:: 0.22

    Parameters
    ----------
    X : array-like of shape (n_samples_X, n_features)
        An array where each row is a sample and each column is a feature.

    Y : array-like of shape (n_samples_Y, n_features), default=None
        An array where each row is a sample and each column is a feature.
        If `None`, method uses `Y=X`.

    squared : bool, default=False
        Return squared Euclidean distances.

    missing_values : np.nan, float or int, default=np.nan
        Representation of missing value.

    copy : bool, default=True
        Make and use a deep copy of X and Y (if Y exists).

    Returns
    -------
    distances : ndarray of shape (n_samples_X, n_samples_Y)
        Returns the distances between the row vectors of `X`
        and the row vectors of `Y`.

    See Also
    --------
    paired_distances : Distances between pairs of elements of X and Y.

    References
    ----------
    * John K. Dixon, "Pattern Recognition with Partly Missing Data",
      IEEE Transactions on Systems, Man, and Cybernetics, Volume: 9, Issue:
      10, pp. 617 - 621, Oct. 1979.
      http://ieeexplore.ieee.org/abstract/document/4310090/

    Examples
    --------
    >>> from sklearn.metrics.pairwise import nan_euclidean_distances
    >>> nan = float("NaN")
    >>> X = [[0, 1], [1, nan]]
    >>> nan_euclidean_distances(X, X) # distance between rows of X
    array([[0.        , 1.41421356],
           [1.41421356, 0.        ]])

    >>> # get distance to origin
    >>> nan_euclidean_distances(X, [[0, 0]])
    array([[1.        ],
           [1.41421356]])
    """

    ensure_all_finite = "allow-nan" if is_scalar_nan(missing_values) else True
    X, Y = check_pairwise_arrays(
        X, Y, accept_sparse=False, ensure_all_finite=ensure_all_finite, copy=copy
    )
    # Get missing mask for X
    missing_X = _get_mask(X, missing_values)

    # Get missing mask for Y
    missing_Y = missing_X if Y is X else _get_mask(Y, missing_values)

    # set missing values to zero
    X[missing_X] = 0
    Y[missing_Y] = 0

    distances = euclidean_distances(X, Y, squared=True)

    # Adjust distances for missing values
    XX = X * X
    YY = Y * Y
    distances -= np.dot(XX, missing_Y.T)
    distances -= np.dot(missing_X, YY.T)

    np.clip(distances, 0, None, out=distances)

    if X is Y:
        # Ensure that distances between vectors and themselves are set to 0.0.
        # This may not be the case due to floating point rounding errors.
        np.fill_diagonal(distances, 0.0)

    present_X = 1 - missing_X
    present_Y = present_X if Y is X else ~missing_Y
    present_count = np.dot(present_X, present_Y.T)
    distances[present_count == 0] = np.nan
    # avoid divide by zero
    np.maximum(1, present_count, out=present_count)
    distances /= present_count
    distances *= X.shape[1]

    if not squared:
        np.sqrt(distances, out=distances)

    return distances


def _euclidean_distances_upcast(X, XX=None, Y=None, YY=None, batch_size=None):
    """Euclidean distances between X and Y.

    Assumes X and Y have float32 dtype.
    Assumes XX and YY have float64 dtype or are None.

    X and Y are upcast to float64 by chunks, which size is chosen to limit
    memory increase by approximately 10% (at least 10MiB).
    """
    xp, _, device_ = get_namespace_and_device(X, Y)
    n_samples_X = X.shape[0]
    n_samples_Y = Y.shape[0]
    n_features = X.shape[1]

    distances = xp.empty((n_samples_X, n_samples_Y), dtype=xp.float32, device=device_)

    if batch_size is None:
        x_density = (
            X.nnz / xp.prod(X.shape) if issparse(X) else xp.asarray(1, device=device_)
        )
        y_density = (
            Y.nnz / xp.prod(Y.shape) if issparse(Y) else xp.asarray(1, device=device_)
        )

        # Allow 10% more memory than X, Y and the distance matrix take (at
        # least 10MiB)
        maxmem = max(
            (
                (x_density * n_samples_X + y_density * n_samples_Y) * n_features
                + (x_density * n_samples_X * y_density * n_samples_Y)
            )
            / 10,
            10 * 2**17,
        )

        # The increase amount of memory in 8-byte blocks is:
        # - x_density * batch_size * n_features (copy of chunk of X)
        # - y_density * batch_size * n_features (copy of chunk of Y)
        # - batch_size * batch_size (chunk of distance matrix)
        # Hence x² + (xd+yd)kx = M, where x=batch_size, k=n_features, M=maxmem
        #                                 xd=x_density and yd=y_density
        tmp = (x_density + y_density) * n_features
        batch_size = (-tmp + xp.sqrt(tmp**2 + 4 * maxmem)) / 2
        batch_size = max(int(batch_size), 1)

    x_batches = gen_batches(n_samples_X, batch_size)
    xp_max_float = _max_precision_float_dtype(xp=xp, device=device_)
    for i, x_slice in enumerate(x_batches):
        X_chunk = xp.astype(X[x_slice], xp_max_float)
        if XX is None:
            XX_chunk = row_norms(X_chunk, squared=True)[:, None]
        else:
            XX_chunk = XX[x_slice]

        y_batches = gen_batches(n_samples_Y, batch_size)

        for j, y_slice in enumerate(y_batches):
            if X is Y and j < i:
                # when X is Y the distance matrix is symmetric so we only need
                # to compute half of it.
                d = distances[y_slice, x_slice].T

            else:
                Y_chunk = xp.astype(Y[y_slice], xp_max_float)
                if YY is None:
                    YY_chunk = row_norms(Y_chunk, squared=True)[None, :]
                else:
                    YY_chunk = YY[:, y_slice]

                d = -2 * safe_sparse_dot(X_chunk, Y_chunk.T, dense_output=True)
                d += XX_chunk
                d += YY_chunk

            distances[x_slice, y_slice] = xp.astype(d, xp.float32, copy=False)

    return distances


def _argmin_min_reduce(dist, start):
    # `start` is specified in the signature but not used. This is because the higher
    # order `pairwise_distances_chunked` function needs reduction functions that are
    # passed as argument to have a two arguments signature.
    indices = dist.argmin(axis=1)
    values = dist[np.arange(dist.shape[0]), indices]
    return indices, values


def _argmin_reduce(dist, start):
    # `start` is specified in the signature but not used. This is because the higher
    # order `pairwise_distances_chunked` function needs reduction functions that are
    # passed as argument to have a two arguments signature.
    return dist.argmin(axis=1)


_VALID_METRICS = [
    "euclidean",
    "l2",
    "l1",
    "manhattan",
    "cityblock",
    "braycurtis",
    "canberra",
    "chebyshev",
    "correlation",
    "cosine",
    "dice",
    "hamming",
    "jaccard",
    "mahalanobis",
    "matching",
    "minkowski",
    "rogerstanimoto",
    "russellrao",
    "seuclidean",
    "sokalsneath",
    "sqeuclidean",
    "yule",
    "wminkowski",
    "nan_euclidean",
    "haversine",
]
if sp_base_version < parse_version("1.17"):  # pragma: no cover
    # Deprecated in SciPy 1.15 and removed in SciPy 1.17
    _VALID_METRICS += ["sokalmichener"]
if sp_base_version < parse_version("1.11"):  # pragma: no cover
    # Deprecated in SciPy 1.9 and removed in SciPy 1.11
    _VALID_METRICS += ["kulsinski"]
if sp_base_version < parse_version("1.9"):
    # Deprecated in SciPy 1.0 and removed in SciPy 1.9
    _VALID_METRICS += ["matching"]

_NAN_METRICS = ["nan_euclidean"]


@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "Y": ["array-like", "sparse matrix"],
        "axis": [Options(Integral, {0, 1})],
        "metric": [
            StrOptions(set(_VALID_METRICS).union(ArgKmin.valid_metrics())),
            callable,
        ],
        "metric_kwargs": [dict, None],
    },
    prefer_skip_nested_validation=False,  # metric is not validated yet
)
def pairwise_distances_argmin_min(
    X, Y, *, axis=1, metric="euclidean", metric_kwargs=None
):
    """Compute minimum distances between one point and a set of points.

    This function computes for each row in X, the index of the row of Y which
    is closest (according to the specified distance). The minimal distances are
    also returned.

    This is mostly equivalent to calling::

        (pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis),
         pairwise_distances(X, Y=Y, metric=metric).min(axis=axis))

    but uses much less memory, and is faster for large arrays.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples_X, n_features)
        Array containing points.

    Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features)
        Array containing points.

    axis : int, default=1
        Axis along which the argmin and distances are to be computed.

    metric : str or callable, default='euclidean'
        Metric to use for distance computation. Any metric from scikit-learn
        or scipy.spatial.distance can be used.

