File size: 42,864 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 |
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import warnings
from abc import ABCMeta, abstractmethod
from numbers import Integral, Real
import numpy as np
import scipy.sparse as sp
from ..base import BaseEstimator, ClassifierMixin, _fit_context
from ..exceptions import ConvergenceWarning, NotFittedError
from ..preprocessing import LabelEncoder
from ..utils import check_array, check_random_state, column_or_1d, compute_class_weight
from ..utils._param_validation import Interval, StrOptions
from ..utils.extmath import safe_sparse_dot
from ..utils.metaestimators import available_if
from ..utils.multiclass import _ovr_decision_function, check_classification_targets
from ..utils.validation import (
_check_large_sparse,
_check_sample_weight,
_num_samples,
check_consistent_length,
check_is_fitted,
validate_data,
)
from . import _liblinear as liblinear # type: ignore
# mypy error: error: Module 'sklearn.svm' has no attribute '_libsvm'
# (and same for other imports)
from . import _libsvm as libsvm # type: ignore
from . import _libsvm_sparse as libsvm_sparse # type: ignore
LIBSVM_IMPL = ["c_svc", "nu_svc", "one_class", "epsilon_svr", "nu_svr"]
def _one_vs_one_coef(dual_coef, n_support, support_vectors):
"""Generate primal coefficients from dual coefficients
for the one-vs-one multi class LibSVM in the case
of a linear kernel."""
# get 1vs1 weights for all n*(n-1) classifiers.
# this is somewhat messy.
# shape of dual_coef_ is nSV * (n_classes -1)
# see docs for details
n_class = dual_coef.shape[0] + 1
# XXX we could do preallocation of coef but
# would have to take care in the sparse case
coef = []
sv_locs = np.cumsum(np.hstack([[0], n_support]))
for class1 in range(n_class):
# SVs for class1:
sv1 = support_vectors[sv_locs[class1] : sv_locs[class1 + 1], :]
for class2 in range(class1 + 1, n_class):
# SVs for class1:
sv2 = support_vectors[sv_locs[class2] : sv_locs[class2 + 1], :]
# dual coef for class1 SVs:
alpha1 = dual_coef[class2 - 1, sv_locs[class1] : sv_locs[class1 + 1]]
# dual coef for class2 SVs:
alpha2 = dual_coef[class1, sv_locs[class2] : sv_locs[class2 + 1]]
# build weight for class1 vs class2
coef.append(safe_sparse_dot(alpha1, sv1) + safe_sparse_dot(alpha2, sv2))
return coef
class BaseLibSVM(BaseEstimator, metaclass=ABCMeta):
"""Base class for estimators that use libsvm as backing library.
This implements support vector machine classification and regression.
Parameter documentation is in the derived `SVC` class.
"""
