File size: 40,958 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 |
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import numpy as np
import pytest
from numpy.testing import assert_allclose
from sklearn.base import BaseEstimator, ClassifierMixin, clone
from sklearn.calibration import (
CalibratedClassifierCV,
CalibrationDisplay,
_CalibratedClassifier,
_sigmoid_calibration,
_SigmoidCalibration,
calibration_curve,
)
from sklearn.datasets import load_iris, make_blobs, make_classification
from sklearn.dummy import DummyClassifier
from sklearn.ensemble import (
RandomForestClassifier,
VotingClassifier,
)
from sklearn.exceptions import NotFittedError
from sklearn.feature_extraction import DictVectorizer
from sklearn.frozen import FrozenEstimator
from sklearn.impute import SimpleImputer
from sklearn.isotonic import IsotonicRegression
from sklearn.linear_model import LogisticRegression, SGDClassifier
from sklearn.metrics import brier_score_loss
from sklearn.model_selection import (
KFold,
LeaveOneOut,
check_cv,
cross_val_predict,
cross_val_score,
train_test_split,
)
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.utils._mocking import CheckingClassifier
from sklearn.utils._testing import (
_convert_container,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
ignore_warnings,
)
from sklearn.utils.extmath import softmax
from sklearn.utils.fixes import CSR_CONTAINERS
N_SAMPLES = 200
@pytest.fixture(scope="module")
def data():
X, y = make_classification(n_samples=N_SAMPLES, n_features=6, random_state=42)
return X, y
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
@pytest.mark.parametrize("method", ["sigmoid", "isotonic"])
@pytest.mark.parametrize("ensemble", [True, False])
def test_calibration(data, method, csr_container, ensemble):
# Test calibration objects with isotonic and sigmoid
n_samples = N_SAMPLES // 2
X, y = data
sample_weight = np.random.RandomState(seed=42).uniform(size=y.size)
X -= X.min() # MultinomialNB only allows positive X
# split train and test
X_train, y_train, sw_train = X[:n_samples], y[:n_samples], sample_weight[:n_samples]
X_test, y_test = X[n_samples:], y[n_samples:]
# Naive-Bayes
clf = MultinomialNB().fit(X_train, y_train, sample_weight=sw_train)
prob_pos_clf = clf.predict_proba(X_test)[:, 1]
cal_clf = CalibratedClassifierCV(clf, cv=y.size + 1, ensemble=ensemble)
with pytest.raises(ValueError):
cal_clf.fit(X, y)
# Naive Bayes with calibration
for this_X_train, this_X_test in [
(X_train, X_test),
(csr_container(X_train), csr_container(X_test)),
]:
cal_clf = CalibratedClassifierCV(clf, method=method, cv=5, ensemble=ensemble)
# Note that this fit overwrites the fit on the entire training
# set
cal_clf.fit(this_X_train, y_train, sample_weight=sw_train)
prob_pos_cal_clf = cal_clf.predict_proba(this_X_test)[:, 1]
# Check that brier score has improved after calibration
assert brier_score_loss(y_test, prob_pos_clf) > brier_score_loss(
y_test, prob_pos_cal_clf
)
# Check invariance against relabeling [0, 1] -> [1, 2]
cal_clf.fit(this_X_train, y_train + 1, sample_weight=sw_train)
prob_pos_cal_clf_relabeled = cal_clf.predict_proba(this_X_test)[:, 1]
assert_array_almost_equal(prob_pos_cal_clf, prob_pos_cal_clf_relabeled)
# Check invariance against relabeling [0, 1] -> [-1, 1]
cal_clf.fit(this_X_train, 2 * y_train - 1, sample_weight=sw_train)
prob_pos_cal_clf_relabeled = cal_clf.predict_proba(this_X_test)[:, 1]
assert_array_almost_equal(prob_pos_cal_clf, prob_pos_cal_clf_relabeled)
# Check invariance against relabeling [0, 1] -> [1, 0]
cal_clf.fit(this_X_train, (y_train + 1) % 2, sample_weight=sw_train)
prob_pos_cal_clf_relabeled = cal_clf.predict_proba(this_X_test)[:, 1]
if method == "sigmoid":
assert_array_almost_equal(prob_pos_cal_clf, 1 - prob_pos_cal_clf_relabeled)
else:
# Isotonic calibration is not invariant against relabeling
# but should improve in both cases
assert brier_score_loss(y_test, prob_pos_clf) > brier_score_loss(
(y_test + 1) % 2, prob_pos_cal_clf_relabeled
)
def test_calibration_default_estimator(data):
# Check estimator default is LinearSVC
X, y = data
calib_clf = CalibratedClassifierCV(cv=2)
calib_clf.fit(X, y)
base_est = calib_clf.calibrated_classifiers_[0].estimator
assert isinstance(base_est, LinearSVC)
@pytest.mark.parametrize("ensemble", [True, False])
def test_calibration_cv_splitter(data, ensemble):
# Check when `cv` is a CV splitter
X, y = data
splits = 5
kfold = KFold(n_splits=splits)
calib_clf = CalibratedClassifierCV(cv=kfold, ensemble=ensemble)
assert isinstance(calib_clf.cv, KFold)
assert calib_clf.cv.n_splits == splits
calib_clf.fit(X, y)
expected_n_clf = splits if ensemble else 1
assert len(calib_clf.calibrated_classifiers_) == expected_n_clf
