File size: 11,411 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
"""Common tests for metaestimators"""

import functools
from contextlib import suppress
from inspect import signature

import numpy as np
import pytest

from sklearn.base import BaseEstimator, is_regressor
from sklearn.datasets import make_classification
from sklearn.ensemble import BaggingClassifier
from sklearn.exceptions import NotFittedError
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_selection import RFE, RFECV
from sklearn.linear_model import LogisticRegression, Ridge
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.preprocessing import MaxAbsScaler, StandardScaler
from sklearn.semi_supervised import SelfTrainingClassifier
from sklearn.utils import all_estimators
from sklearn.utils._test_common.instance_generator import _construct_instances
from sklearn.utils._testing import SkipTest, set_random_state
from sklearn.utils.estimator_checks import (
    _enforce_estimator_tags_X,
    _enforce_estimator_tags_y,
)
from sklearn.utils.validation import check_is_fitted


class DelegatorData:
    def __init__(
        self,
        name,
        construct,
        skip_methods=(),
        fit_args=make_classification(random_state=0),
    ):
        self.name = name
        self.construct = construct
        self.fit_args = fit_args
        self.skip_methods = skip_methods


# For the following meta estimators we check for the existence of relevant
# methods only if the sub estimator also contains them. Any methods that
# are implemented in the meta estimator themselves and are not dependent
# on the sub estimator are specified in the `skip_methods` parameter.
DELEGATING_METAESTIMATORS = [
    DelegatorData("Pipeline", lambda est: Pipeline([("est", est)])),
    DelegatorData(
        "GridSearchCV",
        lambda est: GridSearchCV(est, param_grid={"param": [5]}, cv=2),
        skip_methods=["score"],
    ),
    DelegatorData(
        "RandomizedSearchCV",
        lambda est: RandomizedSearchCV(
            est, param_distributions={"param": [5]}, cv=2, n_iter=1
        ),
        skip_methods=["score"],
    ),
    DelegatorData("RFE", RFE, skip_methods=["transform", "inverse_transform"]),
    DelegatorData(
        "RFECV", RFECV, skip_methods=["transform", "inverse_transform", "score"]
    ),
    DelegatorData(
        "BaggingClassifier",
        BaggingClassifier,
        skip_methods=[
            "transform",
            "inverse_transform",
            "score",
            "predict_proba",
            "predict_log_proba",
            "predict",
        ],
    ),
    DelegatorData(
        "SelfTrainingClassifier",
        lambda est: SelfTrainingClassifier(est),
        skip_methods=["transform", "inverse_transform", "predict_proba"],
    ),
]


def test_metaestimator_delegation():
    # Ensures specified metaestimators have methods iff subestimator does
    def hides(method):
        @property
        def wrapper(obj):
            if obj.hidden_method == method.__name__:
                raise AttributeError("%r is hidden" % obj.hidden_method)
            return functools.partial(method, obj)

        return wrapper

    class SubEstimator(BaseEstimator):
        def __init__(self, param=1, hidden_method=None):
            self.param = param
            self.hidden_method = hidden_method

        def fit(self, X, y=None, *args, **kwargs):
            self.coef_ = np.arange(X.shape[1])
            self.classes_ = []
            return True

        def _check_fit(self):
            check_is_fitted(self)

        @hides
        def inverse_transform(self, X, *args, **kwargs):
            self._check_fit()
            return X

        @hides
        def transform(self, X, *args, **kwargs):
            self._check_fit()
            return X

        @hides
        def predict(self, X, *args, **kwargs):
            self._check_fit()
            return np.ones(X.shape[0])

        @hides
        def predict_proba(self, X, *args, **kwargs):
            self._check_fit()
            return np.ones(X.shape[0])

        @hides
        def predict_log_proba(self, X, *args, **kwargs):
            self._check_fit()
            return np.ones(X.shape[0])

        @hides
        def decision_function(self, X, *args, **kwargs):
            self._check_fit()
            return np.ones(X.shape[0])

        @hides
        def score(self, X, y, *args, **kwargs):
            self._check_fit()
            return 1.0

    methods = [
        k
        for k in SubEstimator.__dict__.keys()
        if not k.startswith("_") and not k.startswith("fit")
    ]
    methods.sort()

    for delegator_data in DELEGATING_METAESTIMATORS:
        delegate = SubEstimator()
        delegator = delegator_data.construct(delegate)
        for method in methods:
            if method in delegator_data.skip_methods:
                continue
            assert hasattr(delegate, method)
            assert hasattr(
                delegator, method
            ), "%s does not have method %r when its delegate does" % (
                delegator_data.name,
                method,
            )
            # delegation before fit raises a NotFittedError
            if method == "score":
                with pytest.raises(NotFittedError):
                    getattr(delegator, method)(
                        delegator_data.fit_args[0], delegator_data.fit_args[1]
                    )
            else:
                with pytest.raises(NotFittedError):
                    getattr(delegator, method)(delegator_data.fit_args[0])

        delegator.fit(*delegator_data.fit_args)
        for method in methods:
            if method in delegator_data.skip_methods:
                continue
            # smoke test delegation
            if method == "score":
                getattr(delegator, method)(
                    delegator_data.fit_args[0], delegator_data.fit_args[1]
                )
            else:
                getattr(delegator, method)(delegator_data.fit_args[0])