        If metric is a callable function, it is called on each
        pair of instances (rows) and the resulting value recorded. The callable
        should take two arrays as input and return one value indicating the
        distance between them. This works for Scipy's metrics, but is less
        efficient than passing the metric name as a string.

        Distance matrices are not supported.

        Valid values for metric are:

        - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
          'manhattan', 'nan_euclidean']

        - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
          'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski',
          'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao',
          'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean',
          'yule']

        See the documentation for scipy.spatial.distance for details on these
        metrics.

        .. note::
           `'kulsinski'` is deprecated from SciPy 1.9 and will be removed in SciPy 1.11.

        .. note::
           `'matching'` has been removed in SciPy 1.9 (use `'hamming'` instead).

    metric_kwargs : dict, default=None
        Keyword arguments to pass to specified metric function.

    Returns
    -------
    argmin : ndarray
        Y[argmin[i], :] is the row in Y that is closest to X[i, :].

    distances : ndarray
        The array of minimum distances. `distances[i]` is the distance between
        the i-th row in X and the argmin[i]-th row in Y.

    See Also
    --------
    pairwise_distances : Distances between every pair of samples of X and Y.
    pairwise_distances_argmin : Same as `pairwise_distances_argmin_min` but only
        returns the argmins.

    Examples
    --------
    >>> from sklearn.metrics.pairwise import pairwise_distances_argmin_min
    >>> X = [[0, 0, 0], [1, 1, 1]]
    >>> Y = [[1, 0, 0], [1, 1, 0]]
    >>> argmin, distances = pairwise_distances_argmin_min(X, Y)
    >>> argmin
    array([0, 1])
    >>> distances
    array([1., 1.])
    """
    ensure_all_finite = "allow-nan" if metric == "nan_euclidean" else True
    X, Y = check_pairwise_arrays(X, Y, ensure_all_finite=ensure_all_finite)

    if axis == 0:
        X, Y = Y, X

    if metric_kwargs is None:
        metric_kwargs = {}

    if ArgKmin.is_usable_for(X, Y, metric):
        # This is an adaptor for one "sqeuclidean" specification.
        # For this backend, we can directly use "sqeuclidean".
        if metric_kwargs.get("squared", False) and metric == "euclidean":
            metric = "sqeuclidean"
            metric_kwargs = {}

        values, indices = ArgKmin.compute(
            X=X,
            Y=Y,
            k=1,
            metric=metric,
            metric_kwargs=metric_kwargs,
            strategy="auto",
            return_distance=True,
        )
        values = values.flatten()
        indices = indices.flatten()
    else:
        # Joblib-based backend, which is used when user-defined callable
        # are passed for metric.

        # This won't be used in the future once PairwiseDistancesReductions support:
        #   - DistanceMetrics which work on supposedly binary data
        #   - CSR-dense and dense-CSR case if 'euclidean' in metric.

        # Turn off check for finiteness because this is costly and because arrays
        # have already been validated.
        with config_context(assume_finite=True):
            indices, values = zip(
                *pairwise_distances_chunked(
                    X, Y, reduce_func=_argmin_min_reduce, metric=metric, **metric_kwargs
                )
            )
        indices = np.concatenate(indices)
        values = np.concatenate(values)

    return indices, values


@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "Y": ["array-like", "sparse matrix"],
        "axis": [Options(Integral, {0, 1})],
        "metric": [
            StrOptions(set(_VALID_METRICS).union(ArgKmin.valid_metrics())),
            callable,
        ],
        "metric_kwargs": [dict, None],
    },
    prefer_skip_nested_validation=False,  # metric is not validated yet
)
def pairwise_distances_argmin(X, Y, *, axis=1, metric="euclidean", metric_kwargs=None):
    """Compute minimum distances between one point and a set of points.

    This function computes for each row in X, the index of the row of Y which
    is closest (according to the specified distance).

    This is mostly equivalent to calling::

        pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis)

    but uses much less memory, and is faster for large arrays.

    This function works with dense 2D arrays only.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples_X, n_features)
        Array containing points.

    Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features)
        Arrays containing points.

    axis : int, default=1
        Axis along which the argmin and distances are to be computed.

    metric : str or callable, default="euclidean"
        Metric to use for distance computation. Any metric from scikit-learn
        or scipy.spatial.distance can be used.

        If metric is a callable function, it is called on each
        pair of instances (rows) and the resulting value recorded. The callable
        should take two arrays as input and return one value indicating the
        distance between them. This works for Scipy's metrics, but is less
        efficient than passing the metric name as a string.

        Distance matrices are not supported.

        Valid values for metric are:

        - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
          'manhattan', 'nan_euclidean']

        - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
          'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski',
          'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao',
          'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean',
          'yule']

        See the documentation for scipy.spatial.distance for details on these
        metrics.

        .. note::
           `'kulsinski'` is deprecated from SciPy 1.9 and will be removed in SciPy 1.11.

        .. note::
           `'matching'` has been removed in SciPy 1.9 (use `'hamming'` instead).

    metric_kwargs : dict, default=None
        Keyword arguments to pass to specified metric function.

    Returns
    -------
    argmin : numpy.ndarray
        Y[argmin[i], :] is the row in Y that is closest to X[i, :].

    See Also
    --------
    pairwise_distances : Distances between every pair of samples of X and Y.
    pairwise_distances_argmin_min : Same as `pairwise_distances_argmin` but also
        returns the distances.

    Examples
    --------
    >>> from sklearn.metrics.pairwise import pairwise_distances_argmin
    >>> X = [[0, 0, 0], [1, 1, 1]]
    >>> Y = [[1, 0, 0], [1, 1, 0]]
    >>> pairwise_distances_argmin(X, Y)
    array([0, 1])
    """
    ensure_all_finite = "allow-nan" if metric == "nan_euclidean" else True
    X, Y = check_pairwise_arrays(X, Y, ensure_all_finite=ensure_all_finite)

    if axis == 0:
        X, Y = Y, X

    if metric_kwargs is None:
        metric_kwargs = {}

    if ArgKmin.is_usable_for(X, Y, metric):
        # This is an adaptor for one "sqeuclidean" specification.
        # For this backend, we can directly use "sqeuclidean".
        if metric_kwargs.get("squared", False) and metric == "euclidean":
            metric = "sqeuclidean"
            metric_kwargs = {}

        indices = ArgKmin.compute(
            X=X,
            Y=Y,
            k=1,
            metric=metric,
            metric_kwargs=metric_kwargs,
            strategy="auto",
            return_distance=False,
        )
        indices = indices.flatten()
    else:
        # Joblib-based backend, which is used when user-defined callable
        # are passed for metric.

        # This won't be used in the future once PairwiseDistancesReductions support:
        #   - DistanceMetrics which work on supposedly binary data
        #   - CSR-dense and dense-CSR case if 'euclidean' in metric.

        # Turn off check for finiteness because this is costly and because arrays
        # have already been validated.
        with config_context(assume_finite=True):
            indices = np.concatenate(
                list(
                    # This returns a np.ndarray generator whose arrays we need
                    # to flatten into one.
                    pairwise_distances_chunked(
                        X, Y, reduce_func=_argmin_reduce, metric=metric, **metric_kwargs
                    )
                )
            )

    return indices


@validate_params(
    {"X": ["array-like", "sparse matrix"], "Y": ["array-like", "sparse matrix", None]},
    prefer_skip_nested_validation=True,
)
def haversine_distances(X, Y=None):
    """Compute the Haversine distance between samples in X and Y.

    The Haversine (or great circle) distance is the angular distance between
    two points on the surface of a sphere. The first coordinate of each point
    is assumed to be the latitude, the second is the longitude, given
    in radians. The dimension of the data must be 2.

    .. math::
       D(x, y) = 2\\arcsin[\\sqrt{\\sin^2((x_{lat} - y_{lat}) / 2)
                                + \\cos(x_{lat})\\cos(y_{lat})\\
                                sin^2((x_{lon} - y_{lon}) / 2)}]

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples_X, 2)
        A feature array.

    Y : {array-like, sparse matrix} of shape (n_samples_Y, 2), default=None
        An optional second feature array. If `None`, uses `Y=X`.

    Returns
    -------
    distances : ndarray of shape (n_samples_X, n_samples_Y)
        The distance matrix.

    Notes
    -----
    As the Earth is nearly spherical, the haversine formula provides a good
    approximation of the distance between two points of the Earth surface, with
    a less than 1% error on average.

    Examples
    --------
    We want to calculate the distance between the Ezeiza Airport
    (Buenos Aires, Argentina) and the Charles de Gaulle Airport (Paris,
    France).