def test_calibration_cv_nfold(data):
# Check error raised when number of examples per class less than nfold
X, y = data
kfold = KFold(n_splits=101)
calib_clf = CalibratedClassifierCV(cv=kfold, ensemble=True)
with pytest.raises(ValueError, match="Requesting 101-fold cross-validation"):
calib_clf.fit(X, y)
calib_clf = CalibratedClassifierCV(cv=LeaveOneOut(), ensemble=True)
with pytest.raises(ValueError, match="LeaveOneOut cross-validation does"):
calib_clf.fit(X, y)
@pytest.mark.parametrize("method", ["sigmoid", "isotonic"])
@pytest.mark.parametrize("ensemble", [True, False])
def test_sample_weight(data, method, ensemble):
n_samples = N_SAMPLES // 2
X, y = data
sample_weight = np.random.RandomState(seed=42).uniform(size=len(y))
X_train, y_train, sw_train = X[:n_samples], y[:n_samples], sample_weight[:n_samples]
X_test = X[n_samples:]
estimator = LinearSVC(random_state=42)
calibrated_clf = CalibratedClassifierCV(estimator, method=method, ensemble=ensemble)
calibrated_clf.fit(X_train, y_train, sample_weight=sw_train)
probs_with_sw = calibrated_clf.predict_proba(X_test)
# As the weights are used for the calibration, they should still yield
# different predictions
calibrated_clf.fit(X_train, y_train)
probs_without_sw = calibrated_clf.predict_proba(X_test)
diff = np.linalg.norm(probs_with_sw - probs_without_sw)
assert diff > 0.1
@pytest.mark.parametrize("method", ["sigmoid", "isotonic"])
@pytest.mark.parametrize("ensemble", [True, False])
def test_parallel_execution(data, method, ensemble):
"""Test parallel calibration"""
X, y = data
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
estimator = make_pipeline(StandardScaler(), LinearSVC(random_state=42))
cal_clf_parallel = CalibratedClassifierCV(
estimator, method=method, n_jobs=2, ensemble=ensemble
)
cal_clf_parallel.fit(X_train, y_train)
probs_parallel = cal_clf_parallel.predict_proba(X_test)
cal_clf_sequential = CalibratedClassifierCV(
estimator, method=method, n_jobs=1, ensemble=ensemble
)
cal_clf_sequential.fit(X_train, y_train)
probs_sequential = cal_clf_sequential.predict_proba(X_test)
assert_allclose(probs_parallel, probs_sequential)
@pytest.mark.parametrize("method", ["sigmoid", "isotonic"])
@pytest.mark.parametrize("ensemble", [True, False])
# increase the number of RNG seeds to assess the statistical stability of this
# test:
@pytest.mark.parametrize("seed", range(2))
def test_calibration_multiclass(method, ensemble, seed):
def multiclass_brier(y_true, proba_pred, n_classes):
Y_onehot = np.eye(n_classes)[y_true]
return np.sum((Y_onehot - proba_pred) ** 2) / Y_onehot.shape[0]
# Test calibration for multiclass with classifier that implements
# only decision function.
clf = LinearSVC(random_state=7)
X, y = make_blobs(
n_samples=500, n_features=100, random_state=seed, centers=10, cluster_std=15.0
)
# Use an unbalanced dataset by collapsing 8 clusters into one class
# to make the naive calibration based on a softmax more unlikely
# to work.
y[y > 2] = 2
n_classes = np.unique(y).shape[0]
X_train, y_train = X[::2], y[::2]
X_test, y_test = X[1::2], y[1::2]
clf.fit(X_train, y_train)
cal_clf = CalibratedClassifierCV(clf, method=method, cv=5, ensemble=ensemble)
cal_clf.fit(X_train, y_train)
probas = cal_clf.predict_proba(X_test)
# Check probabilities sum to 1
assert_allclose(np.sum(probas, axis=1), np.ones(len(X_test)))
# Check that the dataset is not too trivial, otherwise it's hard
# to get interesting calibration data during the internal
# cross-validation loop.
assert 0.65 < clf.score(X_test, y_test) < 0.95
# Check that the accuracy of the calibrated model is never degraded
# too much compared to the original classifier.
assert cal_clf.score(X_test, y_test) > 0.95 * clf.score(X_test, y_test)
# Check that Brier loss of calibrated classifier is smaller than
# loss obtained by naively turning OvR decision function to
# probabilities via a softmax
uncalibrated_brier = multiclass_brier(
y_test, softmax(clf.decision_function(X_test)), n_classes=n_classes
)
calibrated_brier = multiclass_brier(y_test, probas, n_classes=n_classes)
assert calibrated_brier < 1.1 * uncalibrated_brier
# Test that calibration of a multiclass classifier decreases log-loss
# for RandomForestClassifier
clf = RandomForestClassifier(n_estimators=30, random_state=42)
clf.fit(X_train, y_train)
clf_probs = clf.predict_proba(X_test)
uncalibrated_brier = multiclass_brier(y_test, clf_probs, n_classes=n_classes)
cal_clf = CalibratedClassifierCV(clf, method=method, cv=5, ensemble=ensemble)
cal_clf.fit(X_train, y_train)
cal_clf_probs = cal_clf.predict_proba(X_test)
calibrated_brier = multiclass_brier(y_test, cal_clf_probs, n_classes=n_classes)
assert calibrated_brier < 1.1 * uncalibrated_brier
def test_calibration_zero_probability():
