File size: 155,854 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
"""
Module for applying conditional formatting to DataFrames and Series.
"""
from __future__ import annotations

from contextlib import contextmanager
import copy
from functools import partial
import operator
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    overload,
)
import warnings

import numpy as np

from pandas._config import get_option

from pandas.compat._optional import import_optional_dependency
from pandas.util._decorators import (
    Substitution,
    doc,
)
from pandas.util._exceptions import find_stack_level

import pandas as pd
from pandas import (
    IndexSlice,
    RangeIndex,
)
import pandas.core.common as com
from pandas.core.frame import (
    DataFrame,
    Series,
)
from pandas.core.generic import NDFrame
from pandas.core.shared_docs import _shared_docs

from pandas.io.formats.format import save_to_buffer

jinja2 = import_optional_dependency("jinja2", extra="DataFrame.style requires jinja2.")

from pandas.io.formats.style_render import (
    CSSProperties,
    CSSStyles,
    ExtFormatter,
    StylerRenderer,
    Subset,
    Tooltips,
    format_table_styles,
    maybe_convert_css_to_tuples,
    non_reducing_slice,
    refactor_levels,
)

if TYPE_CHECKING:
    from collections.abc import (
        Generator,
        Hashable,
        Sequence,
    )

    from matplotlib.colors import Colormap

    from pandas._typing import (
        Axis,
        AxisInt,
        FilePath,
        IndexLabel,
        IntervalClosedType,
        Level,
        QuantileInterpolation,
        Scalar,
        StorageOptions,
        WriteBuffer,
        WriteExcelBuffer,
    )

    from pandas import ExcelWriter

try:
    import matplotlib as mpl
    import matplotlib.pyplot as plt

    has_mpl = True
except ImportError:
    has_mpl = False


@contextmanager
def _mpl(func: Callable) -> Generator[tuple[Any, Any], None, None]:
    if has_mpl:
        yield plt, mpl
    else:
        raise ImportError(f"{func.__name__} requires matplotlib.")


####
# Shared Doc Strings

subset_args = """subset : label, array-like, IndexSlice, optional
            A valid 2d input to `DataFrame.loc[<subset>]`, or, in the case of a 1d input
            or single key, to `DataFrame.loc[:, <subset>]` where the columns are
            prioritised, to limit ``data`` to *before* applying the function."""

properties_args = """props : str, default None
           CSS properties to use for highlighting. If ``props`` is given, ``color``
           is not used."""

coloring_args = """color : str, default '{default}'
           Background color to use for highlighting."""

buffering_args = """buf : str, path object, file-like object, optional
         String, path object (implementing ``os.PathLike[str]``), or file-like
         object implementing a string ``write()`` function. If ``None``, the result is
         returned as a string."""

encoding_args = """encoding : str, optional
              Character encoding setting for file output (and meta tags if available).
              Defaults to ``pandas.options.styler.render.encoding`` value of "utf-8"."""

#
###


class Styler(StylerRenderer):
    r"""
    Helps style a DataFrame or Series according to the data with HTML and CSS.

    Parameters
    ----------
    data : Series or DataFrame
        Data to be styled - either a Series or DataFrame.
    precision : int, optional
        Precision to round floats to. If not given defaults to
        ``pandas.options.styler.format.precision``.

        .. versionchanged:: 1.4.0
    table_styles : list-like, default None
        List of {selector: (attr, value)} dicts; see Notes.
    uuid : str, default None
        A unique identifier to avoid CSS collisions; generated automatically.
    caption : str, tuple, default None
        String caption to attach to the table. Tuple only used for LaTeX dual captions.
    table_attributes : str, default None
        Items that show up in the opening ``<table>`` tag
        in addition to automatic (by default) id.
    cell_ids : bool, default True
        If True, each cell will have an ``id`` attribute in their HTML tag.
        The ``id`` takes the form ``T_<uuid>_row<num_row>_col<num_col>``
        where ``<uuid>`` is the unique identifier, ``<num_row>`` is the row
        number and ``<num_col>`` is the column number.
    na_rep : str, optional
        Representation for missing values.
        If ``na_rep`` is None, no special formatting is applied, and falls back to
        ``pandas.options.styler.format.na_rep``.

    uuid_len : int, default 5
        If ``uuid`` is not specified, the length of the ``uuid`` to randomly generate
        expressed in hex characters, in range [0, 32].
    decimal : str, optional
        Character used as decimal separator for floats, complex and integers. If not
        given uses ``pandas.options.styler.format.decimal``.

        .. versionadded:: 1.3.0

    thousands : str, optional, default None
        Character used as thousands separator for floats, complex and integers. If not
        given uses ``pandas.options.styler.format.thousands``.

        .. versionadded:: 1.3.0

    escape : str, optional
        Use 'html' to replace the characters ``&``, ``<``, ``>``, ``'``, and ``"``
        in cell display string with HTML-safe sequences.
        Use 'latex' to replace the characters ``&``, ``%``, ``$``, ``#``, ``_``,
        ``{``, ``}``, ``~``, ``^``, and ``\`` in the cell display string with
        LaTeX-safe sequences. Use 'latex-math' to replace the characters
        the same way as in 'latex' mode, except for math substrings,
        which either are surrounded by two characters ``$`` or start with
        the character ``\(`` and end with ``\)``.
        If not given uses ``pandas.options.styler.format.escape``.

        .. versionadded:: 1.3.0
    formatter : str, callable, dict, optional
        Object to define how values are displayed. See ``Styler.format``. If not given
        uses ``pandas.options.styler.format.formatter``.

        .. versionadded:: 1.4.0

    Attributes
    ----------
    env : Jinja2 jinja2.Environment
    template_html : Jinja2 Template
    template_html_table : Jinja2 Template
    template_html_style : Jinja2 Template
    template_latex : Jinja2 Template
    loader : Jinja2 Loader

    See Also
    --------
    DataFrame.style : Return a Styler object containing methods for building
        a styled HTML representation for the DataFrame.

    Notes
    -----
    Most styling will be done by passing style functions into
    ``Styler.apply`` or ``Styler.map``. Style functions should
    return values with strings containing CSS ``'attr: value'`` that will
    be applied to the indicated cells.

    If using in the Jupyter notebook, Styler has defined a ``_repr_html_``
    to automatically render itself. Otherwise call Styler.to_html to get
    the generated HTML.

    CSS classes are attached to the generated HTML

    * Index and Column names include ``index_name`` and ``level<k>``
      where `k` is its level in a MultiIndex
    * Index label cells include

      * ``row_heading``
      * ``row<n>`` where `n` is the numeric position of the row
      * ``level<k>`` where `k` is the level in a MultiIndex

    * Column label cells include
      * ``col_heading``
      * ``col<n>`` where `n` is the numeric position of the column
      * ``level<k>`` where `k` is the level in a MultiIndex

    * Blank cells include ``blank``
    * Data cells include ``data``
    * Trimmed cells include ``col_trim`` or ``row_trim``.

    Any, or all, or these classes can be renamed by using the ``css_class_names``
    argument in ``Styler.set_table_classes``, giving a value such as
    *{"row": "MY_ROW_CLASS", "col_trim": "", "row_trim": ""}*.

    Examples
    --------
    >>> df = pd.DataFrame([[1.0, 2.0, 3.0], [4, 5, 6]], index=['a', 'b'],
    ...                   columns=['A', 'B', 'C'])
    >>> pd.io.formats.style.Styler(df, precision=2,
    ...                            caption="My table")  # doctest: +SKIP

    Please see:
    `Table Visualization <../../user_guide/style.ipynb>`_ for more examples.
    """

    def __init__(
        self,
        data: DataFrame | Series,
        precision: int | None = None,
        table_styles: CSSStyles | None = None,
        uuid: str | None = None,
        caption: str | tuple | list | None = None,
        table_attributes: str | None = None,
        cell_ids: bool = True,
        na_rep: str | None = None,
        uuid_len: int = 5,
        decimal: str | None = None,
        thousands: str | None = None,
        escape: str | None = None,
        formatter: ExtFormatter | None = None,
    ) -> None:
        super().__init__(
            data=data,
            uuid=uuid,
            uuid_len=uuid_len,
            table_styles=table_styles,
            table_attributes=table_attributes,
            caption=caption,
            cell_ids=cell_ids,
            precision=precision,
        )

        # validate ordered args
        thousands = thousands or get_option("styler.format.thousands")
        decimal = decimal or get_option("styler.format.decimal")
        na_rep = na_rep or get_option("styler.format.na_rep")
        escape = escape or get_option("styler.format.escape")
        formatter = formatter or get_option("styler.format.formatter")
        # precision is handled by superclass as default for performance

        self.format(
            formatter=formatter,
            precision=precision,
            na_rep=na_rep,
            escape=escape,
            decimal=decimal,
            thousands=thousands,
        )

    def concat(self, other: Styler) -> Styler:
        """
        Append another Styler to combine the output into a single table.

        .. versionadded:: 1.5.0

        Parameters
        ----------
        other : Styler
            The other Styler object which has already been styled and formatted. The
            data for this Styler must have the same columns as the original, and the
            number of index levels must also be the same to render correctly.

        Returns
        -------
        Styler

        Notes
        -----
        The purpose of this method is to extend existing styled dataframes with other
        metrics that may be useful but may not conform to the original's structure.
        For example adding a sub total row, or displaying metrics such as means,
        variance or counts.

        Styles that are applied using the ``apply``, ``map``, ``apply_index``
        and ``map_index``, and formatting applied with ``format`` and
        ``format_index`` will be preserved.

        .. warning::
            Only the output methods ``to_html``, ``to_string`` and ``to_latex``
            currently work with concatenated Stylers.

            Other output methods, including ``to_excel``, **do not** work with
            concatenated Stylers.

        The following should be noted:

          - ``table_styles``, ``table_attributes``, ``caption`` and ``uuid`` are all
            inherited from the original Styler and not ``other``.
          - hidden columns and hidden index levels will be inherited from the
            original Styler
          - ``css`` will be inherited from the original Styler, and the value of
            keys ``data``, ``row_heading`` and ``row`` will be prepended with
            ``foot0_``. If more concats are chained, their styles will be prepended
            with ``foot1_``, ''foot_2'', etc., and if a concatenated style have
            another concatanated style, the second style will be prepended with
            ``foot{parent}_foot{child}_``.

        A common use case is to concatenate user defined functions with
        ``DataFrame.agg`` or with described statistics via ``DataFrame.describe``.
        See examples.

        Examples
        --------
        A common use case is adding totals rows, or otherwise, via methods calculated
        in ``DataFrame.agg``.

        >>> df = pd.DataFrame([[4, 6], [1, 9], [3, 4], [5, 5], [9, 6]],
        ...                   columns=["Mike", "Jim"],
        ...                   index=["Mon", "Tue", "Wed", "Thurs", "Fri"])
        >>> styler = df.style.concat(df.agg(["sum"]).style)  # doctest: +SKIP

        .. figure:: ../../_static/style/footer_simple.png

        Since the concatenated object is a Styler the existing functionality can be
        used to conditionally format it as well as the original.

        >>> descriptors = df.agg(["sum", "mean", lambda s: s.dtype])
        >>> descriptors.index = ["Total", "Average", "dtype"]
        >>> other = (descriptors.style
        ...          .highlight_max(axis=1, subset=(["Total", "Average"], slice(None)))
        ...          .format(subset=("Average", slice(None)), precision=2, decimal=",")
        ...          .map(lambda v: "font-weight: bold;"))
        >>> styler = (df.style
        ...             .highlight_max(color="salmon")
        ...             .set_table_styles([{"selector": ".foot_row0",
        ...                                 "props": "border-top: 1px solid black;"}]))
        >>> styler.concat(other)  # doctest: +SKIP

        .. figure:: ../../_static/style/footer_extended.png

        When ``other`` has fewer index levels than the original Styler it is possible
        to extend the index in ``other``, with placeholder levels.