_parameter_constraints: dict = {
"kernel": [
StrOptions({"linear", "poly", "rbf", "sigmoid", "precomputed"}),
callable,
],
"degree": [Interval(Integral, 0, None, closed="left")],
"gamma": [
StrOptions({"scale", "auto"}),
Interval(Real, 0.0, None, closed="left"),
],
"coef0": [Interval(Real, None, None, closed="neither")],
"tol": [Interval(Real, 0.0, None, closed="neither")],
"C": [Interval(Real, 0.0, None, closed="right")],
"nu": [Interval(Real, 0.0, 1.0, closed="right")],
"epsilon": [Interval(Real, 0.0, None, closed="left")],
"shrinking": ["boolean"],
"probability": ["boolean"],
"cache_size": [Interval(Real, 0, None, closed="neither")],
"class_weight": [StrOptions({"balanced"}), dict, None],
"verbose": ["verbose"],
"max_iter": [Interval(Integral, -1, None, closed="left")],
"random_state": ["random_state"],
}
# The order of these must match the integer values in LibSVM.
# XXX These are actually the same in the dense case. Need to factor
# this out.
_sparse_kernels = ["linear", "poly", "rbf", "sigmoid", "precomputed"]
@abstractmethod
def __init__(
self,
kernel,
degree,
gamma,
coef0,
tol,
C,
nu,
epsilon,
shrinking,
probability,
cache_size,
class_weight,
verbose,
max_iter,
random_state,
):
if self._impl not in LIBSVM_IMPL:
raise ValueError(
"impl should be one of %s, %s was given" % (LIBSVM_IMPL, self._impl)
)
self.kernel = kernel
self.degree = degree
self.gamma = gamma
self.coef0 = coef0
self.tol = tol
self.C = C
self.nu = nu
self.epsilon = epsilon
self.shrinking = shrinking
self.probability = probability
self.cache_size = cache_size
self.class_weight = class_weight
self.verbose = verbose
self.max_iter = max_iter
self.random_state = random_state
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
# Used by cross_val_score.
tags.input_tags.pairwise = self.kernel == "precomputed"
tags.input_tags.sparse = self.kernel != "precomputed"
return tags
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y, sample_weight=None):
"""Fit the SVM model according to the given training data.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features) \
or (n_samples, n_samples)
Training vectors, where `n_samples` is the number of samples
and `n_features` is the number of features.
For kernel="precomputed", the expected shape of X is
(n_samples, n_samples).
y : array-like of shape (n_samples,)
Target values (class labels in classification, real numbers in
regression).
sample_weight : array-like of shape (n_samples,), default=None
Per-sample weights. Rescale C per sample. Higher weights
force the classifier to put more emphasis on these points.
Returns
-------
self : object
Fitted estimator.
Notes
-----
If X and y are not C-ordered and contiguous arrays of np.float64 and
X is not a scipy.sparse.csr_matrix, X and/or y may be copied.
If X is a dense array, then the other methods will not support sparse
matrices as input.
"""
rnd = check_random_state(self.random_state)
sparse = sp.issparse(X)
if sparse and self.kernel == "precomputed":
raise TypeError("Sparse precomputed kernels are not supported.")
self._sparse = sparse and not callable(self.kernel)
if callable(self.kernel):
check_consistent_length(X, y)
else:
X, y = validate_data(
self,
X,
y,
dtype=np.float64,
order="C",
accept_sparse="csr",
accept_large_sparse=False,
)
y = self._validate_targets(y)
sample_weight = np.asarray(
[] if sample_weight is None else sample_weight, dtype=np.float64
)
solver_type = LIBSVM_IMPL.index(self._impl)
# input validation
n_samples = _num_samples(X)
if solver_type != 2 and n_samples != y.shape[0]:
raise ValueError(
"X and y have incompatible shapes.\n"
+ "X has %s samples, but y has %s." % (n_samples, y.shape[0])
)
if self.kernel == "precomputed" and n_samples != X.shape[1]:
raise ValueError(
"Precomputed matrix must be a square matrix."
" Input is a {}x{} matrix.".format(X.shape[0], X.shape[1])
)
if sample_weight.shape[0] > 0 and sample_weight.shape[0] != n_samples:
raise ValueError(
"sample_weight and X have incompatible shapes: "
"%r vs %r\n"
"Note: Sparse matrices cannot be indexed w/"
"boolean masks (use `indices=True` in CV)."
% (sample_weight.shape, X.shape)
)
kernel = "precomputed" if callable(self.kernel) else self.kernel
if kernel == "precomputed":
# unused but needs to be a float for cython code that ignores
# it anyway
self._gamma = 0.0
elif isinstance(self.gamma, str):
if self.gamma == "scale":
# var = E[X^2] - E[X]^2 if sparse
X_var = (X.multiply(X)).mean() - (X.mean()) ** 2 if sparse else X.var()
self._gamma = 1.0 / (X.shape[1] * X_var) if X_var != 0 else 1.0
elif self.gamma == "auto":
self._gamma = 1.0 / X.shape[1]
elif isinstance(self.gamma, Real):
self._gamma = self.gamma
fit = self._sparse_fit if self._sparse else self._dense_fit
if self.verbose:
print("[LibSVM]", end="")
seed = rnd.randint(np.iinfo("i").max)
fit(X, y, sample_weight, solver_type, kernel, random_seed=seed)
# see comment on the other call to np.iinfo in this file
self.shape_fit_ = X.shape if hasattr(X, "shape") else (n_samples,)
# In binary case, we need to flip the sign of coef, intercept and
# decision function. Use self._intercept_ and self._dual_coef_
# internally.
self._intercept_ = self.intercept_.copy()
self._dual_coef_ = self.dual_coef_
if self._impl in ["c_svc", "nu_svc"] and len(self.classes_) == 2:
self.intercept_ *= -1
self.dual_coef_ = -self.dual_coef_
dual_coef = self._dual_coef_.data if self._sparse else self._dual_coef_
intercept_finiteness = np.isfinite(self._intercept_).all()
dual_coef_finiteness = np.isfinite(dual_coef).all()
if not (intercept_finiteness and dual_coef_finiteness):
raise ValueError(
"The dual coefficients or intercepts are not finite."
