File size: 14,398 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
"""
General tests for all estimators in sklearn.
"""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import os
import pkgutil
import re
import warnings
from functools import partial
from inspect import isgenerator
from itertools import chain
import pytest
from scipy.linalg import LinAlgWarning
import sklearn
from sklearn.base import BaseEstimator
from sklearn.compose import ColumnTransformer
from sklearn.datasets import make_classification
from sklearn.exceptions import ConvergenceWarning
# make it possible to discover experimental estimators when calling `all_estimators`
from sklearn.experimental import (
enable_halving_search_cv, # noqa
enable_iterative_imputer, # noqa
)
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import FeatureUnion, make_pipeline
from sklearn.preprocessing import (
FunctionTransformer,
MinMaxScaler,
OneHotEncoder,
StandardScaler,
)
from sklearn.utils import all_estimators
from sklearn.utils._test_common.instance_generator import (
_get_check_estimator_ids,
_get_expected_failed_checks,
_tested_estimators,
)
from sklearn.utils._testing import (
SkipTest,
ignore_warnings,
)
from sklearn.utils.estimator_checks import (
check_dataframe_column_names_consistency,
check_estimator,
check_get_feature_names_out_error,
check_global_output_transform_pandas,
check_global_set_output_transform_polars,
check_inplace_ensure_writeable,
check_param_validation,
check_set_output_transform,
check_set_output_transform_pandas,
check_set_output_transform_polars,
check_transformer_get_feature_names_out,
check_transformer_get_feature_names_out_pandas,
parametrize_with_checks,
)
from sklearn.utils.fixes import _IS_WASM
def test_all_estimator_no_base_class():
# test that all_estimators doesn't find abstract classes.
for name, Estimator in all_estimators():
msg = (
"Base estimators such as {0} should not be included in all_estimators"
).format(name)
assert not name.lower().startswith("base"), msg
def _sample_func(x, y=1):
pass
class CallableEstimator(BaseEstimator):
"""Dummy development stub for an estimator.
This is to make sure a callable estimator passes common tests.
"""
def __call__(self):
pass # pragma: nocover
@pytest.mark.parametrize(
"val, expected",
[
(partial(_sample_func, y=1), "_sample_func(y=1)"),
(_sample_func, "_sample_func"),
(partial(_sample_func, "world"), "_sample_func"),
(LogisticRegression(C=2.0), "LogisticRegression(C=2.0)"),
(
LogisticRegression(
random_state=1,
solver="newton-cg",
class_weight="balanced",
warm_start=True,
),
(
"LogisticRegression(class_weight='balanced',random_state=1,"
"solver='newton-cg',warm_start=True)"
),
),
(CallableEstimator(), "CallableEstimator()"),
],
)
def test_get_check_estimator_ids(val, expected):
assert _get_check_estimator_ids(val) == expected
@parametrize_with_checks(
list(_tested_estimators()), expected_failed_checks=_get_expected_failed_checks
)
def test_estimators(estimator, check, request):
# Common tests for estimator instances
with ignore_warnings(
category=(FutureWarning, ConvergenceWarning, UserWarning, LinAlgWarning)
):
check(estimator)
# TODO(1.8): remove test when generate_only is removed
def test_check_estimator_generate_only_deprecation():
"""Check that check_estimator with generate_only=True raises a deprecation
warning."""
with pytest.warns(FutureWarning, match="`generate_only` is deprecated in 1.6"):
all_instance_gen_checks = check_estimator(
LogisticRegression(), generate_only=True
)
assert isgenerator(all_instance_gen_checks)
@pytest.mark.xfail(_IS_WASM, reason="importlib not supported for Pyodide packages")
@pytest.mark.filterwarnings(
"ignore:Since version 1.0, it is not needed to import "
"enable_hist_gradient_boosting anymore"
)
def test_import_all_consistency():
sklearn_path = [os.path.dirname(sklearn.__file__)]