        >>> df = pd.DataFrame([[1], [2]],
        ...                   index=pd.MultiIndex.from_product([[0], [1, 2]]))
        >>> descriptors = df.agg(["sum"])
        >>> descriptors.index = pd.MultiIndex.from_product([[""], descriptors.index])
        >>> df.style.concat(descriptors.style)  # doctest: +SKIP
        """
        if not isinstance(other, Styler):
            raise TypeError("`other` must be of type `Styler`")
        if not self.data.columns.equals(other.data.columns):
            raise ValueError("`other.data` must have same columns as `Styler.data`")
        if not self.data.index.nlevels == other.data.index.nlevels:
            raise ValueError(
                "number of index levels must be same in `other` "
                "as in `Styler`. See documentation for suggestions."
            )
        self.concatenated.append(other)
        return self

    def _repr_html_(self) -> str | None:
        """
        Hooks into Jupyter notebook rich display system, which calls _repr_html_ by
        default if an object is returned at the end of a cell.
        """
        if get_option("styler.render.repr") == "html":
            return self.to_html()
        return None

    def _repr_latex_(self) -> str | None:
        if get_option("styler.render.repr") == "latex":
            return self.to_latex()
        return None

    def set_tooltips(
        self,
        ttips: DataFrame,
        props: CSSProperties | None = None,
        css_class: str | None = None,
    ) -> Styler:
        """
        Set the DataFrame of strings on ``Styler`` generating ``:hover`` tooltips.

        These string based tooltips are only applicable to ``<td>`` HTML elements,
        and cannot be used for column or index headers.

        .. versionadded:: 1.3.0

        Parameters
        ----------
        ttips : DataFrame
            DataFrame containing strings that will be translated to tooltips, mapped
            by identical column and index values that must exist on the underlying
            Styler data. None, NaN values, and empty strings will be ignored and
            not affect the rendered HTML.
        props : list-like or str, optional
            List of (attr, value) tuples or a valid CSS string. If ``None`` adopts
            the internal default values described in notes.
        css_class : str, optional
            Name of the tooltip class used in CSS, should conform to HTML standards.
            Only useful if integrating tooltips with external CSS. If ``None`` uses the
            internal default value 'pd-t'.

        Returns
        -------
        Styler

        Notes
        -----
        Tooltips are created by adding `<span class="pd-t"></span>` to each data cell
        and then manipulating the table level CSS to attach pseudo hover and pseudo
        after selectors to produce the required the results.

        The default properties for the tooltip CSS class are:

        - visibility: hidden
        - position: absolute
        - z-index: 1
        - background-color: black
        - color: white
        - transform: translate(-20px, -20px)

        The property 'visibility: hidden;' is a key prerequisite to the hover
        functionality, and should always be included in any manual properties
        specification, using the ``props`` argument.

        Tooltips are not designed to be efficient, and can add large amounts of
        additional HTML for larger tables, since they also require that ``cell_ids``
        is forced to `True`.

        Examples
        --------
        Basic application

        >>> df = pd.DataFrame(data=[[0, 1], [2, 3]])
        >>> ttips = pd.DataFrame(
        ...    data=[["Min", ""], [np.nan, "Max"]], columns=df.columns, index=df.index
        ... )
        >>> s = df.style.set_tooltips(ttips).to_html()

        Optionally controlling the tooltip visual display

        >>> df.style.set_tooltips(ttips, css_class='tt-add', props=[
        ...     ('visibility', 'hidden'),
        ...     ('position', 'absolute'),
        ...     ('z-index', 1)])  # doctest: +SKIP
        >>> df.style.set_tooltips(ttips, css_class='tt-add',
        ...     props='visibility:hidden; position:absolute; z-index:1;')
        ... # doctest: +SKIP
        """
        if not self.cell_ids:
            # tooltips not optimised for individual cell check. requires reasonable
            # redesign and more extensive code for a feature that might be rarely used.
            raise NotImplementedError(
                "Tooltips can only render with 'cell_ids' is True."
            )
        if not ttips.index.is_unique or not ttips.columns.is_unique:
            raise KeyError(
                "Tooltips render only if `ttips` has unique index and columns."
            )
        if self.tooltips is None:  # create a default instance if necessary
            self.tooltips = Tooltips()
        self.tooltips.tt_data = ttips
        if props:
            self.tooltips.class_properties = props
        if css_class:
            self.tooltips.class_name = css_class

        return self

    @doc(
        NDFrame.to_excel,
        klass="Styler",
        storage_options=_shared_docs["storage_options"],
        storage_options_versionadded="1.5.0",
    )
    def to_excel(
        self,
        excel_writer: FilePath | WriteExcelBuffer | ExcelWriter,
        sheet_name: str = "Sheet1",
        na_rep: str = "",
        float_format: str | None = None,
        columns: Sequence[Hashable] | None = None,
        header: Sequence[Hashable] | bool = True,
        index: bool = True,
        index_label: IndexLabel | None = None,
        startrow: int = 0,
        startcol: int = 0,
        engine: str | None = None,
        merge_cells: bool = True,
        encoding: str | None = None,
        inf_rep: str = "inf",
        verbose: bool = True,
        freeze_panes: tuple[int, int] | None = None,
        storage_options: StorageOptions | None = None,
    ) -> None:
        from pandas.io.formats.excel import ExcelFormatter

        formatter = ExcelFormatter(
            self,
            na_rep=na_rep,
            cols=columns,
            header=header,
            float_format=float_format,
            index=index,
            index_label=index_label,
            merge_cells=merge_cells,
            inf_rep=inf_rep,
        )
        formatter.write(
            excel_writer,
            sheet_name=sheet_name,
            startrow=startrow,
            startcol=startcol,
            freeze_panes=freeze_panes,
            engine=engine,
            storage_options=storage_options,
        )

    @overload
    def to_latex(
        self,
        buf: FilePath | WriteBuffer[str],
        *,
        column_format: str | None = ...,
        position: str | None = ...,
        position_float: str | None = ...,
        hrules: bool | None = ...,
        clines: str | None = ...,
        label: str | None = ...,
        caption: str | tuple | None = ...,
        sparse_index: bool | None = ...,
        sparse_columns: bool | None = ...,
        multirow_align: str | None = ...,
        multicol_align: str | None = ...,
        siunitx: bool = ...,
        environment: str | None = ...,
        encoding: str | None = ...,
        convert_css: bool = ...,
    ) -> None:
        ...

    @overload
    def to_latex(
        self,
        buf: None = ...,
        *,
        column_format: str | None = ...,
        position: str | None = ...,
        position_float: str | None = ...,
        hrules: bool | None = ...,
        clines: str | None = ...,
        label: str | None = ...,
        caption: str | tuple | None = ...,
        sparse_index: bool | None = ...,
        sparse_columns: bool | None = ...,
        multirow_align: str | None = ...,
        multicol_align: str | None = ...,
        siunitx: bool = ...,
        environment: str | None = ...,
        encoding: str | None = ...,
        convert_css: bool = ...,
    ) -> str:
        ...

    def to_latex(
        self,
        buf: FilePath | WriteBuffer[str] | None = None,
        *,
        column_format: str | None = None,
        position: str | None = None,
        position_float: str | None = None,
        hrules: bool | None = None,
        clines: str | None = None,
        label: str | None = None,
        caption: str | tuple | None = None,
        sparse_index: bool | None = None,
        sparse_columns: bool | None = None,
        multirow_align: str | None = None,
        multicol_align: str | None = None,
        siunitx: bool = False,
        environment: str | None = None,
        encoding: str | None = None,
        convert_css: bool = False,
    ) -> str | None:
        r"""
        Write Styler to a file, buffer or string in LaTeX format.

        .. versionadded:: 1.3.0

        Parameters
        ----------
        buf : str, path object, file-like object, or None, default None
            String, path object (implementing ``os.PathLike[str]``), or file-like
            object implementing a string ``write()`` function. If None, the result is
            returned as a string.
        column_format : str, optional
            The LaTeX column specification placed in location:

            \\begin{tabular}{<column_format>}

            Defaults to 'l' for index and
            non-numeric data columns, and, for numeric data columns,
            to 'r' by default, or 'S' if ``siunitx`` is ``True``.
        position : str, optional
            The LaTeX positional argument (e.g. 'h!') for tables, placed in location:

            ``\\begin{table}[<position>]``.
        position_float : {"centering", "raggedleft", "raggedright"}, optional
            The LaTeX float command placed in location:

            \\begin{table}[<position>]

            \\<position_float>

            Cannot be used if ``environment`` is "longtable".
        hrules : bool
            Set to `True` to add \\toprule, \\midrule and \\bottomrule from the
            {booktabs} LaTeX package.
            Defaults to ``pandas.options.styler.latex.hrules``, which is `False`.

            .. versionchanged:: 1.4.0
        clines : str, optional
            Use to control adding \\cline commands for the index labels separation.
            Possible values are:

              - `None`: no cline commands are added (default).
              - `"all;data"`: a cline is added for every index value extending the
                width of the table, including data entries.
              - `"all;index"`: as above with lines extending only the width of the
                index entries.
              - `"skip-last;data"`: a cline is added for each index value except the
                last level (which is never sparsified), extending the widtn of the
                table.
              - `"skip-last;index"`: as above with lines extending only the width of the
                index entries.

            .. versionadded:: 1.4.0
        label : str, optional
            The LaTeX label included as: \\label{<label>}.
            This is used with \\ref{<label>} in the main .tex file.
        caption : str, tuple, optional
            If string, the LaTeX table caption included as: \\caption{<caption>}.
            If tuple, i.e ("full caption", "short caption"), the caption included
            as: \\caption[<caption[1]>]{<caption[0]>}.
        sparse_index : bool, optional
            Whether to sparsify the display of a hierarchical index. Setting to False
            will display each explicit level element in a hierarchical key for each row.
            Defaults to ``pandas.options.styler.sparse.index``, which is `True`.
        sparse_columns : bool, optional
            Whether to sparsify the display of a hierarchical index. Setting to False
            will display each explicit level element in a hierarchical key for each
            column. Defaults to ``pandas.options.styler.sparse.columns``, which
            is `True`.
        multirow_align : {"c", "t", "b", "naive"}, optional
            If sparsifying hierarchical MultiIndexes whether to align text centrally,
            at the top or bottom using the multirow package. If not given defaults to
            ``pandas.options.styler.latex.multirow_align``, which is `"c"`.
            If "naive" is given renders without multirow.

            .. versionchanged:: 1.4.0
        multicol_align : {"r", "c", "l", "naive-l", "naive-r"}, optional
            If sparsifying hierarchical MultiIndex columns whether to align text at
            the left, centrally, or at the right. If not given defaults to
            ``pandas.options.styler.latex.multicol_align``, which is "r".
            If a naive option is given renders without multicol.
            Pipe decorators can also be added to non-naive values to draw vertical
            rules, e.g. "\|r" will draw a rule on the left side of right aligned merged
            cells.

            .. versionchanged:: 1.4.0
        siunitx : bool, default False
            Set to ``True`` to structure LaTeX compatible with the {siunitx} package.
        environment : str, optional
            If given, the environment that will replace 'table' in ``\\begin{table}``.
            If 'longtable' is specified then a more suitable template is
            rendered. If not given defaults to
            ``pandas.options.styler.latex.environment``, which is `None`.

            .. versionadded:: 1.4.0
        encoding : str, optional
            Character encoding setting. Defaults
            to ``pandas.options.styler.render.encoding``, which is "utf-8".
        convert_css : bool, default False
            Convert simple cell-styles from CSS to LaTeX format. Any CSS not found in
            conversion table is dropped. A style can be forced by adding option
            `--latex`. See notes.