" The input data may contain large values and need to be"
" preprocessed."
)
# Since, in the case of SVC and NuSVC, the number of models optimized by
# libSVM could be greater than one (depending on the input), `n_iter_`
# stores an ndarray.
# For the other sub-classes (SVR, NuSVR, and OneClassSVM), the number of
# models optimized by libSVM is always one, so `n_iter_` stores an
# integer.
if self._impl in ["c_svc", "nu_svc"]:
self.n_iter_ = self._num_iter
else:
self.n_iter_ = self._num_iter.item()
return self
def _validate_targets(self, y):
"""Validation of y and class_weight.
Default implementation for SVR and one-class; overridden in BaseSVC.
"""
return column_or_1d(y, warn=True).astype(np.float64, copy=False)
def _warn_from_fit_status(self):
assert self.fit_status_ in (0, 1)
if self.fit_status_ == 1:
warnings.warn(
"Solver terminated early (max_iter=%i)."
" Consider pre-processing your data with"
" StandardScaler or MinMaxScaler." % self.max_iter,
ConvergenceWarning,
)
def _dense_fit(self, X, y, sample_weight, solver_type, kernel, random_seed):
if callable(self.kernel):
# you must store a reference to X to compute the kernel in predict
# TODO: add keyword copy to copy on demand
self.__Xfit = X
X = self._compute_kernel(X)
if X.shape[0] != X.shape[1]:
raise ValueError("X.shape[0] should be equal to X.shape[1]")
libsvm.set_verbosity_wrap(self.verbose)
# we don't pass **self.get_params() to allow subclasses to
# add other parameters to __init__
(
self.support_,
self.support_vectors_,
self._n_support,
self.dual_coef_,
self.intercept_,
self._probA,
self._probB,
self.fit_status_,
self._num_iter,
) = libsvm.fit(
X,
y,
svm_type=solver_type,
sample_weight=sample_weight,
class_weight=getattr(self, "class_weight_", np.empty(0)),
kernel=kernel,
C=self.C,
nu=self.nu,
probability=self.probability,
degree=self.degree,
shrinking=self.shrinking,
tol=self.tol,
cache_size=self.cache_size,
coef0=self.coef0,
gamma=self._gamma,
epsilon=self.epsilon,
max_iter=self.max_iter,
random_seed=random_seed,
)
self._warn_from_fit_status()
def _sparse_fit(self, X, y, sample_weight, solver_type, kernel, random_seed):
X.data = np.asarray(X.data, dtype=np.float64, order="C")
X.sort_indices()
kernel_type = self._sparse_kernels.index(kernel)
libsvm_sparse.set_verbosity_wrap(self.verbose)
(
self.support_,
self.support_vectors_,
dual_coef_data,
self.intercept_,
self._n_support,
self._probA,
self._probB,
self.fit_status_,
self._num_iter,
) = libsvm_sparse.libsvm_sparse_train(
X.shape[1],
X.data,
X.indices,
X.indptr,
y,
solver_type,
kernel_type,
self.degree,
self._gamma,
self.coef0,
self.tol,
self.C,
getattr(self, "class_weight_", np.empty(0)),
sample_weight,
self.nu,
self.cache_size,
self.epsilon,
int(self.shrinking),
int(self.probability),
self.max_iter,
random_seed,
)
self._warn_from_fit_status()
if hasattr(self, "classes_"):
n_class = len(self.classes_) - 1
else: # regression
n_class = 1
n_SV = self.support_vectors_.shape[0]
dual_coef_indices = np.tile(np.arange(n_SV), n_class)
if not n_SV:
self.dual_coef_ = sp.csr_matrix([])
else:
dual_coef_indptr = np.arange(
0, dual_coef_indices.size + 1, dual_coef_indices.size / n_class
)
self.dual_coef_ = sp.csr_matrix(
(dual_coef_data, dual_coef_indices, dual_coef_indptr), (n_class, n_SV)
)
def predict(self, X):
"""Perform regression on samples in X.
For an one-class model, +1 (inlier) or -1 (outlier) is returned.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
For kernel="precomputed", the expected shape of X is
(n_samples_test, n_samples_train).
Returns
-------
y_pred : ndarray of shape (n_samples,)
The predicted values.
