File size: 52,226 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 |
"""Base and mixin classes for nearest neighbors."""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import itertools
import numbers
import warnings
from abc import ABCMeta, abstractmethod
from functools import partial
from numbers import Integral, Real
import numpy as np
from joblib import effective_n_jobs
from scipy.sparse import csr_matrix, issparse
from ..base import BaseEstimator, MultiOutputMixin, is_classifier
from ..exceptions import DataConversionWarning, EfficiencyWarning
from ..metrics import DistanceMetric, pairwise_distances_chunked
from ..metrics._pairwise_distances_reduction import (
ArgKmin,
RadiusNeighbors,
)
from ..metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS
from ..utils import (
check_array,
gen_even_slices,
get_tags,
)
from ..utils._param_validation import Interval, StrOptions, validate_params
from ..utils.fixes import parse_version, sp_base_version
from ..utils.multiclass import check_classification_targets
from ..utils.parallel import Parallel, delayed
from ..utils.validation import _to_object_array, check_is_fitted, validate_data
from ._ball_tree import BallTree
from ._kd_tree import KDTree
SCIPY_METRICS = [
"braycurtis",
"canberra",
"chebyshev",
"correlation",
"cosine",
"dice",
"hamming",
"jaccard",
"mahalanobis",
"minkowski",
"rogerstanimoto",
"russellrao",
"seuclidean",
"sokalsneath",
"sqeuclidean",
"yule",
]
if sp_base_version < parse_version("1.17"):
# Deprecated in SciPy 1.15 and removed in SciPy 1.17
SCIPY_METRICS += ["sokalmichener"]
if sp_base_version < parse_version("1.11"):
# Deprecated in SciPy 1.9 and removed in SciPy 1.11
SCIPY_METRICS += ["kulsinski"]
if sp_base_version < parse_version("1.9"):
# Deprecated in SciPy 1.0 and removed in SciPy 1.9
SCIPY_METRICS += ["matching"]
VALID_METRICS = dict(
ball_tree=BallTree.valid_metrics,
kd_tree=KDTree.valid_metrics,
# The following list comes from the
# sklearn.metrics.pairwise doc string
brute=sorted(set(PAIRWISE_DISTANCE_FUNCTIONS).union(SCIPY_METRICS)),
)
VALID_METRICS_SPARSE = dict(
ball_tree=[],
kd_tree=[],
brute=(PAIRWISE_DISTANCE_FUNCTIONS.keys() - {"haversine", "nan_euclidean"}),
)
def _get_weights(dist, weights):
"""Get the weights from an array of distances and a parameter ``weights``.
Assume weights have already been validated.
Parameters
----------
dist : ndarray
The input distances.
weights : {'uniform', 'distance'}, callable or None
The kind of weighting used.
Returns
-------
weights_arr : array of the same shape as ``dist``
If ``weights == 'uniform'``, then returns None.
"""
if weights in (None, "uniform"):
return None
if weights == "distance":
# if user attempts to classify a point that was zero distance from one
# or more training points, those training points are weighted as 1.0
# and the other points as 0.0
if dist.dtype is np.dtype(object):
for point_dist_i, point_dist in enumerate(dist):
# check if point_dist is iterable
# (ex: RadiusNeighborClassifier.predict may set an element of
# dist to 1e-6 to represent an 'outlier')
if hasattr(point_dist, "__contains__") and 0.0 in point_dist:
dist[point_dist_i] = point_dist == 0.0
else:
dist[point_dist_i] = 1.0 / point_dist
else:
with np.errstate(divide="ignore"):
dist = 1.0 / dist
inf_mask = np.isinf(dist)
inf_row = np.any(inf_mask, axis=1)
dist[inf_row] = inf_mask[inf_row]
return dist
if callable(weights):
return weights(dist)
def _is_sorted_by_data(graph):
"""Return whether the graph's non-zero entries are sorted by data.
The non-zero entries are stored in graph.data and graph.indices.
For each row (or sample), the non-zero entries can be either:
- sorted by indices, as after graph.sort_indices();
- sorted by data, as after _check_precomputed(graph);
- not sorted.
Parameters
----------
graph : sparse matrix of shape (n_samples, n_samples)
Neighbors graph as given by `kneighbors_graph` or
`radius_neighbors_graph`. Matrix should be of format CSR format.
Returns
-------
res : bool
Whether input graph is sorted by data.
"""
assert graph.format == "csr"
out_of_order = graph.data[:-1] > graph.data[1:]
line_change = np.unique(graph.indptr[1:-1] - 1)
line_change = line_change[line_change < out_of_order.shape[0]]
return out_of_order.sum() == out_of_order[line_change].sum()
def _check_precomputed(X):
"""Check precomputed distance matrix.
If the precomputed distance matrix is sparse, it checks that the non-zero
entries are sorted by distances. If not, the matrix is copied and sorted.
Parameters
----------
X : {sparse matrix, array-like}, (n_samples, n_samples)
Distance matrix to other samples. X may be a sparse matrix, in which
case only non-zero elements may be considered neighbors.
Returns
-------
X : {sparse matrix, array-like}, (n_samples, n_samples)
Distance matrix to other samples. X may be a sparse matrix, in which
case only non-zero elements may be considered neighbors.