        Returns
        -------
        str or None
            If `buf` is None, returns the result as a string. Otherwise returns `None`.

        See Also
        --------
        Styler.format: Format the text display value of cells.

        Notes
        -----
        **Latex Packages**

        For the following features we recommend the following LaTeX inclusions:

        ===================== ==========================================================
        Feature               Inclusion
        ===================== ==========================================================
        sparse columns        none: included within default {tabular} environment
        sparse rows           \\usepackage{multirow}
        hrules                \\usepackage{booktabs}
        colors                \\usepackage[table]{xcolor}
        siunitx               \\usepackage{siunitx}
        bold (with siunitx)   | \\usepackage{etoolbox}
                              | \\robustify\\bfseries
                              | \\sisetup{detect-all = true}  *(within {document})*
        italic (with siunitx) | \\usepackage{etoolbox}
                              | \\robustify\\itshape
                              | \\sisetup{detect-all = true}  *(within {document})*
        environment           \\usepackage{longtable} if arg is "longtable"
                              | or any other relevant environment package
        hyperlinks            \\usepackage{hyperref}
        ===================== ==========================================================

        **Cell Styles**

        LaTeX styling can only be rendered if the accompanying styling functions have
        been constructed with appropriate LaTeX commands. All styling
        functionality is built around the concept of a CSS ``(<attribute>, <value>)``
        pair (see `Table Visualization <../../user_guide/style.ipynb>`_), and this
        should be replaced by a LaTeX
        ``(<command>, <options>)`` approach. Each cell will be styled individually
        using nested LaTeX commands with their accompanied options.

        For example the following code will highlight and bold a cell in HTML-CSS:

        >>> df = pd.DataFrame([[1,2], [3,4]])
        >>> s = df.style.highlight_max(axis=None,
        ...                            props='background-color:red; font-weight:bold;')
        >>> s.to_html()  # doctest: +SKIP

        The equivalent using LaTeX only commands is the following:

        >>> s = df.style.highlight_max(axis=None,
        ...                            props='cellcolor:{red}; bfseries: ;')
        >>> s.to_latex()  # doctest: +SKIP

        Internally these structured LaTeX ``(<command>, <options>)`` pairs
        are translated to the
        ``display_value`` with the default structure:
        ``\<command><options> <display_value>``.
        Where there are multiple commands the latter is nested recursively, so that
        the above example highlighted cell is rendered as
        ``\cellcolor{red} \bfseries 4``.

        Occasionally this format does not suit the applied command, or
        combination of LaTeX packages that is in use, so additional flags can be
        added to the ``<options>``, within the tuple, to result in different
        positions of required braces (the **default** being the same as ``--nowrap``):

        =================================== ============================================
        Tuple Format                           Output Structure
        =================================== ============================================
        (<command>,<options>)               \\<command><options> <display_value>
        (<command>,<options> ``--nowrap``)  \\<command><options> <display_value>
        (<command>,<options> ``--rwrap``)   \\<command><options>{<display_value>}
        (<command>,<options> ``--wrap``)    {\\<command><options> <display_value>}
        (<command>,<options> ``--lwrap``)   {\\<command><options>} <display_value>
        (<command>,<options> ``--dwrap``)   {\\<command><options>}{<display_value>}
        =================================== ============================================

        For example the `textbf` command for font-weight
        should always be used with `--rwrap` so ``('textbf', '--rwrap')`` will render a
        working cell, wrapped with braces, as ``\textbf{<display_value>}``.

        A more comprehensive example is as follows:

        >>> df = pd.DataFrame([[1, 2.2, "dogs"], [3, 4.4, "cats"], [2, 6.6, "cows"]],
        ...                   index=["ix1", "ix2", "ix3"],
        ...                   columns=["Integers", "Floats", "Strings"])
        >>> s = df.style.highlight_max(
        ...     props='cellcolor:[HTML]{FFFF00}; color:{red};'
        ...           'textit:--rwrap; textbf:--rwrap;'
        ... )
        >>> s.to_latex()  # doctest: +SKIP

        .. figure:: ../../_static/style/latex_1.png

        **Table Styles**

        Internally Styler uses its ``table_styles`` object to parse the
        ``column_format``, ``position``, ``position_float``, and ``label``
        input arguments. These arguments are added to table styles in the format:

        .. code-block:: python

            set_table_styles([
                {"selector": "column_format", "props": f":{column_format};"},
                {"selector": "position", "props": f":{position};"},
                {"selector": "position_float", "props": f":{position_float};"},
                {"selector": "label", "props": f":{{{label.replace(':','§')}}};"}
            ], overwrite=False)

        Exception is made for the ``hrules`` argument which, in fact, controls all three
        commands: ``toprule``, ``bottomrule`` and ``midrule`` simultaneously. Instead of
        setting ``hrules`` to ``True``, it is also possible to set each
        individual rule definition, by manually setting the ``table_styles``,
        for example below we set a regular ``toprule``, set an ``hline`` for
        ``bottomrule`` and exclude the ``midrule``:

        .. code-block:: python

            set_table_styles([
                {'selector': 'toprule', 'props': ':toprule;'},
                {'selector': 'bottomrule', 'props': ':hline;'},
            ], overwrite=False)

        If other ``commands`` are added to table styles they will be detected, and
        positioned immediately above the '\\begin{tabular}' command. For example to
        add odd and even row coloring, from the {colortbl} package, in format
        ``\rowcolors{1}{pink}{red}``, use:

        .. code-block:: python

            set_table_styles([
                {'selector': 'rowcolors', 'props': ':{1}{pink}{red};'}
            ], overwrite=False)

        A more comprehensive example using these arguments is as follows:

        >>> df.columns = pd.MultiIndex.from_tuples([
        ...     ("Numeric", "Integers"),
        ...     ("Numeric", "Floats"),
        ...     ("Non-Numeric", "Strings")
        ... ])
        >>> df.index = pd.MultiIndex.from_tuples([
        ...     ("L0", "ix1"), ("L0", "ix2"), ("L1", "ix3")
        ... ])
        >>> s = df.style.highlight_max(
        ...     props='cellcolor:[HTML]{FFFF00}; color:{red}; itshape:; bfseries:;'
        ... )
        >>> s.to_latex(
        ...     column_format="rrrrr", position="h", position_float="centering",
        ...     hrules=True, label="table:5", caption="Styled LaTeX Table",
        ...     multirow_align="t", multicol_align="r"
        ... )  # doctest: +SKIP

        .. figure:: ../../_static/style/latex_2.png

        **Formatting**

        To format values :meth:`Styler.format` should be used prior to calling
        `Styler.to_latex`, as well as other methods such as :meth:`Styler.hide`
        for example:

        >>> s.clear()
        >>> s.table_styles = []
        >>> s.caption = None
        >>> s.format({
        ...    ("Numeric", "Integers"): '\${}',
        ...    ("Numeric", "Floats"): '{:.3f}',
        ...    ("Non-Numeric", "Strings"): str.upper
        ... })  # doctest: +SKIP
                        Numeric      Non-Numeric
                  Integers   Floats    Strings
        L0    ix1       $1   2.200      DOGS
              ix2       $3   4.400      CATS
        L1    ix3       $2   6.600      COWS

        >>> s.to_latex()  # doctest: +SKIP
        \begin{tabular}{llrrl}
        {} & {} & \multicolumn{2}{r}{Numeric} & {Non-Numeric} \\
        {} & {} & {Integers} & {Floats} & {Strings} \\
        \multirow[c]{2}{*}{L0} & ix1 & \\$1 & 2.200 & DOGS \\
         & ix2 & \$3 & 4.400 & CATS \\
        L1 & ix3 & \$2 & 6.600 & COWS \\
        \end{tabular}

        **CSS Conversion**

        This method can convert a Styler constructured with HTML-CSS to LaTeX using
        the following limited conversions.

        ================== ==================== ============= ==========================
        CSS Attribute      CSS value            LaTeX Command LaTeX Options
        ================== ==================== ============= ==========================
        font-weight        | bold               | bfseries
                           | bolder             | bfseries
        font-style         | italic             | itshape
                           | oblique            | slshape
        background-color   | red                cellcolor     | {red}--lwrap
                           | #fe01ea                          | [HTML]{FE01EA}--lwrap
                           | #f0e                             | [HTML]{FF00EE}--lwrap
                           | rgb(128,255,0)                   | [rgb]{0.5,1,0}--lwrap
                           | rgba(128,0,0,0.5)                | [rgb]{0.5,0,0}--lwrap
                           | rgb(25%,255,50%)                 | [rgb]{0.25,1,0.5}--lwrap
        color              | red                color         | {red}
                           | #fe01ea                          | [HTML]{FE01EA}
                           | #f0e                             | [HTML]{FF00EE}
                           | rgb(128,255,0)                   | [rgb]{0.5,1,0}
                           | rgba(128,0,0,0.5)                | [rgb]{0.5,0,0}
                           | rgb(25%,255,50%)                 | [rgb]{0.25,1,0.5}
        ================== ==================== ============= ==========================

        It is also possible to add user-defined LaTeX only styles to a HTML-CSS Styler
        using the ``--latex`` flag, and to add LaTeX parsing options that the
        converter will detect within a CSS-comment.

        >>> df = pd.DataFrame([[1]])
        >>> df.style.set_properties(
        ...     **{"font-weight": "bold /* --dwrap */", "Huge": "--latex--rwrap"}
        ... ).to_latex(convert_css=True)  # doctest: +SKIP
        \begin{tabular}{lr}
        {} & {0} \\
        0 & {\bfseries}{\Huge{1}} \\
        \end{tabular}

        Examples
        --------
        Below we give a complete step by step example adding some advanced features
        and noting some common gotchas.

        First we create the DataFrame and Styler as usual, including MultiIndex rows
        and columns, which allow for more advanced formatting options:

        >>> cidx = pd.MultiIndex.from_arrays([
        ...     ["Equity", "Equity", "Equity", "Equity",
        ...      "Stats", "Stats", "Stats", "Stats", "Rating"],
        ...     ["Energy", "Energy", "Consumer", "Consumer", "", "", "", "", ""],
        ...     ["BP", "Shell", "H&M", "Unilever",
        ...      "Std Dev", "Variance", "52w High", "52w Low", ""]
        ... ])
        >>> iidx = pd.MultiIndex.from_arrays([
        ...     ["Equity", "Equity", "Equity", "Equity"],
        ...     ["Energy", "Energy", "Consumer", "Consumer"],
        ...     ["BP", "Shell", "H&M", "Unilever"]
        ... ])
        >>> styler = pd.DataFrame([
        ...     [1, 0.8, 0.66, 0.72, 32.1678, 32.1678**2, 335.12, 240.89, "Buy"],
        ...     [0.8, 1.0, 0.69, 0.79, 1.876, 1.876**2, 14.12, 19.78, "Hold"],
        ...     [0.66, 0.69, 1.0, 0.86, 7, 7**2, 210.9, 140.6, "Buy"],
        ...     [0.72, 0.79, 0.86, 1.0, 213.76, 213.76**2, 2807, 3678, "Sell"],
        ... ], columns=cidx, index=iidx).style

        Second we will format the display and, since our table is quite wide, will
        hide the repeated level-0 of the index:

        >>> (styler.format(subset="Equity", precision=2)
        ...       .format(subset="Stats", precision=1, thousands=",")
        ...       .format(subset="Rating", formatter=str.upper)
        ...       .format_index(escape="latex", axis=1)
        ...       .format_index(escape="latex", axis=0)
        ...       .hide(level=0, axis=0))  # doctest: +SKIP

        Note that one of the string entries of the index and column headers is "H&M".
        Without applying the `escape="latex"` option to the `format_index` method the
        resultant LaTeX will fail to render, and the error returned is quite
        difficult to debug. Using the appropriate escape the "&" is converted to "\\&".