"""
X = self._validate_for_predict(X)
predict = self._sparse_predict if self._sparse else self._dense_predict
return predict(X)
def _dense_predict(self, X):
X = self._compute_kernel(X)
if X.ndim == 1:
X = check_array(X, order="C", accept_large_sparse=False)
kernel = self.kernel
if callable(self.kernel):
kernel = "precomputed"
if X.shape[1] != self.shape_fit_[0]:
raise ValueError(
"X.shape[1] = %d should be equal to %d, "
"the number of samples at training time"
% (X.shape[1], self.shape_fit_[0])
)
svm_type = LIBSVM_IMPL.index(self._impl)
return libsvm.predict(
X,
self.support_,
self.support_vectors_,
self._n_support,
self._dual_coef_,
self._intercept_,
self._probA,
self._probB,
svm_type=svm_type,
kernel=kernel,
degree=self.degree,
coef0=self.coef0,
gamma=self._gamma,
cache_size=self.cache_size,
)
def _sparse_predict(self, X):
# Precondition: X is a csr_matrix of dtype np.float64.
kernel = self.kernel
if callable(kernel):
kernel = "precomputed"
kernel_type = self._sparse_kernels.index(kernel)
C = 0.0 # C is not useful here
return libsvm_sparse.libsvm_sparse_predict(
X.data,
X.indices,
X.indptr,
self.support_vectors_.data,
self.support_vectors_.indices,
self.support_vectors_.indptr,
self._dual_coef_.data,
self._intercept_,
LIBSVM_IMPL.index(self._impl),
kernel_type,
self.degree,
self._gamma,
self.coef0,
self.tol,
C,
getattr(self, "class_weight_", np.empty(0)),
self.nu,
self.epsilon,
self.shrinking,
self.probability,
self._n_support,
self._probA,
self._probB,
)
def _compute_kernel(self, X):
"""Return the data transformed by a callable kernel"""
if callable(self.kernel):
# in the case of precomputed kernel given as a function, we
# have to compute explicitly the kernel matrix
kernel = self.kernel(X, self.__Xfit)
if sp.issparse(kernel):
kernel = kernel.toarray()
X = np.asarray(kernel, dtype=np.float64, order="C")
return X
def _decision_function(self, X):
"""Evaluates the decision function for the samples in X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Returns
-------
X : array-like of shape (n_samples, n_class * (n_class-1) / 2)
Returns the decision function of the sample for each class
in the model.
"""
# NOTE: _validate_for_predict contains check for is_fitted
# hence must be placed before any other attributes are used.
X = self._validate_for_predict(X)
X = self._compute_kernel(X)
if self._sparse:
dec_func = self._sparse_decision_function(X)
else:
dec_func = self._dense_decision_function(X)
# In binary case, we need to flip the sign of coef, intercept and
# decision function.
if self._impl in ["c_svc", "nu_svc"] and len(self.classes_) == 2:
return -dec_func.ravel()
return dec_func
def _dense_decision_function(self, X):
X = check_array(X, dtype=np.float64, order="C", accept_large_sparse=False)
kernel = self.kernel
if callable(kernel):
kernel = "precomputed"
return libsvm.decision_function(
X,
self.support_,
self.support_vectors_,
self._n_support,
self._dual_coef_,
self._intercept_,
self._probA,
self._probB,
svm_type=LIBSVM_IMPL.index(self._impl),
kernel=kernel,
degree=self.degree,
cache_size=self.cache_size,
coef0=self.coef0,
gamma=self._gamma,
)
def _sparse_decision_function(self, X):
X.data = np.asarray(X.data, dtype=np.float64, order="C")
kernel = self.kernel
if hasattr(kernel, "__call__"):
kernel = "precomputed"
kernel_type = self._sparse_kernels.index(kernel)
return libsvm_sparse.libsvm_sparse_decision_function(
X.data,
X.indices,
X.indptr,
self.support_vectors_.data,
self.support_vectors_.indices,
self.support_vectors_.indptr,
self._dual_coef_.data,
self._intercept_,
LIBSVM_IMPL.index(self._impl),
kernel_type,
self.degree,
self._gamma,
self.coef0,
self.tol,
self.C,
getattr(self, "class_weight_", np.empty(0)),
self.nu,
self.epsilon,
self.shrinking,
self.probability,
self._n_support,
self._probA,
self._probB,
)
def _validate_for_predict(self, X):
check_is_fitted(self)
if not callable(self.kernel):
X = validate_data(
self,
X,
accept_sparse="csr",
dtype=np.float64,
order="C",
accept_large_sparse=False,
reset=False,
)
if self._sparse and not sp.issparse(X):
X = sp.csr_matrix(X)
if self._sparse:
X.sort_indices()
if sp.issparse(X) and not self._sparse and not callable(self.kernel):
raise ValueError(
"cannot use sparse input in %r trained on dense data"
% type(self).__name__
)
if self.kernel == "precomputed":
if X.shape[1] != self.shape_fit_[0]:
raise ValueError(
"X.shape[1] = %d should be equal to %d, "
"the number of samples at training time"
% (X.shape[1], self.shape_fit_[0])
)
# Fixes https://nvd.nist.gov/vuln/detail/CVE-2020-28975
# Check that _n_support is consistent with support_vectors
sv = self.support_vectors_
if not self._sparse and sv.size > 0 and self.n_support_.sum() != sv.shape[0]:
raise ValueError(
f"The internal representation of {self.__class__.__name__} was altered"
)
return X
@property
def coef_(self):
"""Weights assigned to the features when `kernel="linear"`.
