File size: 17,342 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
import warnings
import numpy as np
import pytest
import scipy.sparse as sp
from sklearn import clone
from sklearn.preprocessing import KBinsDiscretizer, OneHotEncoder
from sklearn.utils._testing import (
assert_allclose,
assert_allclose_dense_sparse,
assert_array_almost_equal,
assert_array_equal,
)
X = [[-2, 1.5, -4, -1], [-1, 2.5, -3, -0.5], [0, 3.5, -2, 0.5], [1, 4.5, -1, 2]]
@pytest.mark.parametrize(
"strategy, expected, sample_weight",
[
("uniform", [[0, 0, 0, 0], [1, 1, 1, 0], [2, 2, 2, 1], [2, 2, 2, 2]], None),
("kmeans", [[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2]], None),
("quantile", [[0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2], [2, 2, 2, 2]], None),
(
"quantile",
[[0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2], [2, 2, 2, 2]],
[1, 1, 2, 1],
),
(
"quantile",
[[0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2], [2, 2, 2, 2]],
[1, 1, 1, 1],
),
(
"quantile",
[[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1]],
[0, 1, 1, 1],
),
(
"kmeans",
[[0, 0, 0, 0], [1, 1, 1, 0], [1, 1, 1, 1], [2, 2, 2, 2]],
[1, 0, 3, 1],
),
(
"kmeans",
[[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2]],
[1, 1, 1, 1],
),
],
)
def test_fit_transform(strategy, expected, sample_weight):
est = KBinsDiscretizer(n_bins=3, encode="ordinal", strategy=strategy)
est.fit(X, sample_weight=sample_weight)
assert_array_equal(expected, est.transform(X))
def test_valid_n_bins():
KBinsDiscretizer(n_bins=2).fit_transform(X)
KBinsDiscretizer(n_bins=np.array([2])[0]).fit_transform(X)
assert KBinsDiscretizer(n_bins=2).fit(X).n_bins_.dtype == np.dtype(int)
@pytest.mark.parametrize("strategy", ["uniform"])
def test_kbinsdiscretizer_wrong_strategy_with_weights(strategy):
"""Check that we raise an error when the wrong strategy is used."""
sample_weight = np.ones(shape=(len(X)))
est = KBinsDiscretizer(n_bins=3, strategy=strategy)
err_msg = (
"`sample_weight` was provided but it cannot be used with strategy='uniform'."
)
with pytest.raises(ValueError, match=err_msg):
est.fit(X, sample_weight=sample_weight)
def test_invalid_n_bins_array():
# Bad shape
n_bins = np.full((2, 4), 2.0)
est = KBinsDiscretizer(n_bins=n_bins)
err_msg = r"n_bins must be a scalar or array of shape \(n_features,\)."
with pytest.raises(ValueError, match=err_msg):
est.fit_transform(X)
# Incorrect number of features
n_bins = [1, 2, 2]
est = KBinsDiscretizer(n_bins=n_bins)
err_msg = r"n_bins must be a scalar or array of shape \(n_features,\)."
with pytest.raises(ValueError, match=err_msg):
est.fit_transform(X)
# Bad bin values
n_bins = [1, 2, 2, 1]
est = KBinsDiscretizer(n_bins=n_bins)
err_msg = (
"KBinsDiscretizer received an invalid number of bins "
"at indices 0, 3. Number of bins must be at least 2, "
"and must be an int."
)
with pytest.raises(ValueError, match=err_msg):
est.fit_transform(X)
# Float bin values
n_bins = [2.1, 2, 2.1, 2]
est = KBinsDiscretizer(n_bins=n_bins)
err_msg = (
"KBinsDiscretizer received an invalid number of bins "
"at indices 0, 2. Number of bins must be at least 2, "
"and must be an int."