    >>> from sklearn.metrics.pairwise import haversine_distances
    >>> from math import radians
    >>> bsas = [-34.83333, -58.5166646]
    >>> paris = [49.0083899664, 2.53844117956]
    >>> bsas_in_radians = [radians(_) for _ in bsas]
    >>> paris_in_radians = [radians(_) for _ in paris]
    >>> result = haversine_distances([bsas_in_radians, paris_in_radians])
    >>> result * 6371000/1000  # multiply by Earth radius to get kilometers
    array([[    0.        , 11099.54035582],
           [11099.54035582,     0.        ]])
    """
    from ..metrics import DistanceMetric

    return DistanceMetric.get_metric("haversine").pairwise(X, Y)


@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "Y": ["array-like", "sparse matrix", None],
    },
    prefer_skip_nested_validation=True,
)
def manhattan_distances(X, Y=None):
    """Compute the L1 distances between the vectors in X and Y.

    Read more in the :ref:`User Guide <metrics>`.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples_X, n_features)
        An array where each row is a sample and each column is a feature.

    Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None
        An array where each row is a sample and each column is a feature.
        If `None`, method uses `Y=X`.

    Returns
    -------
    distances : ndarray of shape (n_samples_X, n_samples_Y)
        Pairwise L1 distances.

    Notes
    -----
    When X and/or Y are CSR sparse matrices and they are not already
    in canonical format, this function modifies them in-place to
    make them canonical.

    Examples
    --------
    >>> from sklearn.metrics.pairwise import manhattan_distances
    >>> manhattan_distances([[3]], [[3]])
    array([[0.]])
    >>> manhattan_distances([[3]], [[2]])
    array([[1.]])
    >>> manhattan_distances([[2]], [[3]])
    array([[1.]])
    >>> manhattan_distances([[1, 2], [3, 4]],\
         [[1, 2], [0, 3]])
    array([[0., 2.],
           [4., 4.]])
    """
    X, Y = check_pairwise_arrays(X, Y)

    if issparse(X) or issparse(Y):
        X = csr_matrix(X, copy=False)
        Y = csr_matrix(Y, copy=False)
        X.sum_duplicates()  # this also sorts indices in-place
        Y.sum_duplicates()
        D = np.zeros((X.shape[0], Y.shape[0]))
        _sparse_manhattan(X.data, X.indices, X.indptr, Y.data, Y.indices, Y.indptr, D)
        return D

    return distance.cdist(X, Y, "cityblock")


@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "Y": ["array-like", "sparse matrix", None],
    },
    prefer_skip_nested_validation=True,
)
def cosine_distances(X, Y=None):
    """Compute cosine distance between samples in X and Y.

    Cosine distance is defined as 1.0 minus the cosine similarity.

    Read more in the :ref:`User Guide <metrics>`.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples_X, n_features)
        Matrix `X`.

    Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), \
            default=None
        Matrix `Y`.

    Returns
    -------
    distances : ndarray of shape (n_samples_X, n_samples_Y)
        Returns the cosine distance between samples in X and Y.

    See Also
    --------
    cosine_similarity : Compute cosine similarity between samples in X and Y.
    scipy.spatial.distance.cosine : Dense matrices only.

    Examples
    --------
    >>> from sklearn.metrics.pairwise import cosine_distances
    >>> X = [[0, 0, 0], [1, 1, 1]]
    >>> Y = [[1, 0, 0], [1, 1, 0]]
    >>> cosine_distances(X, Y)
    array([[1.     , 1.     ],
           [0.42..., 0.18...]])
    """
    xp, _ = get_namespace(X, Y)

    # 1.0 - cosine_similarity(X, Y) without copy
    S = cosine_similarity(X, Y)
    S *= -1
    S += 1
    # TODO: remove the xp.asarray calls once the following is fixed:
    # https://github.com/data-apis/array-api-compat/issues/177
    device_ = device(S)
    S = xp.clip(
        S,
        xp.asarray(0.0, device=device_, dtype=S.dtype),
        xp.asarray(2.0, device=device_, dtype=S.dtype),
    )
    if X is Y or Y is None:
        # Ensure that distances between vectors and themselves are set to 0.0.
        # This may not be the case due to floating point rounding errors.
        _fill_or_add_to_diagonal(S, 0.0, xp, add_value=False)
    return S


# Paired distances
@validate_params(
    {"X": ["array-like", "sparse matrix"], "Y": ["array-like", "sparse matrix"]},
    prefer_skip_nested_validation=True,
)
def paired_euclidean_distances(X, Y):
    """Compute the paired euclidean distances between X and Y.

    Read more in the :ref:`User Guide <metrics>`.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Input array/matrix X.

    Y : {array-like, sparse matrix} of shape (n_samples, n_features)
        Input array/matrix Y.

    Returns
    -------
    distances : ndarray of shape (n_samples,)
        Output array/matrix containing the calculated paired euclidean
        distances.

    Examples
    --------
    >>> from sklearn.metrics.pairwise import paired_euclidean_distances
    >>> X = [[0, 0, 0], [1, 1, 1]]
    >>> Y = [[1, 0, 0], [1, 1, 0]]
    >>> paired_euclidean_distances(X, Y)
    array([1., 1.])
    """
    X, Y = check_paired_arrays(X, Y)
    return row_norms(X - Y)


@validate_params(
    {"X": ["array-like", "sparse matrix"], "Y": ["array-like", "sparse matrix"]},
    prefer_skip_nested_validation=True,
)
def paired_manhattan_distances(X, Y):
    """Compute the paired L1 distances between X and Y.

    Distances are calculated between (X[0], Y[0]), (X[1], Y[1]), ...,
    (X[n_samples], Y[n_samples]).

    Read more in the :ref:`User Guide <metrics>`.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        An array-like where each row is a sample and each column is a feature.

    Y : {array-like, sparse matrix} of shape (n_samples, n_features)
        An array-like where each row is a sample and each column is a feature.

    Returns
    -------
    distances : ndarray of shape (n_samples,)
        L1 paired distances between the row vectors of `X`
        and the row vectors of `Y`.

    Examples
    --------
    >>> from sklearn.metrics.pairwise import paired_manhattan_distances
    >>> import numpy as np
    >>> X = np.array([[1, 1, 0], [0, 1, 0], [0, 0, 1]])
    >>> Y = np.array([[0, 1, 0], [0, 0, 1], [0, 0, 0]])
    >>> paired_manhattan_distances(X, Y)
    array([1., 2., 1.])
    """
    X, Y = check_paired_arrays(X, Y)
    diff = X - Y
    if issparse(diff):
        diff.data = np.abs(diff.data)
        return np.squeeze(np.array(diff.sum(axis=1)))
    else:
        return np.abs(diff).sum(axis=-1)


@validate_params(
    {"X": ["array-like", "sparse matrix"], "Y": ["array-like", "sparse matrix"]},
    prefer_skip_nested_validation=True,
)
def paired_cosine_distances(X, Y):
    """
    Compute the paired cosine distances between X and Y.

    Read more in the :ref:`User Guide <metrics>`.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        An array where each row is a sample and each column is a feature.

    Y : {array-like, sparse matrix} of shape (n_samples, n_features)
        An array where each row is a sample and each column is a feature.

    Returns
    -------
    distances : ndarray of shape (n_samples,)
        Returns the distances between the row vectors of `X`
        and the row vectors of `Y`, where `distances[i]` is the
        distance between `X[i]` and `Y[i]`.

    Notes
    -----
    The cosine distance is equivalent to the half the squared
    euclidean distance if each sample is normalized to unit norm.

    Examples
    --------
    >>> from sklearn.metrics.pairwise import paired_cosine_distances
    >>> X = [[0, 0, 0], [1, 1, 1]]
    >>> Y = [[1, 0, 0], [1, 1, 0]]
    >>> paired_cosine_distances(X, Y)
    array([0.5       , 0.18...])
    """
    X, Y = check_paired_arrays(X, Y)
    return 0.5 * row_norms(normalize(X) - normalize(Y), squared=True)


PAIRED_DISTANCES = {
    "cosine": paired_cosine_distances,
    "euclidean": paired_euclidean_distances,
    "l2": paired_euclidean_distances,
    "l1": paired_manhattan_distances,
    "manhattan": paired_manhattan_distances,
    "cityblock": paired_manhattan_distances,
}


@validate_params(
    {
        "X": ["array-like"],
        "Y": ["array-like"],
        "metric": [StrOptions(set(PAIRED_DISTANCES)), callable],
    },
    prefer_skip_nested_validation=True,
)
def paired_distances(X, Y, *, metric="euclidean", **kwds):
    """
    Compute the paired distances between X and Y.

    Compute the distances between (X[0], Y[0]), (X[1], Y[1]), etc...

    Read more in the :ref:`User Guide <metrics>`.

    Parameters
    ----------
    X : ndarray of shape (n_samples, n_features)
        Array 1 for distance computation.