# Test an edge case where _CalibratedClassifier avoids numerical errors
# in the multiclass normalization step if all the calibrators output
# are zero all at once for a given sample and instead fallback to uniform
# probabilities.
class ZeroCalibrator:
# This function is called from _CalibratedClassifier.predict_proba.
def predict(self, X):
return np.zeros(X.shape[0])
X, y = make_blobs(
n_samples=50, n_features=10, random_state=7, centers=10, cluster_std=15.0
)
clf = DummyClassifier().fit(X, y)
calibrator = ZeroCalibrator()
cal_clf = _CalibratedClassifier(
estimator=clf, calibrators=[calibrator], classes=clf.classes_
)
probas = cal_clf.predict_proba(X)
# Check that all probabilities are uniformly 1. / clf.n_classes_
assert_allclose(probas, 1.0 / clf.n_classes_)
@ignore_warnings(category=FutureWarning)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_calibration_prefit(csr_container):
"""Test calibration for prefitted classifiers"""
# TODO(1.8): Remove cv="prefit" options here and the @ignore_warnings of the test
n_samples = 50
X, y = make_classification(n_samples=3 * n_samples, n_features=6, random_state=42)
sample_weight = np.random.RandomState(seed=42).uniform(size=y.size)
X -= X.min() # MultinomialNB only allows positive X
# split train and test
X_train, y_train, sw_train = X[:n_samples], y[:n_samples], sample_weight[:n_samples]
X_calib, y_calib, sw_calib = (
X[n_samples : 2 * n_samples],
y[n_samples : 2 * n_samples],
sample_weight[n_samples : 2 * n_samples],
)
X_test, y_test = X[2 * n_samples :], y[2 * n_samples :]
# Naive-Bayes
clf = MultinomialNB()
# Check error if clf not prefit
unfit_clf = CalibratedClassifierCV(clf, cv="prefit")
with pytest.raises(NotFittedError):
unfit_clf.fit(X_calib, y_calib)
clf.fit(X_train, y_train, sw_train)
prob_pos_clf = clf.predict_proba(X_test)[:, 1]
# Naive Bayes with calibration
for this_X_calib, this_X_test in [
(X_calib, X_test),
(csr_container(X_calib), csr_container(X_test)),
]:
for method in ["isotonic", "sigmoid"]:
cal_clf_prefit = CalibratedClassifierCV(clf, method=method, cv="prefit")
cal_clf_frozen = CalibratedClassifierCV(FrozenEstimator(clf), method=method)
for sw in [sw_calib, None]:
cal_clf_prefit.fit(this_X_calib, y_calib, sample_weight=sw)
cal_clf_frozen.fit(this_X_calib, y_calib, sample_weight=sw)
y_prob_prefit = cal_clf_prefit.predict_proba(this_X_test)
y_prob_frozen = cal_clf_frozen.predict_proba(this_X_test)
y_pred_prefit = cal_clf_prefit.predict(this_X_test)
y_pred_frozen = cal_clf_frozen.predict(this_X_test)
prob_pos_cal_clf_prefit = y_prob_prefit[:, 1]
prob_pos_cal_clf_frozen = y_prob_frozen[:, 1]
assert_array_equal(y_pred_prefit, y_pred_frozen)
assert_array_equal(
y_pred_prefit, np.array([0, 1])[np.argmax(y_prob_prefit, axis=1)]
)
assert brier_score_loss(y_test, prob_pos_clf) > brier_score_loss(
y_test, prob_pos_cal_clf_frozen
)
@pytest.mark.parametrize("method", ["sigmoid", "isotonic"])
def test_calibration_ensemble_false(data, method):
# Test that `ensemble=False` is the same as using predictions from
# `cross_val_predict` to train calibrator.
X, y = data
clf = LinearSVC(random_state=7)
cal_clf = CalibratedClassifierCV(clf, method=method, cv=3, ensemble=False)
cal_clf.fit(X, y)
cal_probas = cal_clf.predict_proba(X)
# Get probas manually
unbiased_preds = cross_val_predict(clf, X, y, cv=3, method="decision_function")
if method == "isotonic":
calibrator = IsotonicRegression(out_of_bounds="clip")
else:
calibrator = _SigmoidCalibration()
calibrator.fit(unbiased_preds, y)
# Use `clf` fit on all data
clf.fit(X, y)
clf_df = clf.decision_function(X)
manual_probas = calibrator.predict(clf_df)
assert_allclose(cal_probas[:, 1], manual_probas)
def test_sigmoid_calibration():
"""Test calibration values with Platt sigmoid model"""
exF = np.array([5, -4, 1.0])
exY = np.array([1, -1, -1])
# computed from my python port of the C++ code in LibSVM
AB_lin_libsvm = np.array([-0.20261354391187855, 0.65236314980010512])
assert_array_almost_equal(AB_lin_libsvm, _sigmoid_calibration(exF, exY), 3)
lin_prob = 1.0 / (1.0 + np.exp(AB_lin_libsvm[0] * exF + AB_lin_libsvm[1]))
sk_prob = _SigmoidCalibration().fit(exF, exY).predict(exF)
assert_array_almost_equal(lin_prob, sk_prob, 6)
# check that _SigmoidCalibration().fit only accepts 1d array or 2d column
# arrays
with pytest.raises(ValueError):
_SigmoidCalibration().fit(np.vstack((exF, exF)), exY)
def test_calibration_curve():
"""Check calibration_curve function"""
y_true = np.array([0, 0, 0, 1, 1, 1])
y_pred = np.array([0.0, 0.1, 0.2, 0.8, 0.9, 1.0])
prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=2)
assert len(prob_true) == len(prob_pred)
assert len(prob_true) == 2
assert_almost_equal(prob_true, [0, 1])
assert_almost_equal(prob_pred, [0.1, 0.9])