        for method in methods:
            if method in delegator_data.skip_methods:
                continue
            delegate = SubEstimator(hidden_method=method)
            delegator = delegator_data.construct(delegate)
            assert not hasattr(delegate, method)
            assert not hasattr(
                delegator, method
            ), "%s has method %r when its delegate does not" % (
                delegator_data.name,
                method,
            )


def _get_instance_with_pipeline(meta_estimator, init_params):
    """Given a single meta-estimator instance, generate an instance with a pipeline"""
    if {"estimator", "base_estimator", "regressor"} & init_params:
        if is_regressor(meta_estimator):
            estimator = make_pipeline(TfidfVectorizer(), Ridge())
            param_grid = {"ridge__alpha": [0.1, 1.0]}
        else:
            estimator = make_pipeline(TfidfVectorizer(), LogisticRegression())
            param_grid = {"logisticregression__C": [0.1, 1.0]}

        if init_params.intersection(
            {"param_grid", "param_distributions"}
        ):  # SearchCV estimators
            extra_params = {"n_iter": 2} if "n_iter" in init_params else {}
            return type(meta_estimator)(estimator, param_grid, **extra_params)
        else:
            return type(meta_estimator)(estimator)

    if "transformer_list" in init_params:
        # FeatureUnion
        transformer_list = [
            ("trans1", make_pipeline(TfidfVectorizer(), MaxAbsScaler())),
            (
                "trans2",
                make_pipeline(TfidfVectorizer(), StandardScaler(with_mean=False)),
            ),
        ]
        return type(meta_estimator)(transformer_list)

    if "estimators" in init_params:
        # stacking, voting
        if is_regressor(meta_estimator):
            estimator = [
                ("est1", make_pipeline(TfidfVectorizer(), Ridge(alpha=0.1))),
                ("est2", make_pipeline(TfidfVectorizer(), Ridge(alpha=1))),
            ]
        else:
            estimator = [
                (
                    "est1",
                    make_pipeline(TfidfVectorizer(), LogisticRegression(C=0.1)),
                ),
                ("est2", make_pipeline(TfidfVectorizer(), LogisticRegression(C=1))),
            ]
        return type(meta_estimator)(estimator)


def _generate_meta_estimator_instances_with_pipeline():
    """Generate instances of meta-estimators fed with a pipeline

    Are considered meta-estimators all estimators accepting one of "estimator",
    "base_estimator" or "estimators".
    """
    print("estimators: ", len(all_estimators()))
    for _, Estimator in sorted(all_estimators()):
        sig = set(signature(Estimator).parameters)

        print("\n", Estimator.__name__, sig)
        if not sig.intersection(
            {
                "estimator",
                "base_estimator",
                "regressor",
                "transformer_list",
                "estimators",
            }
        ):
            continue

        with suppress(SkipTest):
            for meta_estimator in _construct_instances(Estimator):
                print(meta_estimator)
                yield _get_instance_with_pipeline(meta_estimator, sig)


# TODO: remove data validation for the following estimators
# They should be able to work on any data and delegate data validation to
# their inner estimator(s).
DATA_VALIDATION_META_ESTIMATORS_TO_IGNORE = [
    "AdaBoostClassifier",
    "AdaBoostRegressor",
    "BaggingClassifier",
    "BaggingRegressor",
    "ClassifierChain",  # data validation is necessary
    "FrozenEstimator",  # this estimator cannot be tested like others.
    "IterativeImputer",
    "OneVsOneClassifier",  # input validation can't be avoided
    "RANSACRegressor",
    "RFE",
    "RFECV",
    "RegressorChain",  # data validation is necessary
    "SelfTrainingClassifier",
    "SequentialFeatureSelector",  # not applicable (2D data mandatory)
]

DATA_VALIDATION_META_ESTIMATORS = [
    est
    for est in _generate_meta_estimator_instances_with_pipeline()
    if est.__class__.__name__ not in DATA_VALIDATION_META_ESTIMATORS_TO_IGNORE
]


def _get_meta_estimator_id(estimator):
    return estimator.__class__.__name__


@pytest.mark.parametrize(
    "estimator", DATA_VALIDATION_META_ESTIMATORS, ids=_get_meta_estimator_id
)
def test_meta_estimators_delegate_data_validation(estimator):
    # Check that meta-estimators delegate data validation to the inner
    # estimator(s).
    rng = np.random.RandomState(0)
    set_random_state(estimator)

    n_samples = 30
    X = rng.choice(np.array(["aa", "bb", "cc"], dtype=object), size=n_samples)

    if is_regressor(estimator):
        y = rng.normal(size=n_samples)
    else:
        y = rng.randint(3, size=n_samples)

    # We convert to lists to make sure it works on array-like
    X = _enforce_estimator_tags_X(estimator, X).tolist()
    y = _enforce_estimator_tags_y(estimator, y).tolist()

    # Calling fit should not raise any data validation exception since X is a
    # valid input datastructure for the first step of the pipeline passed as
    # base estimator to the meta estimator.
    estimator.fit(X, y)

    # n_features_in_ should not be defined since data is not tabular data.
    assert not hasattr(estimator, "n_features_in_")