"""
if not issparse(X):
X = check_array(X, ensure_non_negative=True, input_name="X")
return X
else:
graph = X
if graph.format not in ("csr", "csc", "coo", "lil"):
raise TypeError(
"Sparse matrix in {!r} format is not supported due to "
"its handling of explicit zeros".format(graph.format)
)
copied = graph.format != "csr"
graph = check_array(
graph,
accept_sparse="csr",
ensure_non_negative=True,
input_name="precomputed distance matrix",
)
graph = sort_graph_by_row_values(graph, copy=not copied, warn_when_not_sorted=True)
return graph
@validate_params(
{
"graph": ["sparse matrix"],
"copy": ["boolean"],
"warn_when_not_sorted": ["boolean"],
},
prefer_skip_nested_validation=True,
)
def sort_graph_by_row_values(graph, copy=False, warn_when_not_sorted=True):
"""Sort a sparse graph such that each row is stored with increasing values.
.. versionadded:: 1.2
Parameters
----------
graph : sparse matrix of shape (n_samples, n_samples)
Distance matrix to other samples, where only non-zero elements are
considered neighbors. Matrix is converted to CSR format if not already.
copy : bool, default=False
If True, the graph is copied before sorting. If False, the sorting is
performed inplace. If the graph is not of CSR format, `copy` must be
True to allow the conversion to CSR format, otherwise an error is
raised.
warn_when_not_sorted : bool, default=True
If True, a :class:`~sklearn.exceptions.EfficiencyWarning` is raised
when the input graph is not sorted by row values.
Returns
-------
graph : sparse matrix of shape (n_samples, n_samples)
Distance matrix to other samples, where only non-zero elements are
considered neighbors. Matrix is in CSR format.
Examples
--------
>>> from scipy.sparse import csr_matrix
>>> from sklearn.neighbors import sort_graph_by_row_values
>>> X = csr_matrix(
... [[0., 3., 1.],
... [3., 0., 2.],
... [1., 2., 0.]])
>>> X.data
array([3., 1., 3., 2., 1., 2.])
>>> X_ = sort_graph_by_row_values(X)
>>> X_.data
array([1., 3., 2., 3., 1., 2.])
"""
if graph.format == "csr" and _is_sorted_by_data(graph):
return graph
if warn_when_not_sorted:
warnings.warn(
(
"Precomputed sparse input was not sorted by row values. Use the"
" function sklearn.neighbors.sort_graph_by_row_values to sort the input"
" by row values, with warn_when_not_sorted=False to remove this"
" warning."
),
EfficiencyWarning,
)
if graph.format not in ("csr", "csc", "coo", "lil"):
raise TypeError(
f"Sparse matrix in {graph.format!r} format is not supported due to "
"its handling of explicit zeros"
)
elif graph.format != "csr":
if not copy:
raise ValueError(
"The input graph is not in CSR format. Use copy=True to allow "
"the conversion to CSR format."
)
graph = graph.asformat("csr")
elif copy: # csr format with copy=True
graph = graph.copy()
row_nnz = np.diff(graph.indptr)
if row_nnz.max() == row_nnz.min():
# if each sample has the same number of provided neighbors
n_samples = graph.shape[0]
distances = graph.data.reshape(n_samples, -1)
order = np.argsort(distances, kind="mergesort")
order += np.arange(n_samples)[:, None] * row_nnz[0]
order = order.ravel()
graph.data = graph.data[order]
graph.indices = graph.indices[order]
else:
for start, stop in zip(graph.indptr, graph.indptr[1:]):
order = np.argsort(graph.data[start:stop], kind="mergesort")
graph.data[start:stop] = graph.data[start:stop][order]
graph.indices[start:stop] = graph.indices[start:stop][order]
return graph
def _kneighbors_from_graph(graph, n_neighbors, return_distance):
"""Decompose a nearest neighbors sparse graph into distances and indices.
Parameters
----------
graph : sparse matrix of shape (n_samples, n_samples)
Neighbors graph as given by `kneighbors_graph` or
`radius_neighbors_graph`. Matrix should be of format CSR format.
n_neighbors : int
Number of neighbors required for each sample.
return_distance : bool
Whether or not to return the distances.
Returns
-------
neigh_dist : ndarray of shape (n_samples, n_neighbors)
Distances to nearest neighbors. Only present if `return_distance=True`.
neigh_ind : ndarray of shape (n_samples, n_neighbors)
Indices of nearest neighbors.
"""
n_samples = graph.shape[0]
assert graph.format == "csr"
# number of neighbors by samples
row_nnz = np.diff(graph.indptr)
row_nnz_min = row_nnz.min()
if n_neighbors is not None and row_nnz_min < n_neighbors:
raise ValueError(
"%d neighbors per samples are required, but some samples have only"
" %d neighbors in precomputed graph matrix. Decrease number of "
"neighbors used or recompute the graph with more neighbors."