# Probabilities outside [0, 1] should not be accepted at all.
with pytest.raises(ValueError):
calibration_curve([1], [-0.1])
# test that quantiles work as expected
y_true2 = np.array([0, 0, 0, 0, 1, 1])
y_pred2 = np.array([0.0, 0.1, 0.2, 0.5, 0.9, 1.0])
prob_true_quantile, prob_pred_quantile = calibration_curve(
y_true2, y_pred2, n_bins=2, strategy="quantile"
)
assert len(prob_true_quantile) == len(prob_pred_quantile)
assert len(prob_true_quantile) == 2
assert_almost_equal(prob_true_quantile, [0, 2 / 3])
assert_almost_equal(prob_pred_quantile, [0.1, 0.8])
# Check that error is raised when invalid strategy is selected
with pytest.raises(ValueError):
calibration_curve(y_true2, y_pred2, strategy="percentile")
@pytest.mark.parametrize("ensemble", [True, False])
def test_calibration_nan_imputer(ensemble):
"""Test that calibration can accept nan"""
X, y = make_classification(
n_samples=10, n_features=2, n_informative=2, n_redundant=0, random_state=42
)
X[0, 0] = np.nan
clf = Pipeline(
[("imputer", SimpleImputer()), ("rf", RandomForestClassifier(n_estimators=1))]
)
clf_c = CalibratedClassifierCV(clf, cv=2, method="isotonic", ensemble=ensemble)
clf_c.fit(X, y)
clf_c.predict(X)
@pytest.mark.parametrize("ensemble", [True, False])
def test_calibration_prob_sum(ensemble):
# Test that sum of probabilities is (max) 1. A non-regression test for
# issue #7796 - when test has fewer classes than train
X, _ = make_classification(n_samples=10, n_features=5, n_classes=2)
y = [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]
clf = LinearSVC(C=1.0, random_state=7)
# In the first and last fold, test will have 1 class while train will have 2
clf_prob = CalibratedClassifierCV(
clf, method="sigmoid", cv=KFold(n_splits=3), ensemble=ensemble
)
clf_prob.fit(X, y)
assert_allclose(clf_prob.predict_proba(X).sum(axis=1), 1.0)
@pytest.mark.parametrize("ensemble", [True, False])
def test_calibration_less_classes(ensemble):
# Test to check calibration works fine when train set in a test-train
# split does not contain all classes
# In 1st split, train is missing class 0
# In 3rd split, train is missing class 3
X = np.random.randn(12, 5)
y = [0, 0, 0, 1] + [1, 1, 2, 2] + [2, 3, 3, 3]
clf = DecisionTreeClassifier(random_state=7)
cal_clf = CalibratedClassifierCV(
clf, method="sigmoid", cv=KFold(3), ensemble=ensemble
)
cal_clf.fit(X, y)
if ensemble:
classes = np.arange(4)
for calib_i, class_i in zip([0, 2], [0, 3]):
proba = cal_clf.calibrated_classifiers_[calib_i].predict_proba(X)
# Check that the unobserved class has proba=0
assert_array_equal(proba[:, class_i], np.zeros(len(y)))
# Check for all other classes proba>0
assert np.all(proba[:, classes != class_i] > 0)
# When `ensemble=False`, `cross_val_predict` is used to compute predictions
# to fit only one `calibrated_classifiers_`
else:
proba = cal_clf.calibrated_classifiers_[0].predict_proba(X)
assert_array_almost_equal(proba.sum(axis=1), np.ones(proba.shape[0]))
@pytest.mark.parametrize(
"X",
[
np.random.RandomState(42).randn(15, 5, 2),
np.random.RandomState(42).randn(15, 5, 2, 6),
],
)
def test_calibration_accepts_ndarray(X):
"""Test that calibration accepts n-dimensional arrays as input"""
y = [1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0]
class MockTensorClassifier(ClassifierMixin, BaseEstimator):
"""A toy estimator that accepts tensor inputs"""
def fit(self, X, y):
self.classes_ = np.unique(y)
return self
def decision_function(self, X):
# toy decision function that just needs to have the right shape:
return X.reshape(X.shape[0], -1).sum(axis=1)
calibrated_clf = CalibratedClassifierCV(MockTensorClassifier())
# we should be able to fit this classifier with no error
calibrated_clf.fit(X, y)
@pytest.fixture
def dict_data():
dict_data = [
{"state": "NY", "age": "adult"},
{"state": "TX", "age": "adult"},
{"state": "VT", "age": "child"},
{"state": "CT", "age": "adult"},
{"state": "BR", "age": "child"},
]
text_labels = [1, 0, 1, 1, 0]
return dict_data, text_labels
@pytest.fixture
def dict_data_pipeline(dict_data):
X, y = dict_data
pipeline_prefit = Pipeline(
[("vectorizer", DictVectorizer()), ("clf", RandomForestClassifier())]
)
return pipeline_prefit.fit(X, y)
def test_calibration_dict_pipeline(dict_data, dict_data_pipeline):
"""Test that calibration works in prefit pipeline with transformer
`X` is not array-like, sparse matrix or dataframe at the start.