        Thirdly we will apply some (CSS-HTML) styles to our object. We will use a
        builtin method and also define our own method to highlight the stock
        recommendation:

        >>> def rating_color(v):
        ...     if v == "Buy": color = "#33ff85"
        ...     elif v == "Sell": color = "#ff5933"
        ...     else: color = "#ffdd33"
        ...     return f"color: {color}; font-weight: bold;"
        >>> (styler.background_gradient(cmap="inferno", subset="Equity", vmin=0, vmax=1)
        ...       .map(rating_color, subset="Rating"))  # doctest: +SKIP

        All the above styles will work with HTML (see below) and LaTeX upon conversion:

        .. figure:: ../../_static/style/latex_stocks_html.png

        However, we finally want to add one LaTeX only style
        (from the {graphicx} package), that is not easy to convert from CSS and
        pandas does not support it. Notice the `--latex` flag used here,
        as well as `--rwrap` to ensure this is formatted correctly and
        not ignored upon conversion.

        >>> styler.map_index(
        ...     lambda v: "rotatebox:{45}--rwrap--latex;", level=2, axis=1
        ... )  # doctest: +SKIP

        Finally we render our LaTeX adding in other options as required:

        >>> styler.to_latex(
        ...     caption="Selected stock correlation and simple statistics.",
        ...     clines="skip-last;data",
        ...     convert_css=True,
        ...     position_float="centering",
        ...     multicol_align="|c|",
        ...     hrules=True,
        ... )  # doctest: +SKIP
        \begin{table}
        \centering
        \caption{Selected stock correlation and simple statistics.}
        \begin{tabular}{llrrrrrrrrl}
        \toprule
         &  & \multicolumn{4}{|c|}{Equity} & \multicolumn{4}{|c|}{Stats} & Rating \\
         &  & \multicolumn{2}{|c|}{Energy} & \multicolumn{2}{|c|}{Consumer} &
        \multicolumn{4}{|c|}{} &  \\
         &  & \rotatebox{45}{BP} & \rotatebox{45}{Shell} & \rotatebox{45}{H\&M} &
        \rotatebox{45}{Unilever} & \rotatebox{45}{Std Dev} & \rotatebox{45}{Variance} &
        \rotatebox{45}{52w High} & \rotatebox{45}{52w Low} & \rotatebox{45}{} \\
        \midrule
        \multirow[c]{2}{*}{Energy} & BP & {\cellcolor[HTML]{FCFFA4}}
        \color[HTML]{000000} 1.00 & {\cellcolor[HTML]{FCA50A}} \color[HTML]{000000}
        0.80 & {\cellcolor[HTML]{EB6628}} \color[HTML]{F1F1F1} 0.66 &
        {\cellcolor[HTML]{F68013}} \color[HTML]{F1F1F1} 0.72 & 32.2 & 1,034.8 & 335.1
        & 240.9 & \color[HTML]{33FF85} \bfseries BUY \\
         & Shell & {\cellcolor[HTML]{FCA50A}} \color[HTML]{000000} 0.80 &
        {\cellcolor[HTML]{FCFFA4}} \color[HTML]{000000} 1.00 &
        {\cellcolor[HTML]{F1731D}} \color[HTML]{F1F1F1} 0.69 &
        {\cellcolor[HTML]{FCA108}} \color[HTML]{000000} 0.79 & 1.9 & 3.5 & 14.1 &
        19.8 & \color[HTML]{FFDD33} \bfseries HOLD \\
        \cline{1-11}
        \multirow[c]{2}{*}{Consumer} & H\&M & {\cellcolor[HTML]{EB6628}}
        \color[HTML]{F1F1F1} 0.66 & {\cellcolor[HTML]{F1731D}} \color[HTML]{F1F1F1}
        0.69 & {\cellcolor[HTML]{FCFFA4}} \color[HTML]{000000} 1.00 &
        {\cellcolor[HTML]{FAC42A}} \color[HTML]{000000} 0.86 & 7.0 & 49.0 & 210.9 &
        140.6 & \color[HTML]{33FF85} \bfseries BUY \\
         & Unilever & {\cellcolor[HTML]{F68013}} \color[HTML]{F1F1F1} 0.72 &
        {\cellcolor[HTML]{FCA108}} \color[HTML]{000000} 0.79 &
        {\cellcolor[HTML]{FAC42A}} \color[HTML]{000000} 0.86 &
        {\cellcolor[HTML]{FCFFA4}} \color[HTML]{000000} 1.00 & 213.8 & 45,693.3 &
        2,807.0 & 3,678.0 & \color[HTML]{FF5933} \bfseries SELL \\
        \cline{1-11}
        \bottomrule
        \end{tabular}
        \end{table}

        .. figure:: ../../_static/style/latex_stocks.png
        """
        obj = self._copy(deepcopy=True)  # manipulate table_styles on obj, not self

        table_selectors = (
            [style["selector"] for style in self.table_styles]
            if self.table_styles is not None
            else []
        )

        if column_format is not None:
            # add more recent setting to table_styles
            obj.set_table_styles(
                [{"selector": "column_format", "props": f":{column_format}"}],
                overwrite=False,
            )
        elif "column_format" in table_selectors:
            pass  # adopt what has been previously set in table_styles
        else:
            # create a default: set float, complex, int cols to 'r' ('S'), index to 'l'
            _original_columns = self.data.columns
            self.data.columns = RangeIndex(stop=len(self.data.columns))
            numeric_cols = self.data._get_numeric_data().columns.to_list()
            self.data.columns = _original_columns
            column_format = ""
            for level in range(self.index.nlevels):
                column_format += "" if self.hide_index_[level] else "l"
            for ci, _ in enumerate(self.data.columns):
                if ci not in self.hidden_columns:
                    column_format += (
                        ("r" if not siunitx else "S") if ci in numeric_cols else "l"
                    )
            obj.set_table_styles(
                [{"selector": "column_format", "props": f":{column_format}"}],
                overwrite=False,
            )

        if position:
            obj.set_table_styles(
                [{"selector": "position", "props": f":{position}"}],
                overwrite=False,
            )

        if position_float:
            if environment == "longtable":
                raise ValueError(
                    "`position_float` cannot be used in 'longtable' `environment`"
                )
            if position_float not in ["raggedright", "raggedleft", "centering"]:
                raise ValueError(
                    f"`position_float` should be one of "
                    f"'raggedright', 'raggedleft', 'centering', "
                    f"got: '{position_float}'"
                )
            obj.set_table_styles(
                [{"selector": "position_float", "props": f":{position_float}"}],
                overwrite=False,
            )

        hrules = get_option("styler.latex.hrules") if hrules is None else hrules
        if hrules:
            obj.set_table_styles(
                [
                    {"selector": "toprule", "props": ":toprule"},
                    {"selector": "midrule", "props": ":midrule"},
                    {"selector": "bottomrule", "props": ":bottomrule"},
                ],
                overwrite=False,
            )

        if label:
            obj.set_table_styles(
                [{"selector": "label", "props": f":{{{label.replace(':', '§')}}}"}],
                overwrite=False,
            )

        if caption:
            obj.set_caption(caption)

        if sparse_index is None:
            sparse_index = get_option("styler.sparse.index")
        if sparse_columns is None:
            sparse_columns = get_option("styler.sparse.columns")
        environment = environment or get_option("styler.latex.environment")
        multicol_align = multicol_align or get_option("styler.latex.multicol_align")
        multirow_align = multirow_align or get_option("styler.latex.multirow_align")
        latex = obj._render_latex(
            sparse_index=sparse_index,
            sparse_columns=sparse_columns,
            multirow_align=multirow_align,
            multicol_align=multicol_align,
            environment=environment,
            convert_css=convert_css,
            siunitx=siunitx,
            clines=clines,
        )

        encoding = (
            (encoding or get_option("styler.render.encoding"))
            if isinstance(buf, str)  # i.e. a filepath
            else encoding
        )
        return save_to_buffer(latex, buf=buf, encoding=encoding)

    @overload
    def to_html(
        self,
        buf: FilePath | WriteBuffer[str],
        *,
        table_uuid: str | None = ...,
        table_attributes: str | None = ...,
        sparse_index: bool | None = ...,
        sparse_columns: bool | None = ...,
        bold_headers: bool = ...,
        caption: str | None = ...,
        max_rows: int | None = ...,
        max_columns: int | None = ...,
        encoding: str | None = ...,
        doctype_html: bool = ...,
        exclude_styles: bool = ...,
        **kwargs,
    ) -> None:
        ...

    @overload
    def to_html(
        self,
        buf: None = ...,
        *,
        table_uuid: str | None = ...,
        table_attributes: str | None = ...,
        sparse_index: bool | None = ...,
        sparse_columns: bool | None = ...,
        bold_headers: bool = ...,
        caption: str | None = ...,
        max_rows: int | None = ...,
        max_columns: int | None = ...,
        encoding: str | None = ...,
        doctype_html: bool = ...,
        exclude_styles: bool = ...,
        **kwargs,
    ) -> str:
        ...

    @Substitution(buf=buffering_args, encoding=encoding_args)
    def to_html(
        self,
        buf: FilePath | WriteBuffer[str] | None = None,
        *,
        table_uuid: str | None = None,
        table_attributes: str | None = None,
        sparse_index: bool | None = None,
        sparse_columns: bool | None = None,
        bold_headers: bool = False,
        caption: str | None = None,
        max_rows: int | None = None,
        max_columns: int | None = None,
        encoding: str | None = None,
        doctype_html: bool = False,
        exclude_styles: bool = False,
        **kwargs,
    ) -> str | None:
        """
        Write Styler to a file, buffer or string in HTML-CSS format.

        .. versionadded:: 1.3.0

        Parameters
        ----------
        %(buf)s
        table_uuid : str, optional
            Id attribute assigned to the <table> HTML element in the format:

            ``<table id="T_<table_uuid>" ..>``

            If not given uses Styler's initially assigned value.
        table_attributes : str, optional
            Attributes to assign within the `<table>` HTML element in the format:

            ``<table .. <table_attributes> >``

            If not given defaults to Styler's preexisting value.
        sparse_index : bool, optional
            Whether to sparsify the display of a hierarchical index. Setting to False
            will display each explicit level element in a hierarchical key for each row.
            Defaults to ``pandas.options.styler.sparse.index`` value.

            .. versionadded:: 1.4.0
        sparse_columns : bool, optional
            Whether to sparsify the display of a hierarchical index. Setting to False
            will display each explicit level element in a hierarchical key for each
            column. Defaults to ``pandas.options.styler.sparse.columns`` value.

            .. versionadded:: 1.4.0
        bold_headers : bool, optional
            Adds "font-weight: bold;" as a CSS property to table style header cells.

            .. versionadded:: 1.4.0
        caption : str, optional
            Set, or overwrite, the caption on Styler before rendering.

            .. versionadded:: 1.4.0
        max_rows : int, optional
            The maximum number of rows that will be rendered. Defaults to
            ``pandas.options.styler.render.max_rows/max_columns``.

            .. versionadded:: 1.4.0
        max_columns : int, optional
            The maximum number of columns that will be rendered. Defaults to
            ``pandas.options.styler.render.max_columns``, which is None.

            Rows and columns may be reduced if the number of total elements is
            large. This value is set to ``pandas.options.styler.render.max_elements``,
            which is 262144 (18 bit browser rendering).