% (n_neighbors, row_nnz_min)
)
def extract(a):
# if each sample has the same number of provided neighbors
if row_nnz.max() == row_nnz_min:
return a.reshape(n_samples, -1)[:, :n_neighbors]
else:
idx = np.tile(np.arange(n_neighbors), (n_samples, 1))
idx += graph.indptr[:-1, None]
return a.take(idx, mode="clip").reshape(n_samples, n_neighbors)
if return_distance:
return extract(graph.data), extract(graph.indices)
else:
return extract(graph.indices)
def _radius_neighbors_from_graph(graph, radius, return_distance):
"""Decompose a nearest neighbors sparse graph into distances and indices.
Parameters
----------
graph : sparse matrix of shape (n_samples, n_samples)
Neighbors graph as given by `kneighbors_graph` or
`radius_neighbors_graph`. Matrix should be of format CSR format.
radius : float
Radius of neighborhoods which should be strictly positive.
return_distance : bool
Whether or not to return the distances.
Returns
-------
neigh_dist : ndarray of shape (n_samples,) of arrays
Distances to nearest neighbors. Only present if `return_distance=True`.
neigh_ind : ndarray of shape (n_samples,) of arrays
Indices of nearest neighbors.
"""
assert graph.format == "csr"
no_filter_needed = bool(graph.data.max() <= radius)
if no_filter_needed:
data, indices, indptr = graph.data, graph.indices, graph.indptr
else:
mask = graph.data <= radius
if return_distance:
data = np.compress(mask, graph.data)
indices = np.compress(mask, graph.indices)
indptr = np.concatenate(([0], np.cumsum(mask)))[graph.indptr]
indices = indices.astype(np.intp, copy=no_filter_needed)
if return_distance:
neigh_dist = _to_object_array(np.split(data, indptr[1:-1]))
neigh_ind = _to_object_array(np.split(indices, indptr[1:-1]))
if return_distance:
return neigh_dist, neigh_ind
else:
return neigh_ind
class NeighborsBase(MultiOutputMixin, BaseEstimator, metaclass=ABCMeta):
"""Base class for nearest neighbors estimators."""
_parameter_constraints: dict = {
"n_neighbors": [Interval(Integral, 1, None, closed="left"), None],
"radius": [Interval(Real, 0, None, closed="both"), None],
"algorithm": [StrOptions({"auto", "ball_tree", "kd_tree", "brute"})],
"leaf_size": [Interval(Integral, 1, None, closed="left")],
"p": [Interval(Real, 0, None, closed="right"), None],
"metric": [StrOptions(set(itertools.chain(*VALID_METRICS.values()))), callable],
"metric_params": [dict, None],
"n_jobs": [Integral, None],
}
@abstractmethod
def __init__(
self,
n_neighbors=None,
radius=None,
algorithm="auto",
leaf_size=30,
metric="minkowski",
p=2,
metric_params=None,
n_jobs=None,
):
self.n_neighbors = n_neighbors
self.radius = radius
self.algorithm = algorithm
self.leaf_size = leaf_size
self.metric = metric
self.metric_params = metric_params
self.p = p
self.n_jobs = n_jobs
def _check_algorithm_metric(self):
if self.algorithm == "auto":
if self.metric == "precomputed":
alg_check = "brute"
elif (
callable(self.metric)
or self.metric in VALID_METRICS["ball_tree"]
or isinstance(self.metric, DistanceMetric)
):
alg_check = "ball_tree"
else:
alg_check = "brute"
else:
alg_check = self.algorithm
if callable(self.metric):
if self.algorithm == "kd_tree":
# callable metric is only valid for brute force and ball_tree
raise ValueError(
"kd_tree does not support callable metric '%s'"
"Function call overhead will result"
"in very poor performance." % self.metric
)
elif self.metric not in VALID_METRICS[alg_check] and not isinstance(
self.metric, DistanceMetric
):
raise ValueError(
"Metric '%s' not valid. Use "
"sorted(sklearn.neighbors.VALID_METRICS['%s']) "
"to get valid options. "
"Metric can also be a callable function." % (self.metric, alg_check)
)
if self.metric_params is not None and "p" in self.metric_params:
if self.p is not None:
warnings.warn(
(
"Parameter p is found in metric_params. "
"The corresponding parameter from __init__ "
"is ignored."
),
SyntaxWarning,
stacklevel=3,
)
def _fit(self, X, y=None):
ensure_all_finite = "allow-nan" if get_tags(self).input_tags.allow_nan else True
if self.__sklearn_tags__().target_tags.required:
if not isinstance(X, (KDTree, BallTree, NeighborsBase)):
X, y = validate_data(
self,
X,
y,
accept_sparse="csr",
multi_output=True,
order="C",
ensure_all_finite=ensure_all_finite,
)
if is_classifier(self):
# Classification targets require a specific format
if y.ndim == 1 or y.ndim == 2 and y.shape[1] == 1:
if y.ndim != 1:
warnings.warn(
(
"A column-vector y was passed when a "
"1d array was expected. Please change "
"the shape of y to (n_samples,), for "
"example using ravel()."