# Smoke test to check that any name in a __all__ list is actually defined
# in the namespace of the module or package.
pkgs = pkgutil.walk_packages(
path=sklearn_path, prefix="sklearn.", onerror=lambda _: None
)
submods = [modname for _, modname, _ in pkgs]
for modname in submods + ["sklearn"]:
if ".tests." in modname:
continue
# Avoid test suite depending on build dependencies, for example Cython
if "sklearn._build_utils" in modname:
continue
package = __import__(modname, fromlist="dummy")
for name in getattr(package, "__all__", ()):
assert hasattr(package, name), "Module '{0}' has no attribute '{1}'".format(
modname, name
)
def test_root_import_all_completeness():
sklearn_path = [os.path.dirname(sklearn.__file__)]
EXCEPTIONS = ("utils", "tests", "base", "conftest")
for _, modname, _ in pkgutil.walk_packages(
path=sklearn_path, onerror=lambda _: None
):
if "." in modname or modname.startswith("_") or modname in EXCEPTIONS:
continue
assert modname in sklearn.__all__
def test_all_tests_are_importable():
# Ensure that for each contentful subpackage, there is a test directory
# within it that is also a subpackage (i.e. a directory with __init__.py)
HAS_TESTS_EXCEPTIONS = re.compile(
r"""(?x)
\.externals(\.|$)|
\.tests(\.|$)|
\._
"""
)
resource_modules = {
"sklearn.datasets.data",
"sklearn.datasets.descr",
"sklearn.datasets.images",
}
sklearn_path = [os.path.dirname(sklearn.__file__)]
lookup = {
name: ispkg
for _, name, ispkg in pkgutil.walk_packages(sklearn_path, prefix="sklearn.")
}
missing_tests = [
name
for name, ispkg in lookup.items()
if ispkg
and name not in resource_modules
and not HAS_TESTS_EXCEPTIONS.search(name)
and name + ".tests" not in lookup
]
assert missing_tests == [], (
"{0} do not have `tests` subpackages. "
"Perhaps they require "
"__init__.py or a meson.build "
"in the parent "
"directory".format(missing_tests)
)
def test_class_support_removed():
# Make sure passing classes to check_estimator or parametrize_with_checks
# raises an error
msg = "Passing a class was deprecated.* isn't supported anymore"
with pytest.raises(TypeError, match=msg):
check_estimator(LogisticRegression)
with pytest.raises(TypeError, match=msg):
parametrize_with_checks([LogisticRegression])
def _estimators_that_predict_in_fit():
for estimator in _tested_estimators():
est_params = set(estimator.get_params())
if "oob_score" in est_params:
yield estimator.set_params(oob_score=True, bootstrap=True)
elif "early_stopping" in est_params:
est = estimator.set_params(early_stopping=True, n_iter_no_change=1)
if est.__class__.__name__ in {"MLPClassifier", "MLPRegressor"}:
# TODO: FIX MLP to not check validation set during MLP
yield pytest.param(
est, marks=pytest.mark.xfail(msg="MLP still validates in fit")
)
else:
yield est
elif "n_iter_no_change" in est_params:
yield estimator.set_params(n_iter_no_change=1)
# NOTE: When running `check_dataframe_column_names_consistency` on a meta-estimator that
# delegates validation to a base estimator, the check is testing that the base estimator
# is checking for column name consistency.
column_name_estimators = list(
chain(
_tested_estimators(),
[make_pipeline(LogisticRegression(C=1))],
_estimators_that_predict_in_fit(),
)
)
@pytest.mark.parametrize(
"estimator", column_name_estimators, ids=_get_check_estimator_ids
)
def test_pandas_column_name_consistency(estimator):
if isinstance(estimator, ColumnTransformer):
pytest.skip("ColumnTransformer is not tested here")
if "check_dataframe_column_names_consistency" in _get_expected_failed_checks(
estimator
):
pytest.skip(
"Estimator does not support check_dataframe_column_names_consistency"
)
with ignore_warnings(category=(FutureWarning)):
with warnings.catch_warnings(record=True) as record:
check_dataframe_column_names_consistency(
estimator.__class__.__name__, estimator
)
for warning in record:
assert "was fitted without feature names" not in str(warning.message)
# TODO: As more modules support get_feature_names_out they should be removed
# from this list to be tested
GET_FEATURES_OUT_MODULES_TO_IGNORE = [
"ensemble",
"kernel_approximation",
]
def _include_in_get_feature_names_out_check(transformer):
if hasattr(transformer, "get_feature_names_out"):
return True
module = transformer.__module__.split(".")[1]