            .. versionadded:: 1.4.0
        %(encoding)s
        doctype_html : bool, default False
            Whether to output a fully structured HTML file including all
            HTML elements, or just the core ``<style>`` and ``<table>`` elements.
        exclude_styles : bool, default False
            Whether to include the ``<style>`` element and all associated element
            ``class`` and ``id`` identifiers, or solely the ``<table>`` element without
            styling identifiers.
        **kwargs
            Any additional keyword arguments are passed through to the jinja2
            ``self.template.render`` process. This is useful when you need to provide
            additional variables for a custom template.

        Returns
        -------
        str or None
            If `buf` is None, returns the result as a string. Otherwise returns `None`.

        See Also
        --------
        DataFrame.to_html: Write a DataFrame to a file, buffer or string in HTML format.

        Examples
        --------
        >>> df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
        >>> print(df.style.to_html())  # doctest: +SKIP
        <style type="text/css">
        </style>
        <table id="T_1e78e">
          <thead>
            <tr>
              <th class="blank level0" >&nbsp;</th>
              <th id="T_1e78e_level0_col0" class="col_heading level0 col0" >A</th>
              <th id="T_1e78e_level0_col1" class="col_heading level0 col1" >B</th>
            </tr>
        ...
        """
        obj = self._copy(deepcopy=True)  # manipulate table_styles on obj, not self

        if table_uuid:
            obj.set_uuid(table_uuid)

        if table_attributes:
            obj.set_table_attributes(table_attributes)

        if sparse_index is None:
            sparse_index = get_option("styler.sparse.index")
        if sparse_columns is None:
            sparse_columns = get_option("styler.sparse.columns")

        if bold_headers:
            obj.set_table_styles(
                [{"selector": "th", "props": "font-weight: bold;"}], overwrite=False
            )

        if caption is not None:
            obj.set_caption(caption)

        # Build HTML string..
        html = obj._render_html(
            sparse_index=sparse_index,
            sparse_columns=sparse_columns,
            max_rows=max_rows,
            max_cols=max_columns,
            exclude_styles=exclude_styles,
            encoding=encoding or get_option("styler.render.encoding"),
            doctype_html=doctype_html,
            **kwargs,
        )

        return save_to_buffer(
            html, buf=buf, encoding=(encoding if buf is not None else None)
        )

    @overload
    def to_string(
        self,
        buf: FilePath | WriteBuffer[str],
        *,
        encoding: str | None = ...,
        sparse_index: bool | None = ...,
        sparse_columns: bool | None = ...,
        max_rows: int | None = ...,
        max_columns: int | None = ...,
        delimiter: str = ...,
    ) -> None:
        ...

    @overload
    def to_string(
        self,
        buf: None = ...,
        *,
        encoding: str | None = ...,
        sparse_index: bool | None = ...,
        sparse_columns: bool | None = ...,
        max_rows: int | None = ...,
        max_columns: int | None = ...,
        delimiter: str = ...,
    ) -> str:
        ...

    @Substitution(buf=buffering_args, encoding=encoding_args)
    def to_string(
        self,
        buf: FilePath | WriteBuffer[str] | None = None,
        *,
        encoding: str | None = None,
        sparse_index: bool | None = None,
        sparse_columns: bool | None = None,
        max_rows: int | None = None,
        max_columns: int | None = None,
        delimiter: str = " ",
    ) -> str | None:
        """
        Write Styler to a file, buffer or string in text format.

        .. versionadded:: 1.5.0

        Parameters
        ----------
        %(buf)s
        %(encoding)s
        sparse_index : bool, optional
            Whether to sparsify the display of a hierarchical index. Setting to False
            will display each explicit level element in a hierarchical key for each row.
            Defaults to ``pandas.options.styler.sparse.index`` value.
        sparse_columns : bool, optional
            Whether to sparsify the display of a hierarchical index. Setting to False
            will display each explicit level element in a hierarchical key for each
            column. Defaults to ``pandas.options.styler.sparse.columns`` value.
        max_rows : int, optional
            The maximum number of rows that will be rendered. Defaults to
            ``pandas.options.styler.render.max_rows``, which is None.
        max_columns : int, optional
            The maximum number of columns that will be rendered. Defaults to
            ``pandas.options.styler.render.max_columns``, which is None.

            Rows and columns may be reduced if the number of total elements is
            large. This value is set to ``pandas.options.styler.render.max_elements``,
            which is 262144 (18 bit browser rendering).
        delimiter : str, default single space
            The separator between data elements.

        Returns
        -------
        str or None
            If `buf` is None, returns the result as a string. Otherwise returns `None`.

        Examples
        --------
        >>> df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
        >>> df.style.to_string()
        ' A B\\n0 1 3\\n1 2 4\\n'
        """
        obj = self._copy(deepcopy=True)

        if sparse_index is None:
            sparse_index = get_option("styler.sparse.index")
        if sparse_columns is None:
            sparse_columns = get_option("styler.sparse.columns")

        text = obj._render_string(
            sparse_columns=sparse_columns,
            sparse_index=sparse_index,
            max_rows=max_rows,
            max_cols=max_columns,
            delimiter=delimiter,
        )
        return save_to_buffer(
            text, buf=buf, encoding=(encoding if buf is not None else None)
        )

    def set_td_classes(self, classes: DataFrame) -> Styler:
        """
        Set the ``class`` attribute of ``<td>`` HTML elements.

        Parameters
        ----------
        classes : DataFrame
            DataFrame containing strings that will be translated to CSS classes,
            mapped by identical column and index key values that must exist on the
            underlying Styler data. None, NaN values, and empty strings will
            be ignored and not affect the rendered HTML.

        Returns
        -------
        Styler

        See Also
        --------
        Styler.set_table_styles: Set the table styles included within the ``<style>``
            HTML element.
        Styler.set_table_attributes: Set the table attributes added to the ``<table>``
            HTML element.

        Notes
        -----
        Can be used in combination with ``Styler.set_table_styles`` to define an
        internal CSS solution without reference to external CSS files.

        Examples
        --------
        >>> df = pd.DataFrame(data=[[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"])
        >>> classes = pd.DataFrame([
        ...     ["min-val red", "", "blue"],
        ...     ["red", None, "blue max-val"]
        ... ], index=df.index, columns=df.columns)
        >>> df.style.set_td_classes(classes)  # doctest: +SKIP

        Using `MultiIndex` columns and a `classes` `DataFrame` as a subset of the
        underlying,

        >>> df = pd.DataFrame([[1,2],[3,4]], index=["a", "b"],
        ...     columns=[["level0", "level0"], ["level1a", "level1b"]])
        >>> classes = pd.DataFrame(["min-val"], index=["a"],
        ...     columns=[["level0"],["level1a"]])
        >>> df.style.set_td_classes(classes)  # doctest: +SKIP

        Form of the output with new additional css classes,

        >>> from pandas.io.formats.style import Styler
        >>> df = pd.DataFrame([[1]])
        >>> css = pd.DataFrame([["other-class"]])
        >>> s = Styler(df, uuid="_", cell_ids=False).set_td_classes(css)
        >>> s.hide(axis=0).to_html()  # doctest: +SKIP
        '<style type="text/css"></style>'
        '<table id="T__">'
        '  <thead>'
        '    <tr><th class="col_heading level0 col0" >0</th></tr>'
        '  </thead>'
        '  <tbody>'
        '    <tr><td class="data row0 col0 other-class" >1</td></tr>'
        '  </tbody>'
        '</table>'
        """
        if not classes.index.is_unique or not classes.columns.is_unique:
            raise KeyError(
                "Classes render only if `classes` has unique index and columns."
            )
        classes = classes.reindex_like(self.data)

        for r, row_tup in enumerate(classes.itertuples()):
            for c, value in enumerate(row_tup[1:]):
                if not (pd.isna(value) or value == ""):
                    self.cell_context[(r, c)] = str(value)

        return self

    def _update_ctx(self, attrs: DataFrame) -> None:
        """
        Update the state of the ``Styler`` for data cells.

        Collects a mapping of {index_label: [('<property>', '<value>'), ..]}.

        Parameters
        ----------
        attrs : DataFrame
            should contain strings of '<property>: <value>;<prop2>: <val2>'
            Whitespace shouldn't matter and the final trailing ';' shouldn't
            matter.
        """
        if not self.index.is_unique or not self.columns.is_unique:
            raise KeyError(
                "`Styler.apply` and `.map` are not compatible "
                "with non-unique index or columns."
            )

        for cn in attrs.columns:
            j = self.columns.get_loc(cn)
            ser = attrs[cn]
            for rn, c in ser.items():
                if not c or pd.isna(c):
                    continue
                css_list = maybe_convert_css_to_tuples(c)
                i = self.index.get_loc(rn)
                self.ctx[(i, j)].extend(css_list)

    def _update_ctx_header(self, attrs: DataFrame, axis: AxisInt) -> None:
        """
        Update the state of the ``Styler`` for header cells.

        Collects a mapping of {index_label: [('<property>', '<value>'), ..]}.

        Parameters
        ----------
        attrs : Series
            Should contain strings of '<property>: <value>;<prop2>: <val2>', and an
            integer index.
            Whitespace shouldn't matter and the final trailing ';' shouldn't
            matter.
        axis : int
            Identifies whether the ctx object being updated is the index or columns
        """
        for j in attrs.columns:
            ser = attrs[j]
            for i, c in ser.items():
                if not c:
                    continue
                css_list = maybe_convert_css_to_tuples(c)
                if axis == 0:
                    self.ctx_index[(i, j)].extend(css_list)
                else:
                    self.ctx_columns[(j, i)].extend(css_list)

    def _copy(self, deepcopy: bool = False) -> Styler:
        """
        Copies a Styler, allowing for deepcopy or shallow copy

        Copying a Styler aims to recreate a new Styler object which contains the same
        data and styles as the original.

        Data dependent attributes [copied and NOT exported]:
          - formatting (._display_funcs)
          - hidden index values or column values (.hidden_rows, .hidden_columns)
          - tooltips
          - cell_context (cell css classes)
          - ctx (cell css styles)
          - caption
          - concatenated stylers

        Non-data dependent attributes [copied and exported]:
          - css
          - hidden index state and hidden columns state (.hide_index_, .hide_columns_)
          - table_attributes
          - table_styles
          - applied styles (_todo)

        """
        # GH 40675, 52728
        styler = type(self)(
            self.data,  # populates attributes 'data', 'columns', 'index' as shallow
        )
        shallow = [  # simple string or boolean immutables
            "hide_index_",
            "hide_columns_",
            "hide_column_names",
            "hide_index_names",
            "table_attributes",
            "cell_ids",
            "caption",
            "uuid",
            "uuid_len",
            "template_latex",  # also copy templates if these have been customised
            "template_html_style",
            "template_html_table",
            "template_html",
        ]
        deep = [  # nested lists or dicts
            "css",
            "concatenated",
            "_display_funcs",
            "_display_funcs_index",
            "_display_funcs_columns",
            "hidden_rows",
            "hidden_columns",
            "ctx",
            "ctx_index",
            "ctx_columns",
            "cell_context",
            "_todo",
            "table_styles",
            "tooltips",
        ]

        for attr in shallow:
            setattr(styler, attr, getattr(self, attr))

        for attr in deep:
            val = getattr(self, attr)
            setattr(styler, attr, copy.deepcopy(val) if deepcopy else val)

        return styler

    def __copy__(self) -> Styler:
        return self._copy(deepcopy=False)

    def __deepcopy__(self, memo) -> Styler:
        return self._copy(deepcopy=True)

    def clear(self) -> None:
        """
        Reset the ``Styler``, removing any previously applied styles.

        Returns None.