),
DataConversionWarning,
stacklevel=2,
)
self.outputs_2d_ = False
y = y.reshape((-1, 1))
else:
self.outputs_2d_ = True
check_classification_targets(y)
self.classes_ = []
# Using `dtype=np.intp` is necessary since `np.bincount`
# (called in _classification.py) fails when dealing
# with a float64 array on 32bit systems.
self._y = np.empty(y.shape, dtype=np.intp)
for k in range(self._y.shape[1]):
classes, self._y[:, k] = np.unique(y[:, k], return_inverse=True)
self.classes_.append(classes)
if not self.outputs_2d_:
self.classes_ = self.classes_[0]
self._y = self._y.ravel()
else:
self._y = y
else:
if not isinstance(X, (KDTree, BallTree, NeighborsBase)):
X = validate_data(
self,
X,
ensure_all_finite=ensure_all_finite,
accept_sparse="csr",
order="C",
)
self._check_algorithm_metric()
if self.metric_params is None:
self.effective_metric_params_ = {}
else:
self.effective_metric_params_ = self.metric_params.copy()
effective_p = self.effective_metric_params_.get("p", self.p)
if self.metric == "minkowski":
self.effective_metric_params_["p"] = effective_p
self.effective_metric_ = self.metric
# For minkowski distance, use more efficient methods where available
if self.metric == "minkowski":
p = self.effective_metric_params_.pop("p", 2)
w = self.effective_metric_params_.pop("w", None)
if p == 1 and w is None:
self.effective_metric_ = "manhattan"
elif p == 2 and w is None:
self.effective_metric_ = "euclidean"
elif p == np.inf and w is None:
self.effective_metric_ = "chebyshev"
else:
# Use the generic minkowski metric, possibly weighted.
self.effective_metric_params_["p"] = p
self.effective_metric_params_["w"] = w
if isinstance(X, NeighborsBase):
self._fit_X = X._fit_X
self._tree = X._tree
self._fit_method = X._fit_method
self.n_samples_fit_ = X.n_samples_fit_
return self
elif isinstance(X, BallTree):
self._fit_X = X.data
self._tree = X
self._fit_method = "ball_tree"
self.n_samples_fit_ = X.data.shape[0]
return self
elif isinstance(X, KDTree):
self._fit_X = X.data
self._tree = X
self._fit_method = "kd_tree"
self.n_samples_fit_ = X.data.shape[0]
return self
if self.metric == "precomputed":
X = _check_precomputed(X)
# Precomputed matrix X must be squared
if X.shape[0] != X.shape[1]:
raise ValueError(
"Precomputed matrix must be square."
" Input is a {}x{} matrix.".format(X.shape[0], X.shape[1])
)
self.n_features_in_ = X.shape[1]
n_samples = X.shape[0]
if n_samples == 0:
raise ValueError("n_samples must be greater than 0")
if issparse(X):
if self.algorithm not in ("auto", "brute"):
warnings.warn("cannot use tree with sparse input: using brute force")
if (
self.effective_metric_ not in VALID_METRICS_SPARSE["brute"]
and not callable(self.effective_metric_)
and not isinstance(self.effective_metric_, DistanceMetric)
):
raise ValueError(
"Metric '%s' not valid for sparse input. "
"Use sorted(sklearn.neighbors."
"VALID_METRICS_SPARSE['brute']) "
"to get valid options. "
"Metric can also be a callable function." % (self.effective_metric_)
)
self._fit_X = X.copy()
self._tree = None
self._fit_method = "brute"
self.n_samples_fit_ = X.shape[0]
return self
self._fit_method = self.algorithm
self._fit_X = X
self.n_samples_fit_ = X.shape[0]
if self._fit_method == "auto":
# A tree approach is better for small number of neighbors or small
# number of features, with KDTree generally faster when available
if (
self.metric == "precomputed"
or self._fit_X.shape[1] > 15
or (
self.n_neighbors is not None
and self.n_neighbors >= self._fit_X.shape[0] // 2
)
):
self._fit_method = "brute"
else:
if (
self.effective_metric_ == "minkowski"
and self.effective_metric_params_["p"] < 1
):
self._fit_method = "brute"
elif (
self.effective_metric_ == "minkowski"
and self.effective_metric_params_.get("w") is not None
):
# 'minkowski' with weights is not supported by KDTree but is
# supported byBallTree.
self._fit_method = "ball_tree"
elif self.effective_metric_ in VALID_METRICS["kd_tree"]:
self._fit_method = "kd_tree"
elif (
callable(self.effective_metric_)
or self.effective_metric_ in VALID_METRICS["ball_tree"]
):
self._fit_method = "ball_tree"
else:
self._fit_method = "brute"
if (
self.effective_metric_ == "minkowski"
and self.effective_metric_params_["p"] < 1
):
# For 0 < p < 1 Minkowski distances aren't valid distance
# metric as they do not satisfy triangular inequality:
# they are semi-metrics.
# algorithm="kd_tree" and algorithm="ball_tree" can't be used because
# KDTree and BallTree require a proper distance metric to work properly.
# However, the brute-force algorithm supports semi-metrics.
if self._fit_method == "brute":
warnings.warn(
"Mind that for 0 < p < 1, Minkowski metrics are not distance"
" metrics. Continuing the execution with `algorithm='brute'`."