)
with pytest.raises(ValueError, match=err_msg):
est.fit_transform(X)
@pytest.mark.parametrize(
"strategy, expected, sample_weight",
[
("uniform", [[0, 0, 0, 0], [0, 1, 1, 0], [1, 2, 2, 1], [1, 2, 2, 2]], None),
("kmeans", [[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1], [1, 2, 2, 2]], None),
("quantile", [[0, 0, 0, 0], [0, 1, 1, 1], [1, 2, 2, 2], [1, 2, 2, 2]], None),
(
"quantile",
[[0, 0, 0, 0], [0, 1, 1, 1], [1, 2, 2, 2], [1, 2, 2, 2]],
[1, 1, 3, 1],
),
(
"quantile",
[[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1]],
[0, 1, 3, 1],
),
# (
# "quantile",
# [[0, 0, 0, 0], [0, 1, 1, 1], [1, 2, 2, 2], [1, 2, 2, 2]],
# [1, 1, 1, 1],
# ),
#
# TODO: This test case above aims to test if the case where an array of
# ones passed in sample_weight parameter is equal to the case when
# sample_weight is None.
# Unfortunately, the behavior of `_weighted_percentile` when
# `sample_weight = [1, 1, 1, 1]` are currently not equivalent.
# This problem has been addressed in issue :
# https://github.com/scikit-learn/scikit-learn/issues/17370
(
"kmeans",
[[0, 0, 0, 0], [0, 1, 1, 0], [1, 1, 1, 1], [1, 2, 2, 2]],
[1, 0, 3, 1],
),
],
)
def test_fit_transform_n_bins_array(strategy, expected, sample_weight):
est = KBinsDiscretizer(
n_bins=[2, 3, 3, 3], encode="ordinal", strategy=strategy
).fit(X, sample_weight=sample_weight)
assert_array_equal(expected, est.transform(X))
# test the shape of bin_edges_
n_features = np.array(X).shape[1]
assert est.bin_edges_.shape == (n_features,)
for bin_edges, n_bins in zip(est.bin_edges_, est.n_bins_):
assert bin_edges.shape == (n_bins + 1,)
@pytest.mark.filterwarnings("ignore: Bins whose width are too small")
def test_kbinsdiscretizer_effect_sample_weight():
"""Check the impact of `sample_weight` one computed quantiles."""
X = np.array([[-2], [-1], [1], [3], [500], [1000]])
# add a large number of bins such that each sample with a non-null weight
# will be used as bin edge
est = KBinsDiscretizer(n_bins=10, encode="ordinal", strategy="quantile")
est.fit(X, sample_weight=[1, 1, 1, 1, 0, 0])
assert_allclose(est.bin_edges_[0], [-2, -1, 1, 3])
assert_allclose(est.transform(X), [[0.0], [1.0], [2.0], [2.0], [2.0], [2.0]])
@pytest.mark.parametrize("strategy", ["kmeans", "quantile"])
def test_kbinsdiscretizer_no_mutating_sample_weight(strategy):
"""Make sure that `sample_weight` is not changed in place."""
est = KBinsDiscretizer(n_bins=3, encode="ordinal", strategy=strategy)
sample_weight = np.array([1, 3, 1, 2], dtype=np.float64)
sample_weight_copy = np.copy(sample_weight)
est.fit(X, sample_weight=sample_weight)
assert_allclose(sample_weight, sample_weight_copy)
@pytest.mark.parametrize("strategy", ["uniform", "kmeans", "quantile"])
def test_same_min_max(strategy):
warnings.simplefilter("always")
X = np.array([[1, -2], [1, -1], [1, 0], [1, 1]])
est = KBinsDiscretizer(strategy=strategy, n_bins=3, encode="ordinal")
warning_message = "Feature 0 is constant and will be replaced with 0."