See https://github.com/scikit-learn/scikit-learn/issues/8710
Also test it can predict without running into validation errors.
See https://github.com/scikit-learn/scikit-learn/issues/19637
"""
X, y = dict_data
clf = dict_data_pipeline
calib_clf = CalibratedClassifierCV(FrozenEstimator(clf), cv=2)
calib_clf.fit(X, y)
# Check attributes are obtained from fitted estimator
assert_array_equal(calib_clf.classes_, clf.classes_)
# Neither the pipeline nor the calibration meta-estimator
# expose the n_features_in_ check on this kind of data.
assert not hasattr(clf, "n_features_in_")
assert not hasattr(calib_clf, "n_features_in_")
# Ensure that no error is thrown with predict and predict_proba
calib_clf.predict(X)
calib_clf.predict_proba(X)
@pytest.mark.parametrize(
"clf, cv",
[
pytest.param(LinearSVC(C=1), 2),
pytest.param(LinearSVC(C=1), "prefit"),
],
)
def test_calibration_attributes(clf, cv):
# Check that `n_features_in_` and `classes_` attributes created properly
X, y = make_classification(n_samples=10, n_features=5, n_classes=2, random_state=7)
if cv == "prefit":
clf = clf.fit(X, y)
calib_clf = CalibratedClassifierCV(clf, cv=cv)
calib_clf.fit(X, y)
if cv == "prefit":
assert_array_equal(calib_clf.classes_, clf.classes_)
assert calib_clf.n_features_in_ == clf.n_features_in_
else:
classes = LabelEncoder().fit(y).classes_
assert_array_equal(calib_clf.classes_, classes)
assert calib_clf.n_features_in_ == X.shape[1]
def test_calibration_inconsistent_prefit_n_features_in():
# Check that `n_features_in_` from prefit base estimator
# is consistent with training set
X, y = make_classification(n_samples=10, n_features=5, n_classes=2, random_state=7)
clf = LinearSVC(C=1).fit(X, y)
calib_clf = CalibratedClassifierCV(FrozenEstimator(clf))
msg = "X has 3 features, but LinearSVC is expecting 5 features as input."
with pytest.raises(ValueError, match=msg):
calib_clf.fit(X[:, :3], y)
def test_calibration_votingclassifier():
# Check that `CalibratedClassifier` works with `VotingClassifier`.
# The method `predict_proba` from `VotingClassifier` is dynamically
# defined via a property that only works when voting="soft".
X, y = make_classification(n_samples=10, n_features=5, n_classes=2, random_state=7)
vote = VotingClassifier(
estimators=[("lr" + str(i), LogisticRegression()) for i in range(3)],
voting="soft",
)
vote.fit(X, y)
calib_clf = CalibratedClassifierCV(estimator=FrozenEstimator(vote))
# smoke test: should not raise an error
calib_clf.fit(X, y)
@pytest.fixture(scope="module")
def iris_data():
return load_iris(return_X_y=True)
@pytest.fixture(scope="module")
def iris_data_binary(iris_data):
X, y = iris_data
return X[y < 2], y[y < 2]
@pytest.mark.parametrize("n_bins", [5, 10])
@pytest.mark.parametrize("strategy", ["uniform", "quantile"])
def test_calibration_display_compute(pyplot, iris_data_binary, n_bins, strategy):