Returns
-------
ndarray of shape (n_features, n_classes)
"""
if self.kernel != "linear":
raise AttributeError("coef_ is only available when using a linear kernel")
coef = self._get_coef()
# coef_ being a read-only property, it's better to mark the value as
# immutable to avoid hiding potential bugs for the unsuspecting user.
if sp.issparse(coef):
# sparse matrix do not have global flags
coef.data.flags.writeable = False
else:
# regular dense array
coef.flags.writeable = False
return coef
def _get_coef(self):
return safe_sparse_dot(self._dual_coef_, self.support_vectors_)
@property
def n_support_(self):
"""Number of support vectors for each class."""
try:
check_is_fitted(self)
except NotFittedError:
raise AttributeError
svm_type = LIBSVM_IMPL.index(self._impl)
if svm_type in (0, 1):
return self._n_support
else:
# SVR and OneClass
# _n_support has size 2, we make it size 1
return np.array([self._n_support[0]])
class BaseSVC(ClassifierMixin, BaseLibSVM, metaclass=ABCMeta):
"""ABC for LibSVM-based classifiers."""
_parameter_constraints: dict = {
**BaseLibSVM._parameter_constraints,
"decision_function_shape": [StrOptions({"ovr", "ovo"})],
"break_ties": ["boolean"],
}
for unused_param in ["epsilon", "nu"]:
_parameter_constraints.pop(unused_param)
@abstractmethod
def __init__(
self,
kernel,
degree,
gamma,
coef0,
tol,
C,
nu,
shrinking,
probability,
cache_size,
class_weight,
verbose,
max_iter,
decision_function_shape,
random_state,
break_ties,
):
self.decision_function_shape = decision_function_shape
self.break_ties = break_ties
super().__init__(
kernel=kernel,
degree=degree,
gamma=gamma,
coef0=coef0,
tol=tol,
C=C,
nu=nu,
epsilon=0.0,
shrinking=shrinking,
probability=probability,
cache_size=cache_size,
class_weight=class_weight,
verbose=verbose,
max_iter=max_iter,
random_state=random_state,
)
def _validate_targets(self, y):
y_ = column_or_1d(y, warn=True)
check_classification_targets(y)
cls, y = np.unique(y_, return_inverse=True)
self.class_weight_ = compute_class_weight(self.class_weight, classes=cls, y=y_)
if len(cls) < 2:
raise ValueError(
"The number of classes has to be greater than one; got %d class"
% len(cls)
)
self.classes_ = cls
return np.asarray(y, dtype=np.float64, order="C")
def decision_function(self, X):
"""Evaluate the decision function for the samples in X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples.
Returns
-------
X : ndarray of shape (n_samples, n_classes * (n_classes-1) / 2)
Returns the decision function of the sample for each class
in the model.
If decision_function_shape='ovr', the shape is (n_samples,
n_classes).
Notes
-----
If decision_function_shape='ovo', the function values are proportional
to the distance of the samples X to the separating hyperplane. If the
exact distances are required, divide the function values by the norm of
the weight vector (``coef_``). See also `this question
<https://stats.stackexchange.com/questions/14876/
interpreting-distance-from-hyperplane-in-svm>`_ for further details.
If decision_function_shape='ovr', the decision function is a monotonic
transformation of ovo decision function.