    Y : ndarray of shape (n_samples, n_features)
        Array 2 for distance computation.

    metric : str or callable, default="euclidean"
        The metric to use when calculating distance between instances in a
        feature array. If metric is a string, it must be one of the options
        specified in PAIRED_DISTANCES, including "euclidean",
        "manhattan", or "cosine".
        Alternatively, if metric is a callable function, it is called on each
        pair of instances (rows) and the resulting value recorded. The callable
        should take two arrays from `X` as input and return a value indicating
        the distance between them.

    **kwds : dict
        Unused parameters.

    Returns
    -------
    distances : ndarray of shape (n_samples,)
        Returns the distances between the row vectors of `X`
        and the row vectors of `Y`.

    See Also
    --------
    sklearn.metrics.pairwise_distances : Computes the distance between every pair of
        samples.

    Examples
    --------
    >>> from sklearn.metrics.pairwise import paired_distances
    >>> X = [[0, 1], [1, 1]]
    >>> Y = [[0, 1], [2, 1]]
    >>> paired_distances(X, Y)
    array([0., 1.])
    """

    if metric in PAIRED_DISTANCES:
        func = PAIRED_DISTANCES[metric]
        return func(X, Y)
    elif callable(metric):
        # Check the matrix first (it is usually done by the metric)
        X, Y = check_paired_arrays(X, Y)
        distances = np.zeros(len(X))
        for i in range(len(X)):
            distances[i] = metric(X[i], Y[i])
        return distances


# Kernels
@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "Y": ["array-like", "sparse matrix", None],
        "dense_output": ["boolean"],
    },
    prefer_skip_nested_validation=True,
)
def linear_kernel(X, Y=None, dense_output=True):
    """
    Compute the linear kernel between X and Y.

    Read more in the :ref:`User Guide <linear_kernel>`.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples_X, n_features)
        A feature array.

    Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None
        An optional second feature array. If `None`, uses `Y=X`.

    dense_output : bool, default=True
        Whether to return dense output even when the input is sparse. If
        ``False``, the output is sparse if both input arrays are sparse.

        .. versionadded:: 0.20

    Returns
    -------
    kernel : ndarray of shape (n_samples_X, n_samples_Y)
        The Gram matrix of the linear kernel, i.e. `X @ Y.T`.

    Examples
    --------
    >>> from sklearn.metrics.pairwise import linear_kernel
    >>> X = [[0, 0, 0], [1, 1, 1]]
    >>> Y = [[1, 0, 0], [1, 1, 0]]
    >>> linear_kernel(X, Y)
    array([[0., 0.],
           [1., 2.]])
    """
    X, Y = check_pairwise_arrays(X, Y)
    return safe_sparse_dot(X, Y.T, dense_output=dense_output)


@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "Y": ["array-like", "sparse matrix", None],
        "degree": [Interval(Real, 1, None, closed="left")],
        "gamma": [
            Interval(Real, 0, None, closed="left"),
            None,
            Hidden(np.ndarray),
        ],
        "coef0": [Interval(Real, None, None, closed="neither")],
    },
    prefer_skip_nested_validation=True,
)
def polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1):
    """
    Compute the polynomial kernel between X and Y.

    .. code-block:: text

        K(X, Y) = (gamma <X, Y> + coef0) ^ degree

    Read more in the :ref:`User Guide <polynomial_kernel>`.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples_X, n_features)
        A feature array.

    Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None
        An optional second feature array. If `None`, uses `Y=X`.

    degree : float, default=3
        Kernel degree.

    gamma : float, default=None
        Coefficient of the vector inner product. If None, defaults to 1.0 / n_features.

    coef0 : float, default=1
        Constant offset added to scaled inner product.

    Returns
    -------
    kernel : ndarray of shape (n_samples_X, n_samples_Y)
        The polynomial kernel.

    Examples
    --------
    >>> from sklearn.metrics.pairwise import polynomial_kernel
    >>> X = [[0, 0, 0], [1, 1, 1]]
    >>> Y = [[1, 0, 0], [1, 1, 0]]
    >>> polynomial_kernel(X, Y, degree=2)
    array([[1.     , 1.     ],
           [1.77..., 2.77...]])
    """
    X, Y = check_pairwise_arrays(X, Y)
    if gamma is None:
        gamma = 1.0 / X.shape[1]

    K = safe_sparse_dot(X, Y.T, dense_output=True)
    K *= gamma
    K += coef0
    K **= degree
    return K


@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "Y": ["array-like", "sparse matrix", None],
        "gamma": [
            Interval(Real, 0, None, closed="left"),
            None,
            Hidden(np.ndarray),
        ],
        "coef0": [Interval(Real, None, None, closed="neither")],
    },
    prefer_skip_nested_validation=True,
)
def sigmoid_kernel(X, Y=None, gamma=None, coef0=1):
    """Compute the sigmoid kernel between X and Y.

    .. code-block:: text

        K(X, Y) = tanh(gamma <X, Y> + coef0)

    Read more in the :ref:`User Guide <sigmoid_kernel>`.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples_X, n_features)
        A feature array.

    Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None
        An optional second feature array. If `None`, uses `Y=X`.

    gamma : float, default=None
        Coefficient of the vector inner product. If None, defaults to 1.0 / n_features.

    coef0 : float, default=1
        Constant offset added to scaled inner product.

    Returns
    -------
    kernel : ndarray of shape (n_samples_X, n_samples_Y)
        Sigmoid kernel between two arrays.

    Examples
    --------
    >>> from sklearn.metrics.pairwise import sigmoid_kernel
    >>> X = [[0, 0, 0], [1, 1, 1]]
    >>> Y = [[1, 0, 0], [1, 1, 0]]
    >>> sigmoid_kernel(X, Y)
    array([[0.76..., 0.76...],
           [0.87..., 0.93...]])
    """
    xp, _ = get_namespace(X, Y)
    X, Y = check_pairwise_arrays(X, Y)
    if gamma is None:
        gamma = 1.0 / X.shape[1]

    K = safe_sparse_dot(X, Y.T, dense_output=True)
    K *= gamma
    K += coef0
    # compute tanh in-place for numpy
    K = _modify_in_place_if_numpy(xp, xp.tanh, K, out=K)
    return K


@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "Y": ["array-like", "sparse matrix", None],
        "gamma": [
            Interval(Real, 0, None, closed="left"),
            None,
            Hidden(np.ndarray),
        ],
    },
    prefer_skip_nested_validation=True,
)
def rbf_kernel(X, Y=None, gamma=None):
    """Compute the rbf (gaussian) kernel between X and Y.

    .. code-block:: text

        K(x, y) = exp(-gamma ||x-y||^2)

    for each pair of rows x in X and y in Y.

    Read more in the :ref:`User Guide <rbf_kernel>`.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples_X, n_features)
        A feature array.

    Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None
        An optional second feature array. If `None`, uses `Y=X`.

    gamma : float, default=None
        If None, defaults to 1.0 / n_features.

    Returns
    -------
    kernel : ndarray of shape (n_samples_X, n_samples_Y)
        The RBF kernel.

    Examples
    --------
    >>> from sklearn.metrics.pairwise import rbf_kernel
    >>> X = [[0, 0, 0], [1, 1, 1]]
    >>> Y = [[1, 0, 0], [1, 1, 0]]
    >>> rbf_kernel(X, Y)
    array([[0.71..., 0.51...],
           [0.51..., 0.71...]])
    """
    xp, _ = get_namespace(X, Y)
    X, Y = check_pairwise_arrays(X, Y)
    if gamma is None:
        gamma = 1.0 / X.shape[1]

    K = euclidean_distances(X, Y, squared=True)
    K *= -gamma
    # exponentiate K in-place when using numpy
    K = _modify_in_place_if_numpy(xp, xp.exp, K, out=K)
    return K


@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "Y": ["array-like", "sparse matrix", None],
        "gamma": [
            Interval(Real, 0, None, closed="neither"),
            Hidden(np.ndarray),
            None,
        ],
    },
    prefer_skip_nested_validation=True,
)
def laplacian_kernel(X, Y=None, gamma=None):
    """Compute the laplacian kernel between X and Y.

    The laplacian kernel is defined as:

    .. code-block:: text

        K(x, y) = exp(-gamma ||x-y||_1)

    for each pair of rows x in X and y in Y.
    Read more in the :ref:`User Guide <laplacian_kernel>`.

    .. versionadded:: 0.17

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples_X, n_features)
        A feature array.

    Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None
        An optional second feature array. If `None`, uses `Y=X`.

    gamma : float, default=None
        If None, defaults to 1.0 / n_features. Otherwise it should be strictly positive.

    Returns
    -------
    kernel : ndarray of shape (n_samples_X, n_samples_Y)
        The kernel matrix.