# Ensure `CalibrationDisplay.from_predictions` and `calibration_curve`
# compute the same results. Also checks attributes of the
# CalibrationDisplay object.
X, y = iris_data_binary
lr = LogisticRegression().fit(X, y)
viz = CalibrationDisplay.from_estimator(
lr, X, y, n_bins=n_bins, strategy=strategy, alpha=0.8
)
y_prob = lr.predict_proba(X)[:, 1]
prob_true, prob_pred = calibration_curve(
y, y_prob, n_bins=n_bins, strategy=strategy
)
assert_allclose(viz.prob_true, prob_true)
assert_allclose(viz.prob_pred, prob_pred)
assert_allclose(viz.y_prob, y_prob)
assert viz.estimator_name == "LogisticRegression"
# cannot fail thanks to pyplot fixture
import matplotlib as mpl # noqa
assert isinstance(viz.line_, mpl.lines.Line2D)
assert viz.line_.get_alpha() == 0.8
assert isinstance(viz.ax_, mpl.axes.Axes)
assert isinstance(viz.figure_, mpl.figure.Figure)
assert viz.ax_.get_xlabel() == "Mean predicted probability (Positive class: 1)"
assert viz.ax_.get_ylabel() == "Fraction of positives (Positive class: 1)"
expected_legend_labels = ["LogisticRegression", "Perfectly calibrated"]
legend_labels = viz.ax_.get_legend().get_texts()
assert len(legend_labels) == len(expected_legend_labels)
for labels in legend_labels:
assert labels.get_text() in expected_legend_labels
def test_plot_calibration_curve_pipeline(pyplot, iris_data_binary):
# Ensure pipelines are supported by CalibrationDisplay.from_estimator
X, y = iris_data_binary
clf = make_pipeline(StandardScaler(), LogisticRegression())
clf.fit(X, y)
viz = CalibrationDisplay.from_estimator(clf, X, y)
expected_legend_labels = [viz.estimator_name, "Perfectly calibrated"]
legend_labels = viz.ax_.get_legend().get_texts()
assert len(legend_labels) == len(expected_legend_labels)
for labels in legend_labels:
assert labels.get_text() in expected_legend_labels
@pytest.mark.parametrize(
"name, expected_label", [(None, "_line1"), ("my_est", "my_est")]
)
def test_calibration_display_default_labels(pyplot, name, expected_label):
prob_true = np.array([0, 1, 1, 0])
prob_pred = np.array([0.2, 0.8, 0.8, 0.4])
y_prob = np.array([])
viz = CalibrationDisplay(prob_true, prob_pred, y_prob, estimator_name=name)
viz.plot()
expected_legend_labels = [] if name is None else [name]
expected_legend_labels.append("Perfectly calibrated")
legend_labels = viz.ax_.get_legend().get_texts()
assert len(legend_labels) == len(expected_legend_labels)
for labels in legend_labels:
assert labels.get_text() in expected_legend_labels
def test_calibration_display_label_class_plot(pyplot):
# Checks that when instantiating `CalibrationDisplay` class then calling
# `plot`, `self.estimator_name` is the one given in `plot`
prob_true = np.array([0, 1, 1, 0])
prob_pred = np.array([0.2, 0.8, 0.8, 0.4])
y_prob = np.array([])
name = "name one"
viz = CalibrationDisplay(prob_true, prob_pred, y_prob, estimator_name=name)
assert viz.estimator_name == name
name = "name two"
viz.plot(name=name)
expected_legend_labels = [name, "Perfectly calibrated"]
legend_labels = viz.ax_.get_legend().get_texts()
assert len(legend_labels) == len(expected_legend_labels)
for labels in legend_labels:
assert labels.get_text() in expected_legend_labels
@pytest.mark.parametrize("constructor_name", ["from_estimator", "from_predictions"])
def test_calibration_display_name_multiple_calls(
constructor_name, pyplot, iris_data_binary
):
# Check that the `name` used when calling
# `CalibrationDisplay.from_predictions` or
# `CalibrationDisplay.from_estimator` is used when multiple
# `CalibrationDisplay.viz.plot()` calls are made.
X, y = iris_data_binary
clf_name = "my hand-crafted name"
clf = LogisticRegression().fit(X, y)
y_prob = clf.predict_proba(X)[:, 1]
constructor = getattr(CalibrationDisplay, constructor_name)
params = (clf, X, y) if constructor_name == "from_estimator" else (y, y_prob)
viz = constructor(*params, name=clf_name)
assert viz.estimator_name == clf_name
pyplot.close("all")
viz.plot()
expected_legend_labels = [clf_name, "Perfectly calibrated"]
legend_labels = viz.ax_.get_legend().get_texts()
assert len(legend_labels) == len(expected_legend_labels)
for labels in legend_labels:
assert labels.get_text() in expected_legend_labels
pyplot.close("all")
clf_name = "another_name"
viz.plot(name=clf_name)
assert len(legend_labels) == len(expected_legend_labels)
for labels in legend_labels:
assert labels.get_text() in expected_legend_labels
def test_calibration_display_ref_line(pyplot, iris_data_binary):
# Check that `ref_line` only appears once
X, y = iris_data_binary
lr = LogisticRegression().fit(X, y)
dt = DecisionTreeClassifier().fit(X, y)
viz = CalibrationDisplay.from_estimator(lr, X, y)
viz2 = CalibrationDisplay.from_estimator(dt, X, y, ax=viz.ax_)
labels = viz2.ax_.get_legend_handles_labels()[1]
assert labels.count("Perfectly calibrated") == 1
@pytest.mark.parametrize("dtype_y_str", [str, object])
def test_calibration_curve_pos_label_error_str(dtype_y_str):
"""Check error message when a `pos_label` is not specified with `str` targets."""
rng = np.random.RandomState(42)
y1 = np.array(["spam"] * 3 + ["eggs"] * 2, dtype=dtype_y_str)
y2 = rng.randint(0, 2, size=y1.size)
err_msg = (
"y_true takes value in {'eggs', 'spam'} and pos_label is not "
"specified: either make y_true take value in {0, 1} or {-1, 1} or "
"pass pos_label explicitly"
)
with pytest.raises(ValueError, match=err_msg):
calibration_curve(y1, y2)
@pytest.mark.parametrize("dtype_y_str", [str, object])
def test_calibration_curve_pos_label(dtype_y_str):
"""Check the behaviour when passing explicitly `pos_label`."""