)
else: # self._fit_method in ("kd_tree", "ball_tree")
raise ValueError(
f'algorithm="{self._fit_method}" does not support 0 < p < 1 for '
"the Minkowski metric. To resolve this problem either "
'set p >= 1 or algorithm="brute".'
)
if self._fit_method == "ball_tree":
self._tree = BallTree(
X,
self.leaf_size,
metric=self.effective_metric_,
**self.effective_metric_params_,
)
elif self._fit_method == "kd_tree":
if (
self.effective_metric_ == "minkowski"
and self.effective_metric_params_.get("w") is not None
):
raise ValueError(
"algorithm='kd_tree' is not valid for "
"metric='minkowski' with a weight parameter 'w': "
"try algorithm='ball_tree' "
"or algorithm='brute' instead."
)
self._tree = KDTree(
X,
self.leaf_size,
metric=self.effective_metric_,
**self.effective_metric_params_,
)
elif self._fit_method == "brute":
self._tree = None
return self
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.input_tags.sparse = True
# For cross-validation routines to split data correctly
tags.input_tags.pairwise = self.metric == "precomputed"
# when input is precomputed metric values, all those values need to be positive
tags.input_tags.positive_only = tags.input_tags.pairwise
tags.input_tags.allow_nan = self.metric == "nan_euclidean"
return tags
class KNeighborsMixin:
"""Mixin for k-neighbors searches."""
def _kneighbors_reduce_func(self, dist, start, n_neighbors, return_distance):
"""Reduce a chunk of distances to the nearest neighbors.
Callback to :func:`sklearn.metrics.pairwise.pairwise_distances_chunked`
Parameters
----------
dist : ndarray of shape (n_samples_chunk, n_samples)
The distance matrix.
start : int
The index in X which the first row of dist corresponds to.
n_neighbors : int
Number of neighbors required for each sample.
return_distance : bool
Whether or not to return the distances.
Returns
-------
dist : array of shape (n_samples_chunk, n_neighbors)
Returned only if `return_distance=True`.
neigh : array of shape (n_samples_chunk, n_neighbors)
The neighbors indices.
"""
sample_range = np.arange(dist.shape[0])[:, None]
neigh_ind = np.argpartition(dist, n_neighbors - 1, axis=1)
neigh_ind = neigh_ind[:, :n_neighbors]
# argpartition doesn't guarantee sorted order, so we sort again
neigh_ind = neigh_ind[sample_range, np.argsort(dist[sample_range, neigh_ind])]
if return_distance:
if self.effective_metric_ == "euclidean":
result = np.sqrt(dist[sample_range, neigh_ind]), neigh_ind
else:
result = dist[sample_range, neigh_ind], neigh_ind
else:
result = neigh_ind
return result
def kneighbors(self, X=None, n_neighbors=None, return_distance=True):
"""Find the K-neighbors of a point.
Returns indices of and distances to the neighbors of each point.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_queries, n_features), \
or (n_queries, n_indexed) if metric == 'precomputed', default=None
The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.
n_neighbors : int, default=None
Number of neighbors required for each sample. The default is the
value passed to the constructor.
return_distance : bool, default=True
Whether or not to return the distances.
Returns
-------
neigh_dist : ndarray of shape (n_queries, n_neighbors)
Array representing the lengths to points, only present if
return_distance=True.
neigh_ind : ndarray of shape (n_queries, n_neighbors)
Indices of the nearest points in the population matrix.
Examples
--------
In the following example, we construct a NearestNeighbors
class from an array representing our data set and ask who's
the closest point to [1,1,1]
>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples)
NearestNeighbors(n_neighbors=1)
>>> print(neigh.kneighbors([[1., 1., 1.]]))
(array([[0.5]]), array([[2]]))
As you can see, it returns [[0.5]], and [[2]], which means that the
element is at distance 0.5 and is the third element of samples
(indexes start at 0). You can also query for multiple points:
>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False)
array([[1],
[2]]...)
"""
check_is_fitted(self)
if n_neighbors is None:
n_neighbors = self.n_neighbors
elif n_neighbors <= 0:
raise ValueError("Expected n_neighbors > 0. Got %d" % n_neighbors)
elif not isinstance(n_neighbors, numbers.Integral):
raise TypeError(
"n_neighbors does not take %s value, enter integer value"
% type(n_neighbors)
)
ensure_all_finite = "allow-nan" if get_tags(self).input_tags.allow_nan else True
query_is_train = X is None
if query_is_train:
X = self._fit_X
# Include an extra neighbor to account for the sample itself being
# returned, which is removed later
n_neighbors += 1
else:
if self.metric == "precomputed":
X = _check_precomputed(X)
else:
X = validate_data(
self,
X,
ensure_all_finite=ensure_all_finite,
accept_sparse="csr",
reset=False,
order="C",
)
n_samples_fit = self.n_samples_fit_
if n_neighbors > n_samples_fit:
if query_is_train:
n_neighbors -= 1 # ok to modify inplace because an error is raised
inequality_str = "n_neighbors < n_samples_fit"
else:
inequality_str = "n_neighbors <= n_samples_fit"
raise ValueError(
f"Expected {inequality_str}, but "
f"n_neighbors = {n_neighbors}, n_samples_fit = {n_samples_fit}, "
f"n_samples = {X.shape[0]}" # include n_samples for common tests
)
n_jobs = effective_n_jobs(self.n_jobs)
chunked_results = None
use_pairwise_distances_reductions = (
self._fit_method == "brute"
and ArgKmin.is_usable_for(
X if X is not None else self._fit_X, self._fit_X, self.effective_metric_
)
)
if use_pairwise_distances_reductions:
results = ArgKmin.compute(
X=X,
Y=self._fit_X,
k=n_neighbors,
metric=self.effective_metric_,
metric_kwargs=self.effective_metric_params_,
strategy="auto",
return_distance=return_distance,
)
elif (
self._fit_method == "brute" and self.metric == "precomputed" and issparse(X)
):
results = _kneighbors_from_graph(
X, n_neighbors=n_neighbors, return_distance=return_distance
)
elif self._fit_method == "brute":