        Examples
        --------
        >>> df = pd.DataFrame({'A': [1, 2], 'B': [3, np.nan]})

        After any added style:

        >>> df.style.highlight_null(color='yellow')  # doctest: +SKIP

        Remove it with:

        >>> df.style.clear()  # doctest: +SKIP

        Please see:
        `Table Visualization <../../user_guide/style.ipynb>`_ for more examples.
        """
        # create default GH 40675
        clean_copy = Styler(self.data, uuid=self.uuid)
        clean_attrs = [a for a in clean_copy.__dict__ if not callable(a)]
        self_attrs = [a for a in self.__dict__ if not callable(a)]  # maybe more attrs
        for attr in clean_attrs:
            setattr(self, attr, getattr(clean_copy, attr))
        for attr in set(self_attrs).difference(clean_attrs):
            delattr(self, attr)

    def _apply(
        self,
        func: Callable,
        axis: Axis | None = 0,
        subset: Subset | None = None,
        **kwargs,
    ) -> Styler:
        subset = slice(None) if subset is None else subset
        subset = non_reducing_slice(subset)
        data = self.data.loc[subset]
        if data.empty:
            result = DataFrame()
        elif axis is None:
            result = func(data, **kwargs)
            if not isinstance(result, DataFrame):
                if not isinstance(result, np.ndarray):
                    raise TypeError(
                        f"Function {repr(func)} must return a DataFrame or ndarray "
                        f"when passed to `Styler.apply` with axis=None"
                    )
                if data.shape != result.shape:
                    raise ValueError(
                        f"Function {repr(func)} returned ndarray with wrong shape.\n"
                        f"Result has shape: {result.shape}\n"
                        f"Expected shape: {data.shape}"
                    )
                result = DataFrame(result, index=data.index, columns=data.columns)
        else:
            axis = self.data._get_axis_number(axis)
            if axis == 0:
                result = data.apply(func, axis=0, **kwargs)
            else:
                result = data.T.apply(func, axis=0, **kwargs).T  # see GH 42005

        if isinstance(result, Series):
            raise ValueError(
                f"Function {repr(func)} resulted in the apply method collapsing to a "
                f"Series.\nUsually, this is the result of the function returning a "
                f"single value, instead of list-like."
            )
        msg = (
            f"Function {repr(func)} created invalid {{0}} labels.\nUsually, this is "
            f"the result of the function returning a "
            f"{'Series' if axis is not None else 'DataFrame'} which contains invalid "
            f"labels, or returning an incorrectly shaped, list-like object which "
            f"cannot be mapped to labels, possibly due to applying the function along "
            f"the wrong axis.\n"
            f"Result {{0}} has shape: {{1}}\n"
            f"Expected {{0}} shape:   {{2}}"
        )
        if not all(result.index.isin(data.index)):
            raise ValueError(msg.format("index", result.index.shape, data.index.shape))
        if not all(result.columns.isin(data.columns)):
            raise ValueError(
                msg.format("columns", result.columns.shape, data.columns.shape)
            )
        self._update_ctx(result)
        return self

    @Substitution(subset=subset_args)
    def apply(
        self,
        func: Callable,
        axis: Axis | None = 0,
        subset: Subset | None = None,
        **kwargs,
    ) -> Styler:
        """
        Apply a CSS-styling function column-wise, row-wise, or table-wise.

        Updates the HTML representation with the result.

        Parameters
        ----------
        func : function
            ``func`` should take a Series if ``axis`` in [0,1] and return a list-like
            object of same length, or a Series, not necessarily of same length, with
            valid index labels considering ``subset``.
            ``func`` should take a DataFrame if ``axis`` is ``None`` and return either
            an ndarray with the same shape or a DataFrame, not necessarily of the same
            shape, with valid index and columns labels considering ``subset``.

            .. versionchanged:: 1.3.0

            .. versionchanged:: 1.4.0

        axis : {0 or 'index', 1 or 'columns', None}, default 0
            Apply to each column (``axis=0`` or ``'index'``), to each row
            (``axis=1`` or ``'columns'``), or to the entire DataFrame at once
            with ``axis=None``.
        %(subset)s
        **kwargs : dict
            Pass along to ``func``.

        Returns
        -------
        Styler

        See Also
        --------
        Styler.map_index: Apply a CSS-styling function to headers elementwise.
        Styler.apply_index: Apply a CSS-styling function to headers level-wise.
        Styler.map: Apply a CSS-styling function elementwise.

        Notes
        -----
        The elements of the output of ``func`` should be CSS styles as strings, in the
        format 'attribute: value; attribute2: value2; ...' or,
        if nothing is to be applied to that element, an empty string or ``None``.

        This is similar to ``DataFrame.apply``, except that ``axis=None``
        applies the function to the entire DataFrame at once,
        rather than column-wise or row-wise.

        Examples
        --------
        >>> def highlight_max(x, color):
        ...     return np.where(x == np.nanmax(x.to_numpy()), f"color: {color};", None)
        >>> df = pd.DataFrame(np.random.randn(5, 2), columns=["A", "B"])
        >>> df.style.apply(highlight_max, color='red')  # doctest: +SKIP
        >>> df.style.apply(highlight_max, color='blue', axis=1)  # doctest: +SKIP
        >>> df.style.apply(highlight_max, color='green', axis=None)  # doctest: +SKIP

        Using ``subset`` to restrict application to a single column or multiple columns

        >>> df.style.apply(highlight_max, color='red', subset="A")
        ... # doctest: +SKIP
        >>> df.style.apply(highlight_max, color='red', subset=["A", "B"])
        ... # doctest: +SKIP

        Using a 2d input to ``subset`` to select rows in addition to columns

        >>> df.style.apply(highlight_max, color='red', subset=([0, 1, 2], slice(None)))
        ... # doctest: +SKIP
        >>> df.style.apply(highlight_max, color='red', subset=(slice(0, 5, 2), "A"))
        ... # doctest: +SKIP

        Using a function which returns a Series / DataFrame of unequal length but
        containing valid index labels

        >>> df = pd.DataFrame([[1, 2], [3, 4], [4, 6]], index=["A1", "A2", "Total"])
        >>> total_style = pd.Series("font-weight: bold;", index=["Total"])
        >>> df.style.apply(lambda s: total_style)  # doctest: +SKIP

        See `Table Visualization <../../user_guide/style.ipynb>`_ user guide for
        more details.
        """
        self._todo.append(
            (lambda instance: getattr(instance, "_apply"), (func, axis, subset), kwargs)
        )
        return self

    def _apply_index(
        self,
        func: Callable,
        axis: Axis = 0,
        level: Level | list[Level] | None = None,
        method: str = "apply",
        **kwargs,
    ) -> Styler:
        axis = self.data._get_axis_number(axis)
        obj = self.index if axis == 0 else self.columns

        levels_ = refactor_levels(level, obj)
        data = DataFrame(obj.to_list()).loc[:, levels_]

        if method == "apply":
            result = data.apply(func, axis=0, **kwargs)
        elif method == "map":
            result = data.map(func, **kwargs)

        self._update_ctx_header(result, axis)
        return self

    @doc(
        this="apply",
        wise="level-wise",
        alt="map",
        altwise="elementwise",
        func="take a Series and return a string array of the same length",
        input_note="the index as a Series, if an Index, or a level of a MultiIndex",
        output_note="an identically sized array of CSS styles as strings",
        var="s",
        ret='np.where(s == "B", "background-color: yellow;", "")',
        ret2='["background-color: yellow;" if "x" in v else "" for v in s]',
    )
    def apply_index(
        self,
        func: Callable,
        axis: AxisInt | str = 0,
        level: Level | list[Level] | None = None,
        **kwargs,
    ) -> Styler:
        """
        Apply a CSS-styling function to the index or column headers, {wise}.

        Updates the HTML representation with the result.

        .. versionadded:: 1.4.0

        .. versionadded:: 2.1.0
           Styler.applymap_index was deprecated and renamed to Styler.map_index.

        Parameters
        ----------
        func : function
            ``func`` should {func}.
        axis : {{0, 1, "index", "columns"}}
            The headers over which to apply the function.
        level : int, str, list, optional
            If index is MultiIndex the level(s) over which to apply the function.
        **kwargs : dict
            Pass along to ``func``.

        Returns
        -------
        Styler

        See Also
        --------
        Styler.{alt}_index: Apply a CSS-styling function to headers {altwise}.
        Styler.apply: Apply a CSS-styling function column-wise, row-wise, or table-wise.
        Styler.map: Apply a CSS-styling function elementwise.

        Notes
        -----
        Each input to ``func`` will be {input_note}. The output of ``func`` should be
        {output_note}, in the format 'attribute: value; attribute2: value2; ...'
        or, if nothing is to be applied to that element, an empty string or ``None``.

        Examples
        --------
        Basic usage to conditionally highlight values in the index.

        >>> df = pd.DataFrame([[1,2], [3,4]], index=["A", "B"])
        >>> def color_b(s):
        ...     return {ret}
        >>> df.style.{this}_index(color_b)  # doctest: +SKIP

        .. figure:: ../../_static/style/appmaphead1.png

        Selectively applying to specific levels of MultiIndex columns.

        >>> midx = pd.MultiIndex.from_product([['ix', 'jy'], [0, 1], ['x3', 'z4']])
        >>> df = pd.DataFrame([np.arange(8)], columns=midx)
        >>> def highlight_x({var}):
        ...     return {ret2}
        >>> df.style.{this}_index(highlight_x, axis="columns", level=[0, 2])
        ...  # doctest: +SKIP

        .. figure:: ../../_static/style/appmaphead2.png
        """
        self._todo.append(
            (
                lambda instance: getattr(instance, "_apply_index"),
                (func, axis, level, "apply"),
                kwargs,
            )
        )
        return self

    @doc(
        apply_index,
        this="map",
        wise="elementwise",
        alt="apply",
        altwise="level-wise",
        func="take a scalar and return a string",
        input_note="an index value, if an Index, or a level value of a MultiIndex",
        output_note="CSS styles as a string",
        var="v",
        ret='"background-color: yellow;" if v == "B" else None',
        ret2='"background-color: yellow;" if "x" in v else None',
    )
    def map_index(
        self,
        func: Callable,
        axis: AxisInt | str = 0,
        level: Level | list[Level] | None = None,
        **kwargs,
    ) -> Styler:
        self._todo.append(
            (
                lambda instance: getattr(instance, "_apply_index"),
                (func, axis, level, "map"),
                kwargs,
            )
        )
        return self

    def applymap_index(
        self,
        func: Callable,
        axis: AxisInt | str = 0,
        level: Level | list[Level] | None = None,
        **kwargs,
    ) -> Styler:
        """
        Apply a CSS-styling function to the index or column headers, elementwise.

        .. deprecated:: 2.1.0

           Styler.applymap_index has been deprecated. Use Styler.map_index instead.

        Parameters
        ----------
        func : function
            ``func`` should take a scalar and return a string.
        axis : {{0, 1, "index", "columns"}}
            The headers over which to apply the function.
        level : int, str, list, optional
            If index is MultiIndex the level(s) over which to apply the function.
        **kwargs : dict
            Pass along to ``func``.

        Returns
        -------
        Styler
        """
        warnings.warn(
            "Styler.applymap_index has been deprecated. Use Styler.map_index instead.",
            FutureWarning,
            stacklevel=find_stack_level(),
        )
        return self.map_index(func, axis, level, **kwargs)

    def _map(self, func: Callable, subset: Subset | None = None, **kwargs) -> Styler:
        func = partial(func, **kwargs)  # map doesn't take kwargs?
        if subset is None:
            subset = IndexSlice[:]
        subset = non_reducing_slice(subset)
        result = self.data.loc[subset].map(func)
        self._update_ctx(result)
        return self

    @Substitution(subset=subset_args)
    def map(self, func: Callable, subset: Subset | None = None, **kwargs) -> Styler:
        """
        Apply a CSS-styling function elementwise.