y_true = np.array([0, 0, 0, 1, 1, 1, 1, 1, 1])
classes = np.array(["spam", "egg"], dtype=dtype_y_str)
y_true_str = classes[y_true]
y_pred = np.array([0.1, 0.2, 0.3, 0.4, 0.65, 0.7, 0.8, 0.9, 1.0])
# default case
prob_true, _ = calibration_curve(y_true, y_pred, n_bins=4)
assert_allclose(prob_true, [0, 0.5, 1, 1])
# if `y_true` contains `str`, then `pos_label` is required
prob_true, _ = calibration_curve(y_true_str, y_pred, n_bins=4, pos_label="egg")
assert_allclose(prob_true, [0, 0.5, 1, 1])
prob_true, _ = calibration_curve(y_true, 1 - y_pred, n_bins=4, pos_label=0)
assert_allclose(prob_true, [0, 0, 0.5, 1])
prob_true, _ = calibration_curve(y_true_str, 1 - y_pred, n_bins=4, pos_label="spam")
assert_allclose(prob_true, [0, 0, 0.5, 1])
@pytest.mark.parametrize(
"kwargs",
[
{"c": "red", "lw": 2, "ls": "-."},
{"color": "red", "linewidth": 2, "linestyle": "-."},
],
)
def test_calibration_display_kwargs(pyplot, iris_data_binary, kwargs):
"""Check that matplotlib aliases are handled."""
X, y = iris_data_binary
lr = LogisticRegression().fit(X, y)
viz = CalibrationDisplay.from_estimator(lr, X, y, **kwargs)
assert viz.line_.get_color() == "red"
assert viz.line_.get_linewidth() == 2
assert viz.line_.get_linestyle() == "-."
@pytest.mark.parametrize("pos_label, expected_pos_label", [(None, 1), (0, 0), (1, 1)])
def test_calibration_display_pos_label(
pyplot, iris_data_binary, pos_label, expected_pos_label
):
"""Check the behaviour of `pos_label` in the `CalibrationDisplay`."""
X, y = iris_data_binary
lr = LogisticRegression().fit(X, y)
viz = CalibrationDisplay.from_estimator(lr, X, y, pos_label=pos_label)
y_prob = lr.predict_proba(X)[:, expected_pos_label]
prob_true, prob_pred = calibration_curve(y, y_prob, pos_label=pos_label)
assert_allclose(viz.prob_true, prob_true)
assert_allclose(viz.prob_pred, prob_pred)
assert_allclose(viz.y_prob, y_prob)
assert (
viz.ax_.get_xlabel()
== f"Mean predicted probability (Positive class: {expected_pos_label})"
)
assert (
viz.ax_.get_ylabel()
== f"Fraction of positives (Positive class: {expected_pos_label})"
)
expected_legend_labels = [lr.__class__.__name__, "Perfectly calibrated"]
legend_labels = viz.ax_.get_legend().get_texts()
assert len(legend_labels) == len(expected_legend_labels)
for labels in legend_labels:
assert labels.get_text() in expected_legend_labels
@pytest.mark.parametrize("method", ["sigmoid", "isotonic"])
@pytest.mark.parametrize("ensemble", [True, False])
def test_calibrated_classifier_cv_double_sample_weights_equivalence(method, ensemble):
"""Check that passing repeating twice the dataset `X` is equivalent to
passing a `sample_weight` with a factor 2."""
X, y = load_iris(return_X_y=True)
# Scale the data to avoid any convergence issue
X = StandardScaler().fit_transform(X)
# Only use 2 classes
X, y = X[:100], y[:100]
sample_weight = np.ones_like(y) * 2
# Interlace the data such that a 2-fold cross-validation will be equivalent
# to using the original dataset with a sample weights of 2
X_twice = np.zeros((X.shape[0] * 2, X.shape[1]), dtype=X.dtype)
X_twice[::2, :] = X
X_twice[1::2, :] = X
y_twice = np.zeros(y.shape[0] * 2, dtype=y.dtype)
y_twice[::2] = y
y_twice[1::2] = y
estimator = LogisticRegression()
calibrated_clf_without_weights = CalibratedClassifierCV(
estimator,
method=method,
ensemble=ensemble,
cv=2,
)
calibrated_clf_with_weights = clone(calibrated_clf_without_weights)
calibrated_clf_with_weights.fit(X, y, sample_weight=sample_weight)
calibrated_clf_without_weights.fit(X_twice, y_twice)
# Check that the underlying fitted estimators have the same coefficients
for est_with_weights, est_without_weights in zip(
calibrated_clf_with_weights.calibrated_classifiers_,
calibrated_clf_without_weights.calibrated_classifiers_,
):
assert_allclose(
est_with_weights.estimator.coef_,
est_without_weights.estimator.coef_,
)
# Check that the predictions are the same
y_pred_with_weights = calibrated_clf_with_weights.predict_proba(X)
y_pred_without_weights = calibrated_clf_without_weights.predict_proba(X)
assert_allclose(y_pred_with_weights, y_pred_without_weights)
@pytest.mark.parametrize("fit_params_type", ["list", "array"])
def test_calibration_with_fit_params(fit_params_type, data):
"""Tests that fit_params are passed to the underlying base estimator.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/12384
"""
X, y = data
fit_params = {
"a": _convert_container(y, fit_params_type),
"b": _convert_container(y, fit_params_type),
}
clf = CheckingClassifier(expected_fit_params=["a", "b"])
pc_clf = CalibratedClassifierCV(clf)
pc_clf.fit(X, y, **fit_params)
@pytest.mark.parametrize(
"sample_weight",
[
[1.0] * N_SAMPLES,
np.ones(N_SAMPLES),
],
)
def test_calibration_with_sample_weight_estimator(sample_weight, data):
"""Tests that sample_weight is passed to the underlying base
estimator.