    Examples
    --------
    >>> from sklearn.metrics.pairwise import laplacian_kernel
    >>> X = [[0, 0, 0], [1, 1, 1]]
    >>> Y = [[1, 0, 0], [1, 1, 0]]
    >>> laplacian_kernel(X, Y)
    array([[0.71..., 0.51...],
           [0.51..., 0.71...]])
    """
    X, Y = check_pairwise_arrays(X, Y)
    if gamma is None:
        gamma = 1.0 / X.shape[1]

    K = -gamma * manhattan_distances(X, Y)
    np.exp(K, K)  # exponentiate K in-place
    return K


@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "Y": ["array-like", "sparse matrix", None],
        "dense_output": ["boolean"],
    },
    prefer_skip_nested_validation=True,
)
def cosine_similarity(X, Y=None, dense_output=True):
    """Compute cosine similarity between samples in X and Y.

    Cosine similarity, or the cosine kernel, computes similarity as the
    normalized dot product of X and Y:

    .. code-block:: text

        K(X, Y) = <X, Y> / (||X||*||Y||)

    On L2-normalized data, this function is equivalent to linear_kernel.

    Read more in the :ref:`User Guide <cosine_similarity>`.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples_X, n_features)
        Input data.

    Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), \
            default=None
        Input data. If ``None``, the output will be the pairwise
        similarities between all samples in ``X``.

    dense_output : bool, default=True
        Whether to return dense output even when the input is sparse. If
        ``False``, the output is sparse if both input arrays are sparse.

        .. versionadded:: 0.17
           parameter ``dense_output`` for dense output.

    Returns
    -------
    similarities : ndarray or sparse matrix of shape (n_samples_X, n_samples_Y)
        Returns the cosine similarity between samples in X and Y.

    Examples
    --------
    >>> from sklearn.metrics.pairwise import cosine_similarity
    >>> X = [[0, 0, 0], [1, 1, 1]]
    >>> Y = [[1, 0, 0], [1, 1, 0]]
    >>> cosine_similarity(X, Y)
    array([[0.     , 0.     ],
           [0.57..., 0.81...]])
    """
    # to avoid recursive import

    X, Y = check_pairwise_arrays(X, Y)

    X_normalized = normalize(X, copy=True)
    if X is Y:
        Y_normalized = X_normalized
    else:
        Y_normalized = normalize(Y, copy=True)

    K = safe_sparse_dot(X_normalized, Y_normalized.T, dense_output=dense_output)

    return K


@validate_params(
    {"X": ["array-like"], "Y": ["array-like", None]},
    prefer_skip_nested_validation=True,
)
def additive_chi2_kernel(X, Y=None):
    """Compute the additive chi-squared kernel between observations in X and Y.

    The chi-squared kernel is computed between each pair of rows in X and Y.  X
    and Y have to be non-negative. This kernel is most commonly applied to
    histograms.

    The chi-squared kernel is given by:

    .. code-block:: text

        k(x, y) = -Sum [(x - y)^2 / (x + y)]

    It can be interpreted as a weighted difference per entry.

    Read more in the :ref:`User Guide <chi2_kernel>`.

    Parameters
    ----------
    X : array-like of shape (n_samples_X, n_features)
        A feature array.

    Y : array-like of shape (n_samples_Y, n_features), default=None
        An optional second feature array. If `None`, uses `Y=X`.

    Returns
    -------
    kernel : array-like of shape (n_samples_X, n_samples_Y)
        The kernel matrix.

    See Also
    --------
    chi2_kernel : The exponentiated version of the kernel, which is usually
        preferable.
    sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation
        to this kernel.

    Notes
    -----
    As the negative of a distance, this kernel is only conditionally positive
    definite.

    References
    ----------
    * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C.
      Local features and kernels for classification of texture and object
      categories: A comprehensive study
      International Journal of Computer Vision 2007
      https://hal.archives-ouvertes.fr/hal-00171412/document

    Examples
    --------
    >>> from sklearn.metrics.pairwise import additive_chi2_kernel
    >>> X = [[0, 0, 0], [1, 1, 1]]
    >>> Y = [[1, 0, 0], [1, 1, 0]]
    >>> additive_chi2_kernel(X, Y)
    array([[-1., -2.],
           [-2., -1.]])
    """
    xp, _ = get_namespace(X, Y)
    X, Y = check_pairwise_arrays(X, Y, accept_sparse=False)
    if xp.any(X < 0):
        raise ValueError("X contains negative values.")
    if Y is not X and xp.any(Y < 0):
        raise ValueError("Y contains negative values.")

    if _is_numpy_namespace(xp):
        result = np.zeros((X.shape[0], Y.shape[0]), dtype=X.dtype)
        _chi2_kernel_fast(X, Y, result)
        return result
    else:
        dtype = _find_matching_floating_dtype(X, Y, xp=xp)
        xb = X[:, None, :]
        yb = Y[None, :, :]
        nom = -((xb - yb) ** 2)
        denom = xb + yb
        nom = xp.where(denom == 0, xp.asarray(0, dtype=dtype), nom)
        denom = xp.where(denom == 0, xp.asarray(1, dtype=dtype), denom)
        return xp.sum(nom / denom, axis=2)


@validate_params(
    {
        "X": ["array-like"],
        "Y": ["array-like", None],
        "gamma": [Interval(Real, 0, None, closed="neither"), Hidden(np.ndarray)],
    },
    prefer_skip_nested_validation=True,
)
def chi2_kernel(X, Y=None, gamma=1.0):
    """Compute the exponential chi-squared kernel between X and Y.

    The chi-squared kernel is computed between each pair of rows in X and Y.  X
    and Y have to be non-negative. This kernel is most commonly applied to
    histograms.

    The chi-squared kernel is given by:

    .. code-block:: text

        k(x, y) = exp(-gamma Sum [(x - y)^2 / (x + y)])

    It can be interpreted as a weighted difference per entry.

    Read more in the :ref:`User Guide <chi2_kernel>`.

    Parameters
    ----------
    X : array-like of shape (n_samples_X, n_features)
        A feature array.

    Y : array-like of shape (n_samples_Y, n_features), default=None
        An optional second feature array. If `None`, uses `Y=X`.

    gamma : float, default=1
        Scaling parameter of the chi2 kernel.

    Returns
    -------
    kernel : ndarray of shape (n_samples_X, n_samples_Y)
        The kernel matrix.

    See Also
    --------
    additive_chi2_kernel : The additive version of this kernel.
    sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation
        to the additive version of this kernel.

    References
    ----------
    * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C.
      Local features and kernels for classification of texture and object
      categories: A comprehensive study
      International Journal of Computer Vision 2007
      https://hal.archives-ouvertes.fr/hal-00171412/document

    Examples
    --------
    >>> from sklearn.metrics.pairwise import chi2_kernel
    >>> X = [[0, 0, 0], [1, 1, 1]]
    >>> Y = [[1, 0, 0], [1, 1, 0]]
    >>> chi2_kernel(X, Y)
    array([[0.36..., 0.13...],
           [0.13..., 0.36...]])
    """
    xp, _ = get_namespace(X, Y)
    K = additive_chi2_kernel(X, Y)
    K *= gamma
    if _is_numpy_namespace(xp):
        return np.exp(K, out=K)
    return xp.exp(K)


# Helper functions - distance
PAIRWISE_DISTANCE_FUNCTIONS = {
    # If updating this dictionary, update the doc in both distance_metrics()
    # and also in pairwise_distances()!
    "cityblock": manhattan_distances,
    "cosine": cosine_distances,
    "euclidean": euclidean_distances,
    "haversine": haversine_distances,
    "l2": euclidean_distances,
    "l1": manhattan_distances,
    "manhattan": manhattan_distances,
    "precomputed": None,  # HACK: precomputed is always allowed, never called
    "nan_euclidean": nan_euclidean_distances,
}


def distance_metrics():
    """Valid metrics for pairwise_distances.

    This function simply returns the valid pairwise distance metrics.
    It exists to allow for a description of the mapping for
    each of the valid strings.

    The valid distance metrics, and the function they map to, are:

    =============== ========================================
    metric          Function
    =============== ========================================
    'cityblock'     metrics.pairwise.manhattan_distances
    'cosine'        metrics.pairwise.cosine_distances
    'euclidean'     metrics.pairwise.euclidean_distances
    'haversine'     metrics.pairwise.haversine_distances
    'l1'            metrics.pairwise.manhattan_distances
    'l2'            metrics.pairwise.euclidean_distances
    'manhattan'     metrics.pairwise.manhattan_distances
    'nan_euclidean' metrics.pairwise.nan_euclidean_distances
    =============== ========================================

    Read more in the :ref:`User Guide <metrics>`.