        Updates the HTML representation with the result.

        Parameters
        ----------
        func : function
            ``func`` should take a scalar and return a string.
        %(subset)s
        **kwargs : dict
            Pass along to ``func``.

        Returns
        -------
        Styler

        See Also
        --------
        Styler.map_index: Apply a CSS-styling function to headers elementwise.
        Styler.apply_index: Apply a CSS-styling function to headers level-wise.
        Styler.apply: Apply a CSS-styling function column-wise, row-wise, or table-wise.

        Notes
        -----
        The elements of the output of ``func`` should be CSS styles as strings, in the
        format 'attribute: value; attribute2: value2; ...' or,
        if nothing is to be applied to that element, an empty string or ``None``.

        Examples
        --------
        >>> def color_negative(v, color):
        ...     return f"color: {color};" if v < 0 else None
        >>> df = pd.DataFrame(np.random.randn(5, 2), columns=["A", "B"])
        >>> df.style.map(color_negative, color='red')  # doctest: +SKIP

        Using ``subset`` to restrict application to a single column or multiple columns

        >>> df.style.map(color_negative, color='red', subset="A")
        ...  # doctest: +SKIP
        >>> df.style.map(color_negative, color='red', subset=["A", "B"])
        ...  # doctest: +SKIP

        Using a 2d input to ``subset`` to select rows in addition to columns

        >>> df.style.map(color_negative, color='red',
        ...  subset=([0,1,2], slice(None)))  # doctest: +SKIP
        >>> df.style.map(color_negative, color='red', subset=(slice(0,5,2), "A"))
        ...  # doctest: +SKIP

        See `Table Visualization <../../user_guide/style.ipynb>`_ user guide for
        more details.
        """
        self._todo.append(
            (lambda instance: getattr(instance, "_map"), (func, subset), kwargs)
        )
        return self

    @Substitution(subset=subset_args)
    def applymap(
        self, func: Callable, subset: Subset | None = None, **kwargs
    ) -> Styler:
        """
        Apply a CSS-styling function elementwise.

        .. deprecated:: 2.1.0

           Styler.applymap has been deprecated. Use Styler.map instead.

        Parameters
        ----------
        func : function
            ``func`` should take a scalar and return a string.
        %(subset)s
        **kwargs : dict
            Pass along to ``func``.

        Returns
        -------
        Styler
        """
        warnings.warn(
            "Styler.applymap has been deprecated. Use Styler.map instead.",
            FutureWarning,
            stacklevel=find_stack_level(),
        )
        return self.map(func, subset, **kwargs)

    def set_table_attributes(self, attributes: str) -> Styler:
        """
        Set the table attributes added to the ``<table>`` HTML element.

        These are items in addition to automatic (by default) ``id`` attribute.

        Parameters
        ----------
        attributes : str

        Returns
        -------
        Styler

        See Also
        --------
        Styler.set_table_styles: Set the table styles included within the ``<style>``
            HTML element.
        Styler.set_td_classes: Set the DataFrame of strings added to the ``class``
            attribute of ``<td>`` HTML elements.

        Examples
        --------
        >>> df = pd.DataFrame(np.random.randn(10, 4))
        >>> df.style.set_table_attributes('class="pure-table"')  # doctest: +SKIP
        # ... <table class="pure-table"> ...
        """
        self.table_attributes = attributes
        return self

    def export(self) -> dict[str, Any]:
        """
        Export the styles applied to the current Styler.

        Can be applied to a second Styler with ``Styler.use``.

        Returns
        -------
        dict

        See Also
        --------
        Styler.use: Set the styles on the current Styler.
        Styler.copy: Create a copy of the current Styler.

        Notes
        -----
        This method is designed to copy non-data dependent attributes of
        one Styler to another. It differs from ``Styler.copy`` where data and
        data dependent attributes are also copied.

        The following items are exported since they are not generally data dependent:

          - Styling functions added by the ``apply`` and ``map``
          - Whether axes and names are hidden from the display, if unambiguous.
          - Table attributes
          - Table styles

        The following attributes are considered data dependent and therefore not
        exported:

          - Caption
          - UUID
          - Tooltips
          - Any hidden rows or columns identified by Index labels
          - Any formatting applied using ``Styler.format``
          - Any CSS classes added using ``Styler.set_td_classes``

        Examples
        --------

        >>> styler = pd.DataFrame([[1, 2], [3, 4]]).style
        >>> styler2 = pd.DataFrame([[9, 9, 9]]).style
        >>> styler.hide(axis=0).highlight_max(axis=1)  # doctest: +SKIP
        >>> export = styler.export()
        >>> styler2.use(export)  # doctest: +SKIP
        """
        return {
            "apply": copy.copy(self._todo),
            "table_attributes": self.table_attributes,
            "table_styles": copy.copy(self.table_styles),
            "hide_index": all(self.hide_index_),
            "hide_columns": all(self.hide_columns_),
            "hide_index_names": self.hide_index_names,
            "hide_column_names": self.hide_column_names,
            "css": copy.copy(self.css),
        }

    def use(self, styles: dict[str, Any]) -> Styler:
        """
        Set the styles on the current Styler.

        Possibly uses styles from ``Styler.export``.

        Parameters
        ----------
        styles : dict(str, Any)
            List of attributes to add to Styler. Dict keys should contain only:
              - "apply": list of styler functions, typically added with ``apply`` or
                ``map``.
              - "table_attributes": HTML attributes, typically added with
                ``set_table_attributes``.
              - "table_styles": CSS selectors and properties, typically added with
                ``set_table_styles``.
              - "hide_index":  whether the index is hidden, typically added with
                ``hide_index``, or a boolean list for hidden levels.
              - "hide_columns": whether column headers are hidden, typically added with
                ``hide_columns``, or a boolean list for hidden levels.
              - "hide_index_names": whether index names are hidden.
              - "hide_column_names": whether column header names are hidden.
              - "css": the css class names used.

        Returns
        -------
        Styler

        See Also
        --------
        Styler.export : Export the non data dependent attributes to the current Styler.

        Examples
        --------

        >>> styler = pd.DataFrame([[1, 2], [3, 4]]).style
        >>> styler2 = pd.DataFrame([[9, 9, 9]]).style
        >>> styler.hide(axis=0).highlight_max(axis=1)  # doctest: +SKIP
        >>> export = styler.export()
        >>> styler2.use(export)  # doctest: +SKIP
        """
        self._todo.extend(styles.get("apply", []))
        table_attributes: str = self.table_attributes or ""
        obj_table_atts: str = (
            ""
            if styles.get("table_attributes") is None
            else str(styles.get("table_attributes"))
        )
        self.set_table_attributes((table_attributes + " " + obj_table_atts).strip())
        if styles.get("table_styles"):
            self.set_table_styles(styles.get("table_styles"), overwrite=False)

        for obj in ["index", "columns"]:
            hide_obj = styles.get("hide_" + obj)
            if hide_obj is not None:
                if isinstance(hide_obj, bool):
                    n = getattr(self, obj).nlevels
                    setattr(self, "hide_" + obj + "_", [hide_obj] * n)
                else:
                    setattr(self, "hide_" + obj + "_", hide_obj)

        self.hide_index_names = styles.get("hide_index_names", False)
        self.hide_column_names = styles.get("hide_column_names", False)
        if styles.get("css"):
            self.css = styles.get("css")  # type: ignore[assignment]
        return self

    def set_uuid(self, uuid: str) -> Styler:
        """
        Set the uuid applied to ``id`` attributes of HTML elements.

        Parameters
        ----------
        uuid : str

        Returns
        -------
        Styler

        Notes
        -----
        Almost all HTML elements within the table, and including the ``<table>`` element
        are assigned ``id`` attributes. The format is ``T_uuid_<extra>`` where
        ``<extra>`` is typically a more specific identifier, such as ``row1_col2``.

        Examples
        --------
        >>> df = pd.DataFrame([[1, 2], [3, 4]], index=['A', 'B'], columns=['c1', 'c2'])

        You can get the `id` attributes with the following:

        >>> print((df).style.to_html())  # doctest: +SKIP

        To add a title to column `c1`, its `id` is T_20a7d_level0_col0:

        >>> df.style.set_uuid("T_20a7d_level0_col0")
        ... .set_caption("Test")  # doctest: +SKIP

        Please see:
        `Table visualization <../../user_guide/style.ipynb>`_ for more examples.
        """
        self.uuid = uuid
        return self

    def set_caption(self, caption: str | tuple | list) -> Styler:
        """
        Set the text added to a ``<caption>`` HTML element.

        Parameters
        ----------
        caption : str, tuple, list
            For HTML output either the string input is used or the first element of the
            tuple. For LaTeX the string input provides a caption and the additional
            tuple input allows for full captions and short captions, in that order.

        Returns
        -------
        Styler

        Examples
        --------
        >>> df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
        >>> df.style.set_caption("test")  # doctest: +SKIP

        Please see:
        `Table Visualization <../../user_guide/style.ipynb>`_ for more examples.
        """
        msg = "`caption` must be either a string or 2-tuple of strings."
        if isinstance(caption, (list, tuple)):
            if (
                len(caption) != 2
                or not isinstance(caption[0], str)
                or not isinstance(caption[1], str)
            ):
                raise ValueError(msg)
        elif not isinstance(caption, str):
            raise ValueError(msg)
        self.caption = caption
        return self

    def set_sticky(
        self,
        axis: Axis = 0,
        pixel_size: int | None = None,
        levels: Level | list[Level] | None = None,
    ) -> Styler:
        """
        Add CSS to permanently display the index or column headers in a scrolling frame.

        Parameters
        ----------
        axis : {0 or 'index', 1 or 'columns'}, default 0
            Whether to make the index or column headers sticky.
        pixel_size : int, optional
            Required to configure the width of index cells or the height of column
            header cells when sticking a MultiIndex (or with a named Index).
            Defaults to 75 and 25 respectively.
        levels : int, str, list, optional
            If ``axis`` is a MultiIndex the specific levels to stick. If ``None`` will
            stick all levels.

        Returns
        -------
        Styler

        Notes
        -----
        This method uses the CSS 'position: sticky;' property to display. It is
        designed to work with visible axes, therefore both:

          - `styler.set_sticky(axis="index").hide(axis="index")`
          - `styler.set_sticky(axis="columns").hide(axis="columns")`

        may produce strange behaviour due to CSS controls with missing elements.