with pytest.warns(UserWarning, match=warning_message):
est.fit(X)
assert est.n_bins_[0] == 1
# replace the feature with zeros
Xt = est.transform(X)
assert_array_equal(Xt[:, 0], np.zeros(X.shape[0]))
def test_transform_1d_behavior():
X = np.arange(4)
est = KBinsDiscretizer(n_bins=2)
with pytest.raises(ValueError):
est.fit(X)
est = KBinsDiscretizer(n_bins=2)
est.fit(X.reshape(-1, 1))
with pytest.raises(ValueError):
est.transform(X)
@pytest.mark.parametrize("i", range(1, 9))
def test_numeric_stability(i):
X_init = np.array([2.0, 4.0, 6.0, 8.0, 10.0]).reshape(-1, 1)
Xt_expected = np.array([0, 0, 1, 1, 1]).reshape(-1, 1)
# Test up to discretizing nano units
X = X_init / 10**i
Xt = KBinsDiscretizer(n_bins=2, encode="ordinal").fit_transform(X)
assert_array_equal(Xt_expected, Xt)
def test_encode_options():
est = KBinsDiscretizer(n_bins=[2, 3, 3, 3], encode="ordinal").fit(X)
Xt_1 = est.transform(X)
est = KBinsDiscretizer(n_bins=[2, 3, 3, 3], encode="onehot-dense").fit(X)
Xt_2 = est.transform(X)
assert not sp.issparse(Xt_2)
assert_array_equal(
OneHotEncoder(
categories=[np.arange(i) for i in [2, 3, 3, 3]], sparse_output=False
).fit_transform(Xt_1),
Xt_2,
)
est = KBinsDiscretizer(n_bins=[2, 3, 3, 3], encode="onehot").fit(X)
Xt_3 = est.transform(X)
assert sp.issparse(Xt_3)
assert_array_equal(
OneHotEncoder(
categories=[np.arange(i) for i in [2, 3, 3, 3]], sparse_output=True
)
.fit_transform(Xt_1)
.toarray(),
Xt_3.toarray(),
)
@pytest.mark.parametrize(
"strategy, expected_2bins, expected_3bins, expected_5bins",
[
("uniform", [0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 2, 2], [0, 0, 1, 1, 4, 4]),
("kmeans", [0, 0, 0, 0, 1, 1], [0, 0, 1, 1, 2, 2], [0, 0, 1, 2, 3, 4]),
("quantile", [0, 0, 0, 1, 1, 1], [0, 0, 1, 1, 2, 2], [0, 1, 2, 3, 4, 4]),
],
)
def test_nonuniform_strategies(
strategy, expected_2bins, expected_3bins, expected_5bins
):
X = np.array([0, 0.5, 2, 3, 9, 10]).reshape(-1, 1)
# with 2 bins
est = KBinsDiscretizer(n_bins=2, strategy=strategy, encode="ordinal")
Xt = est.fit_transform(X)
assert_array_equal(expected_2bins, Xt.ravel())
# with 3 bins
est = KBinsDiscretizer(n_bins=3, strategy=strategy, encode="ordinal")
Xt = est.fit_transform(X)
assert_array_equal(expected_3bins, Xt.ravel())
# with 5 bins
est = KBinsDiscretizer(n_bins=5, strategy=strategy, encode="ordinal")
Xt = est.fit_transform(X)
assert_array_equal(expected_5bins, Xt.ravel())
@pytest.mark.parametrize(
"strategy, expected_inv",
[
(
"uniform",
[
[-1.5, 2.0, -3.5, -0.5],
[-0.5, 3.0, -2.5, -0.5],
[0.5, 4.0, -1.5, 0.5],
[0.5, 4.0, -1.5, 1.5],
],
),
(
"kmeans",
[
[-1.375, 2.125, -3.375, -0.5625],
[-1.375, 2.125, -3.375, -0.5625],
[-0.125, 3.375, -2.125, 0.5625],
[0.75, 4.25, -1.25, 1.625],
],
),
(
"quantile",
[
[-1.5, 2.0, -3.5, -0.75],
[-0.5, 3.0, -2.5, 0.0],
[0.5, 4.0, -1.5, 1.25],
[0.5, 4.0, -1.5, 1.25],
],
),
],
)
@pytest.mark.parametrize("encode", ["ordinal", "onehot", "onehot-dense"])
def test_inverse_transform(strategy, encode, expected_inv):
kbd = KBinsDiscretizer(n_bins=3, strategy=strategy, encode=encode)
Xt = kbd.fit_transform(X)
Xinv = kbd.inverse_transform(Xt)