    Returns
    -------
    distance_metrics : dict
        Returns valid metrics for pairwise_distances.
    """
    return PAIRWISE_DISTANCE_FUNCTIONS


def _dist_wrapper(dist_func, dist_matrix, slice_, *args, **kwargs):
    """Write in-place to a slice of a distance matrix."""
    dist_matrix[:, slice_] = dist_func(*args, **kwargs)


def _parallel_pairwise(X, Y, func, n_jobs, **kwds):
    """Break the pairwise matrix in n_jobs even slices
    and compute them using multithreading."""

    if Y is None:
        Y = X
    X, Y, dtype = _return_float_dtype(X, Y)

    if effective_n_jobs(n_jobs) == 1:
        return func(X, Y, **kwds)

    # enforce a threading backend to prevent data communication overhead
    fd = delayed(_dist_wrapper)
    ret = np.empty((X.shape[0], Y.shape[0]), dtype=dtype, order="F")
    Parallel(backend="threading", n_jobs=n_jobs)(
        fd(func, ret, s, X, Y[s], **kwds)
        for s in gen_even_slices(_num_samples(Y), effective_n_jobs(n_jobs))
    )

    if (X is Y or Y is None) and func is euclidean_distances:
        # zeroing diagonal for euclidean norm.
        # TODO: do it also for other norms.
        np.fill_diagonal(ret, 0)

    return ret


def _pairwise_callable(X, Y, metric, ensure_all_finite=True, **kwds):
    """Handle the callable case for pairwise_{distances,kernels}."""
    X, Y = check_pairwise_arrays(
        X,
        Y,
        dtype=None,
        ensure_all_finite=ensure_all_finite,
        ensure_2d=False,
    )

    if X is Y:
        # Only calculate metric for upper triangle
        out = np.zeros((X.shape[0], Y.shape[0]), dtype="float")
        iterator = itertools.combinations(range(X.shape[0]), 2)
        for i, j in iterator:
            # scipy has not yet implemented 1D sparse slices; once implemented this can
            # be removed and `arr[ind]` can be simply used.
            x = X[[i], :] if issparse(X) else X[i]
            y = Y[[j], :] if issparse(Y) else Y[j]
            out[i, j] = metric(x, y, **kwds)

        # Make symmetric
        # NB: out += out.T will produce incorrect results
        out = out + out.T

        # Calculate diagonal
        # NB: nonzero diagonals are allowed for both metrics and kernels
        for i in range(X.shape[0]):
            # scipy has not yet implemented 1D sparse slices; once implemented this can
            # be removed and `arr[ind]` can be simply used.
            x = X[[i], :] if issparse(X) else X[i]
            out[i, i] = metric(x, x, **kwds)

    else:
        # Calculate all cells
        out = np.empty((X.shape[0], Y.shape[0]), dtype="float")
        iterator = itertools.product(range(X.shape[0]), range(Y.shape[0]))
        for i, j in iterator:
            # scipy has not yet implemented 1D sparse slices; once implemented this can
            # be removed and `arr[ind]` can be simply used.
            x = X[[i], :] if issparse(X) else X[i]
            y = Y[[j], :] if issparse(Y) else Y[j]
            out[i, j] = metric(x, y, **kwds)

    return out


def _check_chunk_size(reduced, chunk_size):
    """Checks chunk is a sequence of expected size or a tuple of same."""
    if reduced is None:
        return
    is_tuple = isinstance(reduced, tuple)
    if not is_tuple:
        reduced = (reduced,)
    if any(isinstance(r, tuple) or not hasattr(r, "__iter__") for r in reduced):
        raise TypeError(
            "reduce_func returned %r. Expected sequence(s) of length %d."
            % (reduced if is_tuple else reduced[0], chunk_size)
        )
    if any(_num_samples(r) != chunk_size for r in reduced):
        actual_size = tuple(_num_samples(r) for r in reduced)
        raise ValueError(
            "reduce_func returned object of length %s. "
            "Expected same length as input: %d."
            % (actual_size if is_tuple else actual_size[0], chunk_size)
        )


def _precompute_metric_params(X, Y, metric=None, **kwds):
    """Precompute data-derived metric parameters if not provided."""
    if metric == "seuclidean" and "V" not in kwds:
        if X is Y:
            V = np.var(X, axis=0, ddof=1)
        else:
            raise ValueError(
                "The 'V' parameter is required for the seuclidean metric "
                "when Y is passed."
            )
        return {"V": V}
    if metric == "mahalanobis" and "VI" not in kwds:
        if X is Y:
            VI = np.linalg.inv(np.cov(X.T)).T
        else:
            raise ValueError(
                "The 'VI' parameter is required for the mahalanobis metric "
                "when Y is passed."
            )
        return {"VI": VI}
    return {}


@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "Y": ["array-like", "sparse matrix", None],
        "reduce_func": [callable, None],
        "metric": [StrOptions({"precomputed"}.union(_VALID_METRICS)), callable],
        "n_jobs": [Integral, None],
        "working_memory": [Interval(Real, 0, None, closed="left"), None],
    },
    prefer_skip_nested_validation=False,  # metric is not validated yet
)
def pairwise_distances_chunked(
    X,
    Y=None,
    *,
    reduce_func=None,
    metric="euclidean",
    n_jobs=None,
    working_memory=None,
    **kwds,
):
    """Generate a distance matrix chunk by chunk with optional reduction.

    In cases where not all of a pairwise distance matrix needs to be
    stored at once, this is used to calculate pairwise distances in
    ``working_memory``-sized chunks.  If ``reduce_func`` is given, it is
    run on each chunk and its return values are concatenated into lists,
    arrays or sparse matrices.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples_X, n_samples_X) or \
            (n_samples_X, n_features)
        Array of pairwise distances between samples, or a feature array.
        The shape the array should be (n_samples_X, n_samples_X) if
        metric='precomputed' and (n_samples_X, n_features) otherwise.

    Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None
        An optional second feature array. Only allowed if
        metric != "precomputed".

    reduce_func : callable, default=None
        The function which is applied on each chunk of the distance matrix,
        reducing it to needed values.  ``reduce_func(D_chunk, start)``
        is called repeatedly, where ``D_chunk`` is a contiguous vertical
        slice of the pairwise distance matrix, starting at row ``start``.
        It should return one of: None; an array, a list, or a sparse matrix
        of length ``D_chunk.shape[0]``; or a tuple of such objects.
        Returning None is useful for in-place operations, rather than
        reductions.

        If None, pairwise_distances_chunked returns a generator of vertical
        chunks of the distance matrix.

    metric : str or callable, default='euclidean'
        The metric to use when calculating distance between instances in a
        feature array. If metric is a string, it must be one of the options
        allowed by scipy.spatial.distance.pdist for its metric parameter,
        or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS.
        If metric is "precomputed", X is assumed to be a distance matrix.
        Alternatively, if metric is a callable function, it is called on
        each pair of instances (rows) and the resulting value recorded.
        The callable should take two arrays from X as input and return a
        value indicating the distance between them.

    n_jobs : int, default=None
        The number of jobs to use for the computation. This works by
        breaking down the pairwise matrix into n_jobs even slices and
        computing them in parallel.

        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    working_memory : float, default=None
        The sought maximum memory for temporary distance matrix chunks.
        When None (default), the value of
        ``sklearn.get_config()['working_memory']`` is used.

    **kwds : optional keyword parameters
        Any further parameters are passed directly to the distance function.
        If using a scipy.spatial.distance metric, the parameters are still
        metric dependent. See the scipy docs for usage examples.

    Yields
    ------
    D_chunk : {ndarray, sparse matrix}
        A contiguous slice of distance matrix, optionally processed by
        ``reduce_func``.

    Examples
    --------
    Without reduce_func:

    >>> import numpy as np
    >>> from sklearn.metrics import pairwise_distances_chunked
    >>> X = np.random.RandomState(0).rand(5, 3)
    >>> D_chunk = next(pairwise_distances_chunked(X))
    >>> D_chunk
    array([[0.  ..., 0.29..., 0.41..., 0.19..., 0.57...],
           [0.29..., 0.  ..., 0.57..., 0.41..., 0.76...],
           [0.41..., 0.57..., 0.  ..., 0.44..., 0.90...],
           [0.19..., 0.41..., 0.44..., 0.  ..., 0.51...],
           [0.57..., 0.76..., 0.90..., 0.51..., 0.  ...]])