# Joblib-based backend, which is used when user-defined callable
# are passed for metric.
# This won't be used in the future once PairwiseDistancesReductions
# support:
# - DistanceMetrics which work on supposedly binary data
# - CSR-dense and dense-CSR case if 'euclidean' in metric.
reduce_func = partial(
self._kneighbors_reduce_func,
n_neighbors=n_neighbors,
return_distance=return_distance,
)
# for efficiency, use squared euclidean distances
if self.effective_metric_ == "euclidean":
kwds = {"squared": True}
else:
kwds = self.effective_metric_params_
chunked_results = list(
pairwise_distances_chunked(
X,
self._fit_X,
reduce_func=reduce_func,
metric=self.effective_metric_,
n_jobs=n_jobs,
**kwds,
)
)
elif self._fit_method in ["ball_tree", "kd_tree"]:
if issparse(X):
raise ValueError(
"%s does not work with sparse matrices. Densify the data, "
"or set algorithm='brute'" % self._fit_method
)
chunked_results = Parallel(n_jobs, prefer="threads")(
delayed(self._tree.query)(X[s], n_neighbors, return_distance)
for s in gen_even_slices(X.shape[0], n_jobs)
)
else:
raise ValueError("internal: _fit_method not recognized")
if chunked_results is not None:
if return_distance:
neigh_dist, neigh_ind = zip(*chunked_results)
results = np.vstack(neigh_dist), np.vstack(neigh_ind)
else:
results = np.vstack(chunked_results)
if not query_is_train:
return results
else:
# If the query data is the same as the indexed data, we would like
# to ignore the first nearest neighbor of every sample, i.e
# the sample itself.
if return_distance:
neigh_dist, neigh_ind = results
else:
neigh_ind = results
n_queries, _ = X.shape
sample_range = np.arange(n_queries)[:, None]
sample_mask = neigh_ind != sample_range
# Corner case: When the number of duplicates are more
# than the number of neighbors, the first NN will not
# be the sample, but a duplicate.
# In that case mask the first duplicate.
dup_gr_nbrs = np.all(sample_mask, axis=1)
sample_mask[:, 0][dup_gr_nbrs] = False
neigh_ind = np.reshape(neigh_ind[sample_mask], (n_queries, n_neighbors - 1))
if return_distance:
neigh_dist = np.reshape(
neigh_dist[sample_mask], (n_queries, n_neighbors - 1)
)
return neigh_dist, neigh_ind
return neigh_ind
def kneighbors_graph(self, X=None, n_neighbors=None, mode="connectivity"):
"""Compute the (weighted) graph of k-Neighbors for points in X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_queries, n_features), \
or (n_queries, n_indexed) if metric == 'precomputed', default=None
The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.
For ``metric='precomputed'`` the shape should be
(n_queries, n_indexed). Otherwise the shape should be
(n_queries, n_features).
n_neighbors : int, default=None
Number of neighbors for each sample. The default is the value
passed to the constructor.
mode : {'connectivity', 'distance'}, default='connectivity'
Type of returned matrix: 'connectivity' will return the
connectivity matrix with ones and zeros, in 'distance' the
edges are distances between points, type of distance
depends on the selected metric parameter in
NearestNeighbors class.
Returns
-------
A : sparse-matrix of shape (n_queries, n_samples_fit)
`n_samples_fit` is the number of samples in the fitted data.
`A[i, j]` gives the weight of the edge connecting `i` to `j`.
The matrix is of CSR format.
See Also
--------
NearestNeighbors.radius_neighbors_graph : Compute the (weighted) graph
of Neighbors for points in X.
Examples
--------
>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(n_neighbors=2)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],
[0., 1., 1.],
[1., 0., 1.]])