assert_array_almost_equal(expected_inv, Xinv)
@pytest.mark.parametrize("strategy", ["uniform", "kmeans", "quantile"])
def test_transform_outside_fit_range(strategy):
X = np.array([0, 1, 2, 3])[:, None]
kbd = KBinsDiscretizer(n_bins=4, strategy=strategy, encode="ordinal")
kbd.fit(X)
X2 = np.array([-2, 5])[:, None]
X2t = kbd.transform(X2)
assert_array_equal(X2t.max(axis=0) + 1, kbd.n_bins_)
assert_array_equal(X2t.min(axis=0), [0])
def test_overwrite():
X = np.array([0, 1, 2, 3])[:, None]
X_before = X.copy()
est = KBinsDiscretizer(n_bins=3, encode="ordinal")
Xt = est.fit_transform(X)
assert_array_equal(X, X_before)
Xt_before = Xt.copy()
Xinv = est.inverse_transform(Xt)
assert_array_equal(Xt, Xt_before)
assert_array_equal(Xinv, np.array([[0.5], [1.5], [2.5], [2.5]]))
@pytest.mark.parametrize(
"strategy, expected_bin_edges", [("quantile", [0, 1, 3]), ("kmeans", [0, 1.5, 3])]
)
def test_redundant_bins(strategy, expected_bin_edges):
X = [[0], [0], [0], [0], [3], [3]]
kbd = KBinsDiscretizer(n_bins=3, strategy=strategy, subsample=None)
warning_message = "Consider decreasing the number of bins."
with pytest.warns(UserWarning, match=warning_message):
kbd.fit(X)
assert_array_almost_equal(kbd.bin_edges_[0], expected_bin_edges)
def test_percentile_numeric_stability():
X = np.array([0.05, 0.05, 0.95]).reshape(-1, 1)
bin_edges = np.array([0.05, 0.23, 0.41, 0.59, 0.77, 0.95])
Xt = np.array([0, 0, 4]).reshape(-1, 1)
kbd = KBinsDiscretizer(n_bins=10, encode="ordinal", strategy="quantile")
warning_message = "Consider decreasing the number of bins."
with pytest.warns(UserWarning, match=warning_message):
kbd.fit(X)
assert_array_almost_equal(kbd.bin_edges_[0], bin_edges)
assert_array_almost_equal(kbd.transform(X), Xt)
@pytest.mark.parametrize("in_dtype", [np.float16, np.float32, np.float64])
@pytest.mark.parametrize("out_dtype", [None, np.float32, np.float64])
@pytest.mark.parametrize("encode", ["ordinal", "onehot", "onehot-dense"])
def test_consistent_dtype(in_dtype, out_dtype, encode):
X_input = np.array(X, dtype=in_dtype)
kbd = KBinsDiscretizer(n_bins=3, encode=encode, dtype=out_dtype)
kbd.fit(X_input)
# test output dtype
if out_dtype is not None:
expected_dtype = out_dtype
elif out_dtype is None and X_input.dtype == np.float16:
# wrong numeric input dtype are cast in np.float64
expected_dtype = np.float64
else:
expected_dtype = X_input.dtype
Xt = kbd.transform(X_input)
assert Xt.dtype == expected_dtype
@pytest.mark.parametrize("input_dtype", [np.float16, np.float32, np.float64])
@pytest.mark.parametrize("encode", ["ordinal", "onehot", "onehot-dense"])
def test_32_equal_64(input_dtype, encode):
# TODO this check is redundant with common checks and can be removed
# once #16290 is merged
X_input = np.array(X, dtype=input_dtype)
# 32 bit output
kbd_32 = KBinsDiscretizer(n_bins=3, encode=encode, dtype=np.float32)
kbd_32.fit(X_input)
Xt_32 = kbd_32.transform(X_input)
# 64 bit output
kbd_64 = KBinsDiscretizer(n_bins=3, encode=encode, dtype=np.float64)
kbd_64.fit(X_input)
Xt_64 = kbd_64.transform(X_input)
assert_allclose_dense_sparse(Xt_32, Xt_64)
def test_kbinsdiscretizer_subsample_default():