return module not in GET_FEATURES_OUT_MODULES_TO_IGNORE
GET_FEATURES_OUT_ESTIMATORS = [
est
for est in _tested_estimators("transformer")
if _include_in_get_feature_names_out_check(est)
]
@pytest.mark.parametrize(
"transformer", GET_FEATURES_OUT_ESTIMATORS, ids=_get_check_estimator_ids
)
def test_transformers_get_feature_names_out(transformer):
with ignore_warnings(category=(FutureWarning)):
check_transformer_get_feature_names_out(
transformer.__class__.__name__, transformer
)
check_transformer_get_feature_names_out_pandas(
transformer.__class__.__name__, transformer
)
ESTIMATORS_WITH_GET_FEATURE_NAMES_OUT = [
est for est in _tested_estimators() if hasattr(est, "get_feature_names_out")
]
@pytest.mark.parametrize(
"estimator", ESTIMATORS_WITH_GET_FEATURE_NAMES_OUT, ids=_get_check_estimator_ids
)
def test_estimators_get_feature_names_out_error(estimator):
estimator_name = estimator.__class__.__name__
check_get_feature_names_out_error(estimator_name, estimator)
@pytest.mark.parametrize(
"estimator", list(_tested_estimators()), ids=_get_check_estimator_ids
)
def test_check_param_validation(estimator):
if isinstance(estimator, FeatureUnion):
pytest.skip("FeatureUnion is not tested here")
name = estimator.__class__.__name__
check_param_validation(name, estimator)
SET_OUTPUT_ESTIMATORS = list(
chain(
_tested_estimators("transformer"),
[
make_pipeline(StandardScaler(), MinMaxScaler()),
OneHotEncoder(sparse_output=False),
FunctionTransformer(feature_names_out="one-to-one"),
],
)
)
@pytest.mark.parametrize(
"estimator", SET_OUTPUT_ESTIMATORS, ids=_get_check_estimator_ids
)
def test_set_output_transform(estimator):
name = estimator.__class__.__name__
if not hasattr(estimator, "set_output"):
pytest.skip(
f"Skipping check_set_output_transform for {name}: Does not support"
" set_output API"
)
with ignore_warnings(category=(FutureWarning)):
check_set_output_transform(estimator.__class__.__name__, estimator)
@pytest.mark.parametrize(
"estimator", SET_OUTPUT_ESTIMATORS, ids=_get_check_estimator_ids
)
@pytest.mark.parametrize(
"check_func",
[
check_set_output_transform_pandas,
check_global_output_transform_pandas,
check_set_output_transform_polars,
check_global_set_output_transform_polars,
],
)
def test_set_output_transform_configured(estimator, check_func):
name = estimator.__class__.__name__
if not hasattr(estimator, "set_output"):
pytest.skip(
f"Skipping {check_func.__name__} for {name}: Does not support"
" set_output API yet"
)
with ignore_warnings(category=(FutureWarning)):
check_func(estimator.__class__.__name__, estimator)
@pytest.mark.parametrize(
"estimator", _tested_estimators(), ids=_get_check_estimator_ids
)
def test_check_inplace_ensure_writeable(estimator):
name = estimator.__class__.__name__
if hasattr(estimator, "copy"):
estimator.set_params(copy=False)
elif hasattr(estimator, "copy_X"):
estimator.set_params(copy_X=False)
else:
raise SkipTest(f"{name} doesn't require writeable input.")
# The following estimators can work inplace only with certain settings
if name == "HDBSCAN":
estimator.set_params(metric="precomputed", algorithm="brute")
if name == "PCA":
estimator.set_params(svd_solver="full")
if name == "KernelPCA":
estimator.set_params(kernel="precomputed")
check_inplace_ensure_writeable(name, estimator)
# TODO(1.7): Remove this test when the deprecation cycle is over
def test_transition_public_api_deprecations():
"""This test checks that we raised deprecation warning explaining how to transition
to the new developer public API from 1.5 to 1.6.
"""
class OldEstimator(BaseEstimator):
def fit(self, X, y=None):
X = self._validate_data(X)
self._check_n_features(X, reset=True)
self._check_feature_names(X, reset=True)
return self
def transform(self, X):
return X # pragma: no cover
X, y = make_classification(n_samples=10, n_features=5, random_state=0)
old_estimator = OldEstimator()
with pytest.warns(FutureWarning) as warning_list:
old_estimator.fit(X)
assert len(warning_list) == 3
assert str(warning_list[0].message).startswith(
"`BaseEstimator._validate_data` is deprecated"
)
assert str(warning_list[1].message).startswith(
"`BaseEstimator._check_n_features` is deprecated"
)
assert str(warning_list[2].message).startswith(
"`BaseEstimator._check_feature_names` is deprecated"
)
|