    Retrieve all neighbors and average distance within radius r:

    >>> r = .2
    >>> def reduce_func(D_chunk, start):
    ...     neigh = [np.flatnonzero(d < r) for d in D_chunk]
    ...     avg_dist = (D_chunk * (D_chunk < r)).mean(axis=1)
    ...     return neigh, avg_dist
    >>> gen = pairwise_distances_chunked(X, reduce_func=reduce_func)
    >>> neigh, avg_dist = next(gen)
    >>> neigh
    [array([0, 3]), array([1]), array([2]), array([0, 3]), array([4])]
    >>> avg_dist
    array([0.039..., 0.        , 0.        , 0.039..., 0.        ])

    Where r is defined per sample, we need to make use of ``start``:

    >>> r = [.2, .4, .4, .3, .1]
    >>> def reduce_func(D_chunk, start):
    ...     neigh = [np.flatnonzero(d < r[i])
    ...              for i, d in enumerate(D_chunk, start)]
    ...     return neigh
    >>> neigh = next(pairwise_distances_chunked(X, reduce_func=reduce_func))
    >>> neigh
    [array([0, 3]), array([0, 1]), array([2]), array([0, 3]), array([4])]

    Force row-by-row generation by reducing ``working_memory``:

    >>> gen = pairwise_distances_chunked(X, reduce_func=reduce_func,
    ...                                  working_memory=0)
    >>> next(gen)
    [array([0, 3])]
    >>> next(gen)
    [array([0, 1])]
    """
    n_samples_X = _num_samples(X)
    if metric == "precomputed":
        slices = (slice(0, n_samples_X),)
    else:
        if Y is None:
            Y = X
        # We get as many rows as possible within our working_memory budget to
        # store len(Y) distances in each row of output.
        #
        # Note:
        #  - this will get at least 1 row, even if 1 row of distances will
        #    exceed working_memory.
        #  - this does not account for any temporary memory usage while
        #    calculating distances (e.g. difference of vectors in manhattan
        #    distance.
        chunk_n_rows = get_chunk_n_rows(
            row_bytes=8 * _num_samples(Y),
            max_n_rows=n_samples_X,
            working_memory=working_memory,
        )
        slices = gen_batches(n_samples_X, chunk_n_rows)

    # precompute data-derived metric params
    params = _precompute_metric_params(X, Y, metric=metric, **kwds)
    kwds.update(**params)

    for sl in slices:
        if sl.start == 0 and sl.stop == n_samples_X:
            X_chunk = X  # enable optimised paths for X is Y
        else:
            X_chunk = X[sl]
        D_chunk = pairwise_distances(X_chunk, Y, metric=metric, n_jobs=n_jobs, **kwds)
        if (X is Y or Y is None) and PAIRWISE_DISTANCE_FUNCTIONS.get(
            metric, None
        ) is euclidean_distances:
            # zeroing diagonal, taking care of aliases of "euclidean",
            # i.e. "l2"
            D_chunk.flat[sl.start :: _num_samples(X) + 1] = 0
        if reduce_func is not None:
            chunk_size = D_chunk.shape[0]
            D_chunk = reduce_func(D_chunk, sl.start)
            _check_chunk_size(D_chunk, chunk_size)
        yield D_chunk


@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "Y": ["array-like", "sparse matrix", None],
        "metric": [StrOptions(set(_VALID_METRICS) | {"precomputed"}), callable],
        "n_jobs": [Integral, None],
        "force_all_finite": [
            "boolean",
            StrOptions({"allow-nan"}),
            Hidden(StrOptions({"deprecated"})),
        ],
        "ensure_all_finite": ["boolean", StrOptions({"allow-nan"}), Hidden(None)],
    },
    prefer_skip_nested_validation=True,
)
def pairwise_distances(
    X,
    Y=None,
    metric="euclidean",
    *,
    n_jobs=None,
    force_all_finite="deprecated",
    ensure_all_finite=None,
    **kwds,
):
    """Compute the distance matrix from a vector array X and optional Y.

    This method takes either a vector array or a distance matrix, and returns
    a distance matrix.
    If the input is a vector array, the distances are computed.
    If the input is a distances matrix, it is returned instead.
    If the input is a collection of non-numeric data (e.g. a list of strings or a
    boolean array), a custom metric must be passed.

    This method provides a safe way to take a distance matrix as input, while
    preserving compatibility with many other algorithms that take a vector
    array.

    If Y is given (default is None), then the returned matrix is the pairwise
    distance between the arrays from both X and Y.

    Valid values for metric are:

    - From scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
      'manhattan']. These metrics support sparse matrix
      inputs.
      ['nan_euclidean'] but it does not yet support sparse matrices.

    - From scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
      'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis',
      'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean',
      'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule']
      See the documentation for scipy.spatial.distance for details on these
      metrics. These metrics do not support sparse matrix inputs.

    .. note::
        `'kulsinski'` is deprecated from SciPy 1.9 and will be removed in SciPy 1.11.

    .. note::
        `'matching'` has been removed in SciPy 1.9 (use `'hamming'` instead).

    Note that in the case of 'cityblock', 'cosine' and 'euclidean' (which are
    valid scipy.spatial.distance metrics), the scikit-learn implementation
    will be used, which is faster and has support for sparse matrices (except
    for 'cityblock'). For a verbose description of the metrics from
    scikit-learn, see :func:`sklearn.metrics.pairwise.distance_metrics`
    function.

    Read more in the :ref:`User Guide <metrics>`.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples_X, n_samples_X) or \
            (n_samples_X, n_features)
        Array of pairwise distances between samples, or a feature array.
        The shape of the array should be (n_samples_X, n_samples_X) if
        metric == "precomputed" and (n_samples_X, n_features) otherwise.

    Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None
        An optional second feature array. Only allowed if
        metric != "precomputed".

    metric : str or callable, default='euclidean'
        The metric to use when calculating distance between instances in a
        feature array. If metric is a string, it must be one of the options
        allowed by scipy.spatial.distance.pdist for its metric parameter, or
        a metric listed in ``pairwise.PAIRWISE_DISTANCE_FUNCTIONS``.
        If metric is "precomputed", X is assumed to be a distance matrix.
        Alternatively, if metric is a callable function, it is called on each
        pair of instances (rows) and the resulting value recorded. The callable
        should take two arrays from X as input and return a value indicating
        the distance between them.

    n_jobs : int, default=None
        The number of jobs to use for the computation. This works by breaking
        down the pairwise matrix into n_jobs even slices and computing them
        using multithreading.

        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

        The "euclidean" and "cosine" metrics rely heavily on BLAS which is already
        multithreaded. So, increasing `n_jobs` would likely cause oversubscription
        and quickly degrade performance.

    force_all_finite : bool or 'allow-nan', default=True
        Whether to raise an error on np.inf, np.nan, pd.NA in array. Ignored
        for a metric listed in ``pairwise.PAIRWISE_DISTANCE_FUNCTIONS``. The
        possibilities are:

        - True: Force all values of array to be finite.
        - False: accepts np.inf, np.nan, pd.NA in array.
        - 'allow-nan': accepts only np.nan and pd.NA values in array. Values
          cannot be infinite.

        .. versionadded:: 0.22
           ``force_all_finite`` accepts the string ``'allow-nan'``.

        .. versionchanged:: 0.23
           Accepts `pd.NA` and converts it into `np.nan`.

        .. deprecated:: 1.6
           `force_all_finite` was renamed to `ensure_all_finite` and will be removed
           in 1.8.

    ensure_all_finite : bool or 'allow-nan', default=True
        Whether to raise an error on np.inf, np.nan, pd.NA in array. Ignored
        for a metric listed in ``pairwise.PAIRWISE_DISTANCE_FUNCTIONS``. The
        possibilities are:

        - True: Force all values of array to be finite.
        - False: accepts np.inf, np.nan, pd.NA in array.
        - 'allow-nan': accepts only np.nan and pd.NA values in array. Values
          cannot be infinite.

        .. versionadded:: 1.6
           `force_all_finite` was renamed to `ensure_all_finite`.

    **kwds : optional keyword parameters
        Any further parameters are passed directly to the distance function.
        If using a scipy.spatial.distance metric, the parameters are still
        metric dependent. See the scipy docs for usage examples.

    Returns
    -------
    D : ndarray of shape (n_samples_X, n_samples_X) or \
            (n_samples_X, n_samples_Y)
        A distance matrix D such that D_{i, j} is the distance between the
        ith and jth vectors of the given matrix X, if Y is None.
        If Y is not None, then D_{i, j} is the distance between the ith array
        from X and the jth array from Y.

    See Also
    --------
    pairwise_distances_chunked : Performs the same calculation as this
        function, but returns a generator of chunks of the distance matrix, in
        order to limit memory usage.
    sklearn.metrics.pairwise.paired_distances : Computes the distances between
        corresponding elements of two arrays.