"""
dec = self._decision_function(X)
if self.decision_function_shape == "ovr" and len(self.classes_) > 2:
return _ovr_decision_function(dec < 0, -dec, len(self.classes_))
return dec
def predict(self, X):
"""Perform classification on samples in X.
For an one-class model, +1 or -1 is returned.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
(n_samples_test, n_samples_train)
For kernel="precomputed", the expected shape of X is
(n_samples_test, n_samples_train).
Returns
-------
y_pred : ndarray of shape (n_samples,)
Class labels for samples in X.
"""
check_is_fitted(self)
if self.break_ties and self.decision_function_shape == "ovo":
raise ValueError(
"break_ties must be False when decision_function_shape is 'ovo'"
)
if (
self.break_ties
and self.decision_function_shape == "ovr"
and len(self.classes_) > 2
):
y = np.argmax(self.decision_function(X), axis=1)
else:
y = super().predict(X)
return self.classes_.take(np.asarray(y, dtype=np.intp))
# Hacky way of getting predict_proba to raise an AttributeError when
# probability=False using properties. Do not use this in new code; when
# probabilities are not available depending on a setting, introduce two
# estimators.
def _check_proba(self):
if not self.probability:
raise AttributeError(
"predict_proba is not available when probability=False"
)
if self._impl not in ("c_svc", "nu_svc"):
raise AttributeError("predict_proba only implemented for SVC and NuSVC")
return True
@available_if(_check_proba)
def predict_proba(self, X):
"""Compute probabilities of possible outcomes for samples in X.
The model needs to have probability information computed at training
time: fit with attribute `probability` set to True.
Parameters
----------
X : array-like of shape (n_samples, n_features)
For kernel="precomputed", the expected shape of X is
(n_samples_test, n_samples_train).
Returns
-------
T : ndarray of shape (n_samples, n_classes)
Returns the probability of the sample for each class in
the model. The columns correspond to the classes in sorted
order, as they appear in the attribute :term:`classes_`.
Notes
-----
The probability model is created using cross validation, so
the results can be slightly different than those obtained by
predict. Also, it will produce meaningless results on very small
datasets.
"""
X = self._validate_for_predict(X)
if self.probA_.size == 0 or self.probB_.size == 0:
raise NotFittedError(
"predict_proba is not available when fitted with probability=False"
)
pred_proba = (
self._sparse_predict_proba if self._sparse else self._dense_predict_proba
)
return pred_proba(X)
@available_if(_check_proba)
def predict_log_proba(self, X):
"""Compute log probabilities of possible outcomes for samples in X.
The model need to have probability information computed at training
time: fit with attribute `probability` set to True.
Parameters
----------
X : array-like of shape (n_samples, n_features) or \
(n_samples_test, n_samples_train)
For kernel="precomputed", the expected shape of X is
(n_samples_test, n_samples_train).
Returns
-------
T : ndarray of shape (n_samples, n_classes)
Returns the log-probabilities of the sample for each class in
the model. The columns correspond to the classes in sorted
order, as they appear in the attribute :term:`classes_`.
Notes
-----
The probability model is created using cross validation, so
the results can be slightly different than those obtained by
predict. Also, it will produce meaningless results on very small
datasets.
"""
return np.log(self.predict_proba(X))
def _dense_predict_proba(self, X):
X = self._compute_kernel(X)
kernel = self.kernel
if callable(kernel):
kernel = "precomputed"
svm_type = LIBSVM_IMPL.index(self._impl)
pprob = libsvm.predict_proba(
X,
self.support_,
self.support_vectors_,
self._n_support,
self._dual_coef_,
self._intercept_,
self._probA,
self._probB,
svm_type=svm_type,
kernel=kernel,
degree=self.degree,
cache_size=self.cache_size,
coef0=self.coef0,
gamma=self._gamma,
)
return pprob
def _sparse_predict_proba(self, X):
X.data = np.asarray(X.data, dtype=np.float64, order="C")
kernel = self.kernel
if callable(kernel):
kernel = "precomputed"
kernel_type = self._sparse_kernels.index(kernel)
return libsvm_sparse.libsvm_sparse_predict_proba(
X.data,
X.indices,
X.indptr,
self.support_vectors_.data,
self.support_vectors_.indices,
self.support_vectors_.indptr,
self._dual_coef_.data,
self._intercept_,
LIBSVM_IMPL.index(self._impl),
kernel_type,
self.degree,
self._gamma,
self.coef0,
self.tol,
self.C,
getattr(self, "class_weight_", np.empty(0)),
self.nu,
self.epsilon,
self.shrinking,
self.probability,
self._n_support,
self._probA,
self._probB,
)
def _get_coef(self):
if self.dual_coef_.shape[0] == 1:
# binary classifier
coef = safe_sparse_dot(self.dual_coef_, self.support_vectors_)
else:
# 1vs1 classifier
coef = _one_vs_one_coef(
self.dual_coef_, self._n_support, self.support_vectors_
)
if sp.issparse(coef[0]):
coef = sp.vstack(coef).tocsr()
else:
coef = np.vstack(coef)
return coef
@property
def probA_(self):
"""Parameter learned in Platt scaling when `probability=True`.