"""
check_is_fitted(self)
if n_neighbors is None:
n_neighbors = self.n_neighbors
# check the input only in self.kneighbors
# construct CSR matrix representation of the k-NN graph
if mode == "connectivity":
A_ind = self.kneighbors(X, n_neighbors, return_distance=False)
n_queries = A_ind.shape[0]
A_data = np.ones(n_queries * n_neighbors)
elif mode == "distance":
A_data, A_ind = self.kneighbors(X, n_neighbors, return_distance=True)
A_data = np.ravel(A_data)
else:
raise ValueError(
'Unsupported mode, must be one of "connectivity", '
f'or "distance" but got "{mode}" instead'
)
n_queries = A_ind.shape[0]
n_samples_fit = self.n_samples_fit_
n_nonzero = n_queries * n_neighbors
A_indptr = np.arange(0, n_nonzero + 1, n_neighbors)
kneighbors_graph = csr_matrix(
(A_data, A_ind.ravel(), A_indptr), shape=(n_queries, n_samples_fit)
)
return kneighbors_graph
class RadiusNeighborsMixin:
"""Mixin for radius-based neighbors searches."""
def _radius_neighbors_reduce_func(self, dist, start, radius, return_distance):
"""Reduce a chunk of distances to the nearest neighbors.
Callback to :func:`sklearn.metrics.pairwise.pairwise_distances_chunked`
Parameters
----------
dist : ndarray of shape (n_samples_chunk, n_samples)
The distance matrix.
start : int
The index in X which the first row of dist corresponds to.
radius : float
The radius considered when making the nearest neighbors search.
return_distance : bool
Whether or not to return the distances.
Returns
-------
dist : list of ndarray of shape (n_samples_chunk,)
Returned only if `return_distance=True`.
neigh : list of ndarray of shape (n_samples_chunk,)
The neighbors indices.
"""
neigh_ind = [np.where(d <= radius)[0] for d in dist]
if return_distance:
if self.effective_metric_ == "euclidean":
dist = [np.sqrt(d[neigh_ind[i]]) for i, d in enumerate(dist)]
else:
dist = [d[neigh_ind[i]] for i, d in enumerate(dist)]
results = dist, neigh_ind
else:
results = neigh_ind
return results
def radius_neighbors(
self, X=None, radius=None, return_distance=True, sort_results=False
):
"""Find the neighbors within a given radius of a point or points.
Return the indices and distances of each point from the dataset
lying in a ball with size ``radius`` around the points of the query
array. Points lying on the boundary are included in the results.
The result points are *not* necessarily sorted by distance to their
query point.
Parameters
----------
X : {array-like, sparse matrix} of (n_samples, n_features), default=None
The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.
radius : float, default=None
Limiting distance of neighbors to return. The default is the value
passed to the constructor.
return_distance : bool, default=True
Whether or not to return the distances.
sort_results : bool, default=False
If True, the distances and indices will be sorted by increasing
distances before being returned. If False, the results may not
be sorted. If `return_distance=False`, setting `sort_results=True`
will result in an error.
.. versionadded:: 0.22
Returns
-------
neigh_dist : ndarray of shape (n_samples,) of arrays
Array representing the distances to each point, only present if
`return_distance=True`. The distance values are computed according
to the ``metric`` constructor parameter.
neigh_ind : ndarray of shape (n_samples,) of arrays
An array of arrays of indices of the approximate nearest points
from the population matrix that lie within a ball of size
``radius`` around the query points.
Notes
-----
Because the number of neighbors of each point is not necessarily
equal, the results for multiple query points cannot be fit in a
standard data array.
For efficiency, `radius_neighbors` returns arrays of objects, where
each object is a 1D array of indices or distances.
Examples
--------
In the following example, we construct a NeighborsClassifier
class from an array representing our data set and ask who's
the closest point to [1, 1, 1]:
>>> import numpy as np
>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.6)
>>> neigh.fit(samples)
NearestNeighbors(radius=1.6)
>>> rng = neigh.radius_neighbors([[1., 1., 1.]])
>>> print(np.asarray(rng[0][0]))
[1.5 0.5]
>>> print(np.asarray(rng[1][0]))
[1 2]
The first array returned contains the distances to all points which
are closer than 1.6, while the second array returned contains their
indices. In general, multiple points can be queried at the same time.
"""
check_is_fitted(self)
if sort_results and not return_distance:
raise ValueError("return_distance must be True if sort_results is True.")
ensure_all_finite = "allow-nan" if get_tags(self).input_tags.allow_nan else True
query_is_train = X is None
if query_is_train:
X = self._fit_X
else:
if self.metric == "precomputed":
X = _check_precomputed(X)
else:
X = validate_data(
self,
X,
ensure_all_finite=ensure_all_finite,
accept_sparse="csr",
reset=False,
order="C",
)
if radius is None:
radius = self.radius
use_pairwise_distances_reductions = (
self._fit_method == "brute"
and RadiusNeighbors.is_usable_for(
X if X is not None else self._fit_X, self._fit_X, self.effective_metric_
)
)
if use_pairwise_distances_reductions:
results = RadiusNeighbors.compute(
X=X,
Y=self._fit_X,
radius=radius,
metric=self.effective_metric_,
metric_kwargs=self.effective_metric_params_,
strategy="auto",
return_distance=return_distance,
sort_results=sort_results,
)
elif (
self._fit_method == "brute" and self.metric == "precomputed" and issparse(X)
):
results = _radius_neighbors_from_graph(
X, radius=radius, return_distance=return_distance
)
elif self._fit_method == "brute":