    Examples
    --------
    >>> from sklearn.metrics.pairwise import pairwise_distances
    >>> X = [[0, 0, 0], [1, 1, 1]]
    >>> Y = [[1, 0, 0], [1, 1, 0]]
    >>> pairwise_distances(X, Y, metric='sqeuclidean')
    array([[1., 2.],
           [2., 1.]])
    """
    ensure_all_finite = _deprecate_force_all_finite(force_all_finite, ensure_all_finite)

    if metric == "precomputed":
        X, _ = check_pairwise_arrays(
            X, Y, precomputed=True, ensure_all_finite=ensure_all_finite
        )

        whom = (
            "`pairwise_distances`. Precomputed distance "
            " need to have non-negative values."
        )
        check_non_negative(X, whom=whom)
        return X
    elif metric in PAIRWISE_DISTANCE_FUNCTIONS:
        func = PAIRWISE_DISTANCE_FUNCTIONS[metric]
    elif callable(metric):
        func = partial(
            _pairwise_callable,
            metric=metric,
            ensure_all_finite=ensure_all_finite,
            **kwds,
        )
    else:
        if issparse(X) or issparse(Y):
            raise TypeError("scipy distance metrics do not support sparse matrices.")

        dtype = bool if metric in PAIRWISE_BOOLEAN_FUNCTIONS else "infer_float"

        if dtype is bool and (X.dtype != bool or (Y is not None and Y.dtype != bool)):
            msg = "Data was converted to boolean for metric %s" % metric
            warnings.warn(msg, DataConversionWarning)

        X, Y = check_pairwise_arrays(
            X, Y, dtype=dtype, ensure_all_finite=ensure_all_finite
        )

        # precompute data-derived metric params
        params = _precompute_metric_params(X, Y, metric=metric, **kwds)
        kwds.update(**params)

        if effective_n_jobs(n_jobs) == 1 and X is Y:
            return distance.squareform(distance.pdist(X, metric=metric, **kwds))
        func = partial(distance.cdist, metric=metric, **kwds)

    return _parallel_pairwise(X, Y, func, n_jobs, **kwds)


# These distances require boolean arrays, when using scipy.spatial.distance
PAIRWISE_BOOLEAN_FUNCTIONS = [
    "dice",
    "jaccard",
    "rogerstanimoto",
    "russellrao",
    "sokalsneath",
    "yule",
]
if sp_base_version < parse_version("1.17"):
    # Deprecated in SciPy 1.15 and removed in SciPy 1.17
    PAIRWISE_BOOLEAN_FUNCTIONS += ["sokalmichener"]
if sp_base_version < parse_version("1.11"):
    # Deprecated in SciPy 1.9 and removed in SciPy 1.11
    PAIRWISE_BOOLEAN_FUNCTIONS += ["kulsinski"]
if sp_base_version < parse_version("1.9"):
    # Deprecated in SciPy 1.0 and removed in SciPy 1.9
    PAIRWISE_BOOLEAN_FUNCTIONS += ["matching"]

# Helper functions - distance
PAIRWISE_KERNEL_FUNCTIONS = {
    # If updating this dictionary, update the doc in both distance_metrics()
    # and also in pairwise_distances()!
    "additive_chi2": additive_chi2_kernel,
    "chi2": chi2_kernel,
    "linear": linear_kernel,
    "polynomial": polynomial_kernel,
    "poly": polynomial_kernel,
    "rbf": rbf_kernel,
    "laplacian": laplacian_kernel,
    "sigmoid": sigmoid_kernel,
    "cosine": cosine_similarity,
}


def kernel_metrics():
    """Valid metrics for pairwise_kernels.

    This function simply returns the valid pairwise distance metrics.
    It exists, however, to allow for a verbose description of the mapping for
    each of the valid strings.

    The valid distance metrics, and the function they map to, are:
      ===============   ========================================
      metric            Function
      ===============   ========================================
      'additive_chi2'   sklearn.pairwise.additive_chi2_kernel
      'chi2'            sklearn.pairwise.chi2_kernel
      'linear'          sklearn.pairwise.linear_kernel
      'poly'            sklearn.pairwise.polynomial_kernel
      'polynomial'      sklearn.pairwise.polynomial_kernel
      'rbf'             sklearn.pairwise.rbf_kernel
      'laplacian'       sklearn.pairwise.laplacian_kernel
      'sigmoid'         sklearn.pairwise.sigmoid_kernel
      'cosine'          sklearn.pairwise.cosine_similarity
      ===============   ========================================

    Read more in the :ref:`User Guide <metrics>`.

    Returns
    -------
    kernel_metrics : dict
        Returns valid metrics for pairwise_kernels.
    """
    return PAIRWISE_KERNEL_FUNCTIONS


KERNEL_PARAMS = {
    "additive_chi2": (),
    "chi2": frozenset(["gamma"]),
    "cosine": (),
    "linear": (),
    "poly": frozenset(["gamma", "degree", "coef0"]),
    "polynomial": frozenset(["gamma", "degree", "coef0"]),
    "rbf": frozenset(["gamma"]),
    "laplacian": frozenset(["gamma"]),
    "sigmoid": frozenset(["gamma", "coef0"]),
}


@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "Y": ["array-like", "sparse matrix", None],
        "metric": [
            StrOptions(set(PAIRWISE_KERNEL_FUNCTIONS) | {"precomputed"}),
            callable,
        ],
        "filter_params": ["boolean"],
        "n_jobs": [Integral, None],
    },
    prefer_skip_nested_validation=True,
)
def pairwise_kernels(
    X, Y=None, metric="linear", *, filter_params=False, n_jobs=None, **kwds
):
    """Compute the kernel between arrays X and optional array Y.

    This method takes either a vector array or a kernel matrix, and returns
    a kernel matrix. If the input is a vector array, the kernels are
    computed. If the input is a kernel matrix, it is returned instead.

    This method provides a safe way to take a kernel matrix as input, while
    preserving compatibility with many other algorithms that take a vector
    array.

    If Y is given (default is None), then the returned matrix is the pairwise
    kernel between the arrays from both X and Y.

    Valid values for metric are:
        ['additive_chi2', 'chi2', 'linear', 'poly', 'polynomial', 'rbf',
        'laplacian', 'sigmoid', 'cosine']

    Read more in the :ref:`User Guide <metrics>`.

    Parameters
    ----------
    X : {array-like, sparse matrix}  of shape (n_samples_X, n_samples_X) or \
            (n_samples_X, n_features)
        Array of pairwise kernels between samples, or a feature array.
        The shape of the array should be (n_samples_X, n_samples_X) if
        metric == "precomputed" and (n_samples_X, n_features) otherwise.

    Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None
        A second feature array only if X has shape (n_samples_X, n_features).

    metric : str or callable, default="linear"
        The metric to use when calculating kernel between instances in a
        feature array. If metric is a string, it must be one of the metrics
        in ``pairwise.PAIRWISE_KERNEL_FUNCTIONS``.
        If metric is "precomputed", X is assumed to be a kernel matrix.
        Alternatively, if metric is a callable function, it is called on each
        pair of instances (rows) and the resulting value recorded. The callable
        should take two rows from X as input and return the corresponding
        kernel value as a single number. This means that callables from
        :mod:`sklearn.metrics.pairwise` are not allowed, as they operate on
        matrices, not single samples. Use the string identifying the kernel
        instead.

    filter_params : bool, default=False
        Whether to filter invalid parameters or not.

    n_jobs : int, default=None
        The number of jobs to use for the computation. This works by breaking
        down the pairwise matrix into n_jobs even slices and computing them
        using multithreading.

        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    **kwds : optional keyword parameters
        Any further parameters are passed directly to the kernel function.

    Returns
    -------
    K : ndarray of shape (n_samples_X, n_samples_X) or (n_samples_X, n_samples_Y)
        A kernel matrix K such that K_{i, j} is the kernel between the
        ith and jth vectors of the given matrix X, if Y is None.
        If Y is not None, then K_{i, j} is the kernel between the ith array
        from X and the jth array from Y.

    Notes
    -----
    If metric is 'precomputed', Y is ignored and X is returned.

    Examples
    --------
    >>> from sklearn.metrics.pairwise import pairwise_kernels
    >>> X = [[0, 0, 0], [1, 1, 1]]
    >>> Y = [[1, 0, 0], [1, 1, 0]]
    >>> pairwise_kernels(X, Y, metric='linear')
    array([[0., 0.],
           [1., 2.]])
    """
    # import GPKernel locally to prevent circular imports
    from ..gaussian_process.kernels import Kernel as GPKernel

    if metric == "precomputed":
        X, _ = check_pairwise_arrays(X, Y, precomputed=True)
        return X
    elif isinstance(metric, GPKernel):
        func = metric.__call__
    elif metric in PAIRWISE_KERNEL_FUNCTIONS:
        if filter_params:
            kwds = {k: kwds[k] for k in kwds if k in KERNEL_PARAMS[metric]}
        func = PAIRWISE_KERNEL_FUNCTIONS[metric]
    elif callable(metric):
        func = partial(_pairwise_callable, metric=metric, **kwds)

    return _parallel_pairwise(X, Y, func, n_jobs, **kwds)