Returns
-------
ndarray of shape (n_classes * (n_classes - 1) / 2)
"""
return self._probA
@property
def probB_(self):
"""Parameter learned in Platt scaling when `probability=True`.
Returns
-------
ndarray of shape (n_classes * (n_classes - 1) / 2)
"""
return self._probB
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.input_tags.sparse = self.kernel != "precomputed"
return tags
def _get_liblinear_solver_type(multi_class, penalty, loss, dual):
"""Find the liblinear magic number for the solver.
This number depends on the values of the following attributes:
- multi_class
- penalty
- loss
- dual
The same number is also internally used by LibLinear to determine
which solver to use.
"""
# nested dicts containing level 1: available loss functions,
# level2: available penalties for the given loss function,
# level3: whether the dual solver is available for the specified
# combination of loss function and penalty
_solver_type_dict = {
"logistic_regression": {"l1": {False: 6}, "l2": {False: 0, True: 7}},
"hinge": {"l2": {True: 3}},
"squared_hinge": {"l1": {False: 5}, "l2": {False: 2, True: 1}},
"epsilon_insensitive": {"l2": {True: 13}},
"squared_epsilon_insensitive": {"l2": {False: 11, True: 12}},
"crammer_singer": 4,
}
if multi_class == "crammer_singer":
return _solver_type_dict[multi_class]
elif multi_class != "ovr":
raise ValueError(
"`multi_class` must be one of `ovr`, `crammer_singer`, got %r" % multi_class
)
_solver_pen = _solver_type_dict.get(loss, None)
if _solver_pen is None:
error_string = "loss='%s' is not supported" % loss
else:
_solver_dual = _solver_pen.get(penalty, None)
if _solver_dual is None:
error_string = (
"The combination of penalty='%s' and loss='%s' is not supported"
% (penalty, loss)
)
else:
solver_num = _solver_dual.get(dual, None)
if solver_num is None:
error_string = (
"The combination of penalty='%s' and "
"loss='%s' are not supported when dual=%s" % (penalty, loss, dual)
)
else:
return solver_num
raise ValueError(
"Unsupported set of arguments: %s, Parameters: penalty=%r, loss=%r, dual=%r"
% (error_string, penalty, loss, dual)
)
def _fit_liblinear(
X,
y,
C,
fit_intercept,
intercept_scaling,
class_weight,
penalty,
dual,
verbose,
max_iter,
tol,
random_state=None,
multi_class="ovr",
loss="logistic_regression",
epsilon=0.1,
sample_weight=None,
):
"""Used by Logistic Regression (and CV) and LinearSVC/LinearSVR.
Preprocessing is done in this function before supplying it to liblinear.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vector, where `n_samples` is the number of samples and
`n_features` is the number of features.
y : array-like of shape (n_samples,)
Target vector relative to X
C : float
Inverse of cross-validation parameter. The lower the C, the higher
the penalization.
fit_intercept : bool
Whether or not to fit an intercept. If set to True, the feature vector
is extended to include an intercept term: ``[x_1, ..., x_n, 1]``, where
1 corresponds to the intercept. If set to False, no intercept will be
used in calculations (i.e. data is expected to be already centered).
intercept_scaling : float
Liblinear internally penalizes the intercept, treating it like any
other term in the feature vector. To reduce the impact of the
regularization on the intercept, the `intercept_scaling` parameter can
be set to a value greater than 1; the higher the value of
`intercept_scaling`, the lower the impact of regularization on it.