"""
X, y = data
clf = CheckingClassifier(expected_sample_weight=True)
pc_clf = CalibratedClassifierCV(clf)
pc_clf.fit(X, y, sample_weight=sample_weight)
def test_calibration_without_sample_weight_estimator(data):
"""Check that even if the estimator doesn't support
sample_weight, fitting with sample_weight still works.
There should be a warning, since the sample_weight is not passed
on to the estimator.
"""
X, y = data
sample_weight = np.ones_like(y)
class ClfWithoutSampleWeight(CheckingClassifier):
def fit(self, X, y, **fit_params):
assert "sample_weight" not in fit_params
return super().fit(X, y, **fit_params)
clf = ClfWithoutSampleWeight()
pc_clf = CalibratedClassifierCV(clf)
with pytest.warns(UserWarning):
pc_clf.fit(X, y, sample_weight=sample_weight)
def test_calibration_with_non_sample_aligned_fit_param(data):
"""Check that CalibratedClassifierCV does not enforce sample alignment
for fit parameters."""
class TestClassifier(LogisticRegression):
def fit(self, X, y, sample_weight=None, fit_param=None):
assert fit_param is not None
return super().fit(X, y, sample_weight=sample_weight)
CalibratedClassifierCV(estimator=TestClassifier()).fit(
*data, fit_param=np.ones(len(data[1]) + 1)
)
def test_calibrated_classifier_cv_works_with_large_confidence_scores(
global_random_seed,
):
"""Test that :class:`CalibratedClassifierCV` works with large confidence
scores when using the `sigmoid` method, particularly with the
:class:`SGDClassifier`.
Non-regression test for issue #26766.
"""
prob = 0.67
n = 1000
random_noise = np.random.default_rng(global_random_seed).normal(size=n)
y = np.array([1] * int(n * prob) + [0] * (n - int(n * prob)))
X = 1e5 * y.reshape((-1, 1)) + random_noise
# Check that the decision function of SGDClassifier produces predicted
# values that are quite large, for the data under consideration.
cv = check_cv(cv=None, y=y, classifier=True)
indices = cv.split(X, y)
for train, test in indices:
X_train, y_train = X[train], y[train]
X_test = X[test]
sgd_clf = SGDClassifier(loss="squared_hinge", random_state=global_random_seed)
sgd_clf.fit(X_train, y_train)
predictions = sgd_clf.decision_function(X_test)
assert (predictions > 1e4).any()
# Compare the CalibratedClassifierCV using the sigmoid method with the
# CalibratedClassifierCV using the isotonic method. The isotonic method
# is used for comparison because it is numerically stable.
clf_sigmoid = CalibratedClassifierCV(
SGDClassifier(loss="squared_hinge", random_state=global_random_seed),
method="sigmoid",
)
score_sigmoid = cross_val_score(clf_sigmoid, X, y, scoring="roc_auc")
# The isotonic method is used for comparison because it is numerically
# stable.
clf_isotonic = CalibratedClassifierCV(
SGDClassifier(loss="squared_hinge", random_state=global_random_seed),
method="isotonic",
)
score_isotonic = cross_val_score(clf_isotonic, X, y, scoring="roc_auc")
# The AUC score should be the same because it is invariant under
# strictly monotonic conditions
assert_allclose(score_sigmoid, score_isotonic)
def test_sigmoid_calibration_max_abs_prediction_threshold(global_random_seed):
random_state = np.random.RandomState(seed=global_random_seed)
n = 100
y = random_state.randint(0, 2, size=n)
# Check that for small enough predictions ranging from -2 to 2, the
# threshold value has no impact on the outcome
predictions_small = random_state.uniform(low=-2, high=2, size=100)
# Using a threshold lower than the maximum absolute value of the
# predictions enables internal re-scaling by max(abs(predictions_small)).
threshold_1 = 0.1
a1, b1 = _sigmoid_calibration(
predictions=predictions_small,
y=y,
max_abs_prediction_threshold=threshold_1,
)
# Using a larger threshold disables rescaling.
threshold_2 = 10
a2, b2 = _sigmoid_calibration(
predictions=predictions_small,
y=y,
max_abs_prediction_threshold=threshold_2,
)
# Using default threshold of 30 also disables the scaling.
a3, b3 = _sigmoid_calibration(
predictions=predictions_small,
y=y,
)
# Depends on the tolerance of the underlying quasy-newton solver which is
# not too strict by default.
atol = 1e-6
assert_allclose(a1, a2, atol=atol)
assert_allclose(a2, a3, atol=atol)
assert_allclose(b1, b2, atol=atol)
assert_allclose(b2, b3, atol=atol)
def test_float32_predict_proba(data):
"""Check that CalibratedClassifierCV works with float32 predict proba.
Non-regression test for gh-28245.
"""
class DummyClassifer32(DummyClassifier):
def predict_proba(self, X):
return super().predict_proba(X).astype(np.float32)
model = DummyClassifer32()
calibrator = CalibratedClassifierCV(model)
# Does not raise an error
calibrator.fit(*data)
def test_error_less_class_samples_than_folds():
"""Check that CalibratedClassifierCV works with string targets.
non-regression test for issue #28841.
"""
X = np.random.normal(size=(20, 3))
y = ["a"] * 10 + ["b"] * 10
CalibratedClassifierCV(cv=3).fit(X, y)
|