# Since the size of X is small (< 2e5), subsampling will not take place.
X = np.array([-2, 1.5, -4, -1]).reshape(-1, 1)
kbd_default = KBinsDiscretizer(n_bins=10, encode="ordinal", strategy="quantile")
kbd_default.fit(X)
kbd_without_subsampling = clone(kbd_default)
kbd_without_subsampling.set_params(subsample=None)
kbd_without_subsampling.fit(X)
for bin_kbd_default, bin_kbd_with_subsampling in zip(
kbd_default.bin_edges_[0], kbd_without_subsampling.bin_edges_[0]
):
np.testing.assert_allclose(bin_kbd_default, bin_kbd_with_subsampling)
assert kbd_default.bin_edges_.shape == kbd_without_subsampling.bin_edges_.shape
@pytest.mark.parametrize(
"encode, expected_names",
[
(
"onehot",
[
f"feat{col_id}_{float(bin_id)}"
for col_id in range(3)
for bin_id in range(4)
],
),
(
"onehot-dense",
[
f"feat{col_id}_{float(bin_id)}"
for col_id in range(3)
for bin_id in range(4)
],
),
("ordinal", [f"feat{col_id}" for col_id in range(3)]),
],
)
def test_kbinsdiscrtizer_get_feature_names_out(encode, expected_names):
"""Check get_feature_names_out for different settings.
Non-regression test for #22731
"""
X = [[-2, 1, -4], [-1, 2, -3], [0, 3, -2], [1, 4, -1]]
kbd = KBinsDiscretizer(n_bins=4, encode=encode).fit(X)
Xt = kbd.transform(X)
input_features = [f"feat{i}" for i in range(3)]
output_names = kbd.get_feature_names_out(input_features)
assert Xt.shape[1] == output_names.shape[0]
assert_array_equal(output_names, expected_names)
@pytest.mark.parametrize("strategy", ["uniform", "kmeans", "quantile"])
def test_kbinsdiscretizer_subsample(strategy, global_random_seed):
# Check that the bin edges are almost the same when subsampling is used.
X = np.random.RandomState(global_random_seed).random_sample((100000, 1)) + 1
kbd_subsampling = KBinsDiscretizer(
strategy=strategy, subsample=50000, random_state=global_random_seed
)
kbd_subsampling.fit(X)
kbd_no_subsampling = clone(kbd_subsampling)
kbd_no_subsampling.set_params(subsample=None)
kbd_no_subsampling.fit(X)
# We use a large tolerance because we can't expect the bin edges to be exactly the
# same when subsampling is used.
assert_allclose(
kbd_subsampling.bin_edges_[0], kbd_no_subsampling.bin_edges_[0], rtol=1e-2
)
# TODO(1.7): remove this test
def test_KBD_inverse_transform_Xt_deprecation():
X = np.arange(10)[:, None]
kbd = KBinsDiscretizer()
X = kbd.fit_transform(X)
with pytest.raises(TypeError, match="Missing required positional argument"):
kbd.inverse_transform()
with pytest.raises(TypeError, match="Cannot use both X and Xt. Use X only"):
kbd.inverse_transform(X=X, Xt=X)
with warnings.catch_warnings(record=True):
warnings.simplefilter("error")
kbd.inverse_transform(X)
with pytest.warns(FutureWarning, match="Xt was renamed X in version 1.5"):
kbd.inverse_transform(Xt=X)
|