# Joblib-based backend, which is used when user-defined callable
# are passed for metric.
# This won't be used in the future once PairwiseDistancesReductions
# support:
# - DistanceMetrics which work on supposedly binary data
# - CSR-dense and dense-CSR case if 'euclidean' in metric.
# for efficiency, use squared euclidean distances
if self.effective_metric_ == "euclidean":
radius *= radius
kwds = {"squared": True}
else:
kwds = self.effective_metric_params_
reduce_func = partial(
self._radius_neighbors_reduce_func,
radius=radius,
return_distance=return_distance,
)
chunked_results = pairwise_distances_chunked(
X,
self._fit_X,
reduce_func=reduce_func,
metric=self.effective_metric_,
n_jobs=self.n_jobs,
**kwds,
)
if return_distance:
neigh_dist_chunks, neigh_ind_chunks = zip(*chunked_results)
neigh_dist_list = sum(neigh_dist_chunks, [])
neigh_ind_list = sum(neigh_ind_chunks, [])
neigh_dist = _to_object_array(neigh_dist_list)
neigh_ind = _to_object_array(neigh_ind_list)
results = neigh_dist, neigh_ind
else:
neigh_ind_list = sum(chunked_results, [])
results = _to_object_array(neigh_ind_list)
if sort_results:
for ii in range(len(neigh_dist)):
order = np.argsort(neigh_dist[ii], kind="mergesort")
neigh_ind[ii] = neigh_ind[ii][order]
neigh_dist[ii] = neigh_dist[ii][order]
results = neigh_dist, neigh_ind
elif self._fit_method in ["ball_tree", "kd_tree"]:
if issparse(X):
raise ValueError(
"%s does not work with sparse matrices. Densify the data, "
"or set algorithm='brute'" % self._fit_method
)
n_jobs = effective_n_jobs(self.n_jobs)
delayed_query = delayed(self._tree.query_radius)
chunked_results = Parallel(n_jobs, prefer="threads")(
delayed_query(X[s], radius, return_distance, sort_results=sort_results)
for s in gen_even_slices(X.shape[0], n_jobs)
)
if return_distance:
neigh_ind, neigh_dist = tuple(zip(*chunked_results))
results = np.hstack(neigh_dist), np.hstack(neigh_ind)
else:
results = np.hstack(chunked_results)
else:
raise ValueError("internal: _fit_method not recognized")
if not query_is_train:
return results
else:
# If the query data is the same as the indexed data, we would like
# to ignore the first nearest neighbor of every sample, i.e
# the sample itself.
if return_distance:
neigh_dist, neigh_ind = results
else:
neigh_ind = results
for ind, ind_neighbor in enumerate(neigh_ind):
mask = ind_neighbor != ind
neigh_ind[ind] = ind_neighbor[mask]
if return_distance:
neigh_dist[ind] = neigh_dist[ind][mask]
if return_distance:
return neigh_dist, neigh_ind
return neigh_ind
def radius_neighbors_graph(
self, X=None, radius=None, mode="connectivity", sort_results=False
):
"""Compute the (weighted) graph of Neighbors for points in X.
Neighborhoods are restricted the points at a distance lower than
radius.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features), default=None
The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.
radius : float, default=None
Radius of neighborhoods. The default is the value passed to the
constructor.
mode : {'connectivity', 'distance'}, default='connectivity'
Type of returned matrix: 'connectivity' will return the
connectivity matrix with ones and zeros, in 'distance' the
edges are distances between points, type of distance
depends on the selected metric parameter in
NearestNeighbors class.
sort_results : bool, default=False
If True, in each row of the result, the non-zero entries will be
sorted by increasing distances. If False, the non-zero entries may
not be sorted. Only used with mode='distance'.
.. versionadded:: 0.22
Returns
-------
A : sparse-matrix of shape (n_queries, n_samples_fit)
`n_samples_fit` is the number of samples in the fitted data.
`A[i, j]` gives the weight of the edge connecting `i` to `j`.
The matrix is of CSR format.
See Also
--------
kneighbors_graph : Compute the (weighted) graph of k-Neighbors for
points in X.
Examples
--------
>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X)
NearestNeighbors(radius=1.5)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],
[0., 1., 0.],
[1., 0., 1.]])
"""
check_is_fitted(self)
# check the input only in self.radius_neighbors
if radius is None:
radius = self.radius
# construct CSR matrix representation of the NN graph
if mode == "connectivity":
A_ind = self.radius_neighbors(X, radius, return_distance=False)
A_data = None
elif mode == "distance":
dist, A_ind = self.radius_neighbors(
X, radius, return_distance=True, sort_results=sort_results
)
A_data = np.concatenate(list(dist))
else:
raise ValueError(
'Unsupported mode, must be one of "connectivity", '
f'or "distance" but got "{mode}" instead'
)
n_queries = A_ind.shape[0]
n_samples_fit = self.n_samples_fit_
n_neighbors = np.array([len(a) for a in A_ind])
A_ind = np.concatenate(list(A_ind))
if A_data is None:
A_data = np.ones(len(A_ind))
A_indptr = np.concatenate((np.zeros(1, dtype=int), np.cumsum(n_neighbors)))
return csr_matrix((A_data, A_ind, A_indptr), shape=(n_queries, n_samples_fit))
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.input_tags.allow_nan = self.metric == "nan_euclidean"
return tags
|