Then, the weights become `[w_x_1, ..., w_x_n,
w_intercept*intercept_scaling]`, where `w_x_1, ..., w_x_n` represent
the feature weights and the intercept weight is scaled by
`intercept_scaling`. This scaling allows the intercept term to have a
different regularization behavior compared to the other features.
class_weight : dict or 'balanced', default=None
Weights associated with classes in the form ``{class_label: weight}``.
If not given, all classes are supposed to have weight one. For
multi-output problems, a list of dicts can be provided in the same
order as the columns of y.
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``
penalty : {'l1', 'l2'}
The norm of the penalty used in regularization.
dual : bool
Dual or primal formulation,
verbose : int
Set verbose to any positive number for verbosity.
max_iter : int
Number of iterations.
tol : float
Stopping condition.
random_state : int, RandomState instance or None, default=None
Controls the pseudo random number generation for shuffling the data.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
multi_class : {'ovr', 'crammer_singer'}, default='ovr'
`ovr` trains n_classes one-vs-rest classifiers, while `crammer_singer`
optimizes a joint objective over all classes.
While `crammer_singer` is interesting from an theoretical perspective
as it is consistent it is seldom used in practice and rarely leads to
better accuracy and is more expensive to compute.
If `crammer_singer` is chosen, the options loss, penalty and dual will
be ignored.
loss : {'logistic_regression', 'hinge', 'squared_hinge', \
'epsilon_insensitive', 'squared_epsilon_insensitive}, \
default='logistic_regression'
The loss function used to fit the model.
epsilon : float, default=0.1
Epsilon parameter in the epsilon-insensitive loss function. Note
that the value of this parameter depends on the scale of the target
variable y. If unsure, set epsilon=0.
sample_weight : array-like of shape (n_samples,), default=None
Weights assigned to each sample.
Returns
-------
coef_ : ndarray of shape (n_features, n_features + 1)
The coefficient vector got by minimizing the objective function.
intercept_ : float
The intercept term added to the vector.
n_iter_ : array of int
Number of iterations run across for each class.
"""
if loss not in ["epsilon_insensitive", "squared_epsilon_insensitive"]:
enc = LabelEncoder()
y_ind = enc.fit_transform(y)
classes_ = enc.classes_
if len(classes_) < 2:
raise ValueError(
"This solver needs samples of at least 2 classes"
" in the data, but the data contains only one"
" class: %r" % classes_[0]
)
class_weight_ = compute_class_weight(class_weight, classes=classes_, y=y)
else:
class_weight_ = np.empty(0, dtype=np.float64)
y_ind = y
liblinear.set_verbosity_wrap(verbose)
rnd = check_random_state(random_state)
if verbose:
print("[LibLinear]", end="")
# LinearSVC breaks when intercept_scaling is <= 0
bias = -1.0
if fit_intercept:
if intercept_scaling <= 0:
raise ValueError(
"Intercept scaling is %r but needs to be greater "
"than 0. To disable fitting an intercept,"
" set fit_intercept=False." % intercept_scaling
)
else:
bias = intercept_scaling
libsvm.set_verbosity_wrap(verbose)
libsvm_sparse.set_verbosity_wrap(verbose)
liblinear.set_verbosity_wrap(verbose)
# Liblinear doesn't support 64bit sparse matrix indices yet
if sp.issparse(X):
_check_large_sparse(X)
# LibLinear wants targets as doubles, even for classification
y_ind = np.asarray(y_ind, dtype=np.float64).ravel()
y_ind = np.require(y_ind, requirements="W")
sample_weight = _check_sample_weight(sample_weight, X, dtype=np.float64)
solver_type = _get_liblinear_solver_type(multi_class, penalty, loss, dual)
raw_coef_, n_iter_ = liblinear.train_wrap(
X,
y_ind,
sp.issparse(X),
solver_type,
tol,
bias,
C,
class_weight_,
max_iter,
rnd.randint(np.iinfo("i").max),
epsilon,
sample_weight,
)
# Regarding rnd.randint(..) in the above signature:
# seed for srand in range [0..INT_MAX); due to limitations in Numpy
# on 32-bit platforms, we can't get to the UINT_MAX limit that
# srand supports
n_iter_max = max(n_iter_)
if n_iter_max >= max_iter:
warnings.warn(
"Liblinear failed to converge, increase the number of iterations.",
ConvergenceWarning,
)
if fit_intercept:
coef_ = raw_coef_[:, :-1]
intercept_ = intercept_scaling * raw_coef_[:, -1]
else:
coef_ = raw_coef_
intercept_ = 0.0
return coef_, intercept_, n_iter_
|