        Examples
        --------
        >>> df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
        >>> df.style.set_sticky(axis="index")  # doctest: +SKIP

        Please see:
        `Table Visualization <../../user_guide/style.ipynb>`_ for more examples.
        """
        axis = self.data._get_axis_number(axis)
        obj = self.data.index if axis == 0 else self.data.columns
        pixel_size = (75 if axis == 0 else 25) if not pixel_size else pixel_size

        props = "position:sticky; background-color:inherit;"
        if not isinstance(obj, pd.MultiIndex):
            # handling MultiIndexes requires different CSS

            if axis == 1:
                # stick the first <tr> of <head> and, if index names, the second <tr>
                # if self._hide_columns then no <thead><tr> here will exist: no conflict
                styles: CSSStyles = [
                    {
                        "selector": "thead tr:nth-child(1) th",
                        "props": props + "top:0px; z-index:2;",
                    }
                ]
                if self.index.names[0] is not None:
                    styles[0]["props"] = (
                        props + f"top:0px; z-index:2; height:{pixel_size}px;"
                    )
                    styles.append(
                        {
                            "selector": "thead tr:nth-child(2) th",
                            "props": props
                            + f"top:{pixel_size}px; z-index:2; height:{pixel_size}px; ",
                        }
                    )
            else:
                # stick the first <th> of each <tr> in both <thead> and <tbody>
                # if self._hide_index then no <th> will exist in <tbody>: no conflict
                # but <th> will exist in <thead>: conflict with initial element
                styles = [
                    {
                        "selector": "thead tr th:nth-child(1)",
                        "props": props + "left:0px; z-index:3 !important;",
                    },
                    {
                        "selector": "tbody tr th:nth-child(1)",
                        "props": props + "left:0px; z-index:1;",
                    },
                ]

        else:
            # handle the MultiIndex case
            range_idx = list(range(obj.nlevels))
            levels_: list[int] = refactor_levels(levels, obj) if levels else range_idx
            levels_ = sorted(levels_)

            if axis == 1:
                styles = []
                for i, level in enumerate(levels_):
                    styles.append(
                        {
                            "selector": f"thead tr:nth-child({level+1}) th",
                            "props": props
                            + (
                                f"top:{i * pixel_size}px; height:{pixel_size}px; "
                                "z-index:2;"
                            ),
                        }
                    )
                if not all(name is None for name in self.index.names):
                    styles.append(
                        {
                            "selector": f"thead tr:nth-child({obj.nlevels+1}) th",
                            "props": props
                            + (
                                f"top:{(len(levels_)) * pixel_size}px; "
                                f"height:{pixel_size}px; z-index:2;"
                            ),
                        }
                    )

            else:
                styles = []
                for i, level in enumerate(levels_):
                    props_ = props + (
                        f"left:{i * pixel_size}px; "
                        f"min-width:{pixel_size}px; "
                        f"max-width:{pixel_size}px; "
                    )
                    styles.extend(
                        [
                            {
                                "selector": f"thead tr th:nth-child({level+1})",
                                "props": props_ + "z-index:3 !important;",
                            },
                            {
                                "selector": f"tbody tr th.level{level}",
                                "props": props_ + "z-index:1;",
                            },
                        ]
                    )

        return self.set_table_styles(styles, overwrite=False)

    def set_table_styles(
        self,
        table_styles: dict[Any, CSSStyles] | CSSStyles | None = None,
        axis: AxisInt = 0,
        overwrite: bool = True,
        css_class_names: dict[str, str] | None = None,
    ) -> Styler:
        """
        Set the table styles included within the ``<style>`` HTML element.

        This function can be used to style the entire table, columns, rows or
        specific HTML selectors.

        Parameters
        ----------
        table_styles : list or dict
            If supplying a list, each individual table_style should be a
            dictionary with ``selector`` and ``props`` keys. ``selector``
            should be a CSS selector that the style will be applied to
            (automatically prefixed by the table's UUID) and ``props``
            should be a list of tuples with ``(attribute, value)``.
            If supplying a dict, the dict keys should correspond to
            column names or index values, depending upon the specified
            `axis` argument. These will be mapped to row or col CSS
            selectors. MultiIndex values as dict keys should be
            in their respective tuple form. The dict values should be
            a list as specified in the form with CSS selectors and
            props that will be applied to the specified row or column.
        axis : {0 or 'index', 1 or 'columns', None}, default 0
            Apply to each column (``axis=0`` or ``'index'``), to each row
            (``axis=1`` or ``'columns'``). Only used if `table_styles` is
            dict.
        overwrite : bool, default True
            Styles are replaced if `True`, or extended if `False`. CSS
            rules are preserved so most recent styles set will dominate
            if selectors intersect.
        css_class_names : dict, optional
            A dict of strings used to replace the default CSS classes described below.

            .. versionadded:: 1.4.0

        Returns
        -------
        Styler

        See Also
        --------
        Styler.set_td_classes: Set the DataFrame of strings added to the ``class``
            attribute of ``<td>`` HTML elements.
        Styler.set_table_attributes: Set the table attributes added to the ``<table>``
            HTML element.

        Notes
        -----
        The default CSS classes dict, whose values can be replaced is as follows:

        .. code-block:: python

            css_class_names = {"row_heading": "row_heading",
                               "col_heading": "col_heading",
                               "index_name": "index_name",
                               "col": "col",
                               "row": "row",
                               "col_trim": "col_trim",
                               "row_trim": "row_trim",
                               "level": "level",
                               "data": "data",
                               "blank": "blank",
                               "foot": "foot"}

        Examples
        --------
        >>> df = pd.DataFrame(np.random.randn(10, 4),
        ...                   columns=['A', 'B', 'C', 'D'])
        >>> df.style.set_table_styles(
        ...     [{'selector': 'tr:hover',
        ...       'props': [('background-color', 'yellow')]}]
        ... )  # doctest: +SKIP

        Or with CSS strings

        >>> df.style.set_table_styles(
        ...     [{'selector': 'tr:hover',
        ...       'props': 'background-color: yellow; font-size: 1em;'}]
        ... )  # doctest: +SKIP

        Adding column styling by name

        >>> df.style.set_table_styles({
        ...     'A': [{'selector': '',
        ...            'props': [('color', 'red')]}],
        ...     'B': [{'selector': 'td',
        ...            'props': 'color: blue;'}]
        ... }, overwrite=False)  # doctest: +SKIP

        Adding row styling

        >>> df.style.set_table_styles({
        ...     0: [{'selector': 'td:hover',
        ...          'props': [('font-size', '25px')]}]
        ... }, axis=1, overwrite=False)  # doctest: +SKIP

        See `Table Visualization <../../user_guide/style.ipynb>`_ user guide for
        more details.
        """
        if css_class_names is not None:
            self.css = {**self.css, **css_class_names}

        if table_styles is None:
            return self
        elif isinstance(table_styles, dict):
            axis = self.data._get_axis_number(axis)
            obj = self.data.index if axis == 1 else self.data.columns
            idf = f".{self.css['row']}" if axis == 1 else f".{self.css['col']}"

            table_styles = [
                {
                    "selector": str(s["selector"]) + idf + str(idx),
                    "props": maybe_convert_css_to_tuples(s["props"]),
                }
                for key, styles in table_styles.items()
                for idx in obj.get_indexer_for([key])
                for s in format_table_styles(styles)
            ]
        else:
            table_styles = [
                {
                    "selector": s["selector"],
                    "props": maybe_convert_css_to_tuples(s["props"]),
                }
                for s in table_styles
            ]

        if not overwrite and self.table_styles is not None:
            self.table_styles.extend(table_styles)
        else:
            self.table_styles = table_styles
        return self

    def hide(
        self,
        subset: Subset | None = None,
        axis: Axis = 0,
        level: Level | list[Level] | None = None,
        names: bool = False,
    ) -> Styler:
        """
        Hide the entire index / column headers, or specific rows / columns from display.

        .. versionadded:: 1.4.0

        Parameters
        ----------
        subset : label, array-like, IndexSlice, optional
            A valid 1d input or single key along the axis within
            `DataFrame.loc[<subset>, :]` or `DataFrame.loc[:, <subset>]` depending
            upon ``axis``, to limit ``data`` to select hidden rows / columns.
        axis : {"index", 0, "columns", 1}
            Apply to the index or columns.
        level : int, str, list
            The level(s) to hide in a MultiIndex if hiding the entire index / column
            headers. Cannot be used simultaneously with ``subset``.
        names : bool
            Whether to hide the level name(s) of the index / columns headers in the case
            it (or at least one the levels) remains visible.

        Returns
        -------
        Styler

        Notes
        -----
        .. warning::
           This method only works with the output methods ``to_html``, ``to_string``
           and ``to_latex``.

           Other output methods, including ``to_excel``, ignore this hiding method
           and will display all data.

        This method has multiple functionality depending upon the combination
        of the ``subset``, ``level`` and ``names`` arguments (see examples). The
        ``axis`` argument is used only to control whether the method is applied to row
        or column headers:

        .. list-table:: Argument combinations
           :widths: 10 20 10 60
           :header-rows: 1

           * - ``subset``
             - ``level``
             - ``names``
             - Effect
           * - None
             - None
             - False
             - The axis-Index is hidden entirely.
           * - None
             - None
             - True
             - Only the axis-Index names are hidden.
           * - None
             - Int, Str, List
             - False
             - Specified axis-MultiIndex levels are hidden entirely.
           * - None
             - Int, Str, List
             - True
             - Specified axis-MultiIndex levels are hidden entirely and the names of
               remaining axis-MultiIndex levels.
           * - Subset
             - None
             - False
             - The specified data rows/columns are hidden, but the axis-Index itself,
               and names, remain unchanged.
           * - Subset
             - None
             - True
             - The specified data rows/columns and axis-Index names are hidden, but
               the axis-Index itself remains unchanged.
           * - Subset
             - Int, Str, List
             - Boolean
             - ValueError: cannot supply ``subset`` and ``level`` simultaneously.

        Note this method only hides the identified elements so can be chained to hide
        multiple elements in sequence.

        Examples
        --------
        Simple application hiding specific rows:

        >>> df = pd.DataFrame([[1,2], [3,4], [5,6]], index=["a", "b", "c"])
        >>> df.style.hide(["a", "b"])  # doctest: +SKIP
             0    1
        c    5    6

        Hide the index and retain the data values:

        >>> midx = pd.MultiIndex.from_product([["x", "y"], ["a", "b", "c"]])
        >>> df = pd.DataFrame(np.random.randn(6,6), index=midx, columns=midx)
        >>> df.style.format("{:.1f}").hide()  # doctest: +SKIP
                         x                    y
           a      b      c      a      b      c
         0.1    0.0    0.4    1.3    0.6   -1.4
         0.7    1.0    1.3    1.5   -0.0   -0.2
         1.4   -0.8    1.6   -0.2   -0.4   -0.3
         0.4    1.0   -0.2   -0.8   -1.2    1.1
        -0.6    1.2    1.8    1.9    0.3    0.3
         0.8    0.5   -0.3    1.2    2.2   -0.8

        Hide specific rows in a MultiIndex but retain the index:

        >>> df.style.format("{:.1f}").hide(subset=(slice(None), ["a", "c"]))
        ...   # doctest: +SKIP
                                 x                    y
                   a      b      c      a      b      c
        x   b    0.7    1.0    1.3    1.5   -0.0   -0.2
        y   b   -0.6    1.2    1.8    1.9    0.3    0.3

        Hide specific rows and the index through chaining:

        >>> df.style.format("{:.1f}").hide(subset=(slice(None), ["a", "c"])).hide()
        ...   # doctest: +SKIP
                         x                    y
           a      b      c      a      b      c
         0.7    1.0    1.3    1.5   -0.0   -0.2
        -0.6    1.2    1.8    1.9    0.3    0.3

        Hide a specific level:

        >>> df.style.format("{:,.1f}").hide(level=1)  # doctest: +SKIP
                             x                    y
               a      b      c      a      b      c
        x    0.1    0.0    0.4    1.3    0.6   -1.4
             0.7    1.0    1.3    1.5   -0.0   -0.2
             1.4   -0.8    1.6   -0.2   -0.4   -0.3
        y    0.4    1.0   -0.2   -0.8   -1.2    1.1
            -0.6    1.2    1.8    1.9    0.3    0.3
             0.8    0.5   -0.3    1.2    2.2   -0.8

        Hiding just the index level names:

        >>> df.index.names = ["lev0", "lev1"]
        >>> df.style.format("{:,.1f}").hide(names=True)  # doctest: +SKIP
                                 x                    y
                   a      b      c      a      b      c
        x   a    0.1    0.0    0.4    1.3    0.6   -1.4
            b    0.7    1.0    1.3    1.5   -0.0   -0.2
            c    1.4   -0.8    1.6   -0.2   -0.4   -0.3
        y   a    0.4    1.0   -0.2   -0.8   -1.2    1.1
            b   -0.6    1.2    1.8    1.9    0.3    0.3
            c    0.8    0.5   -0.3    1.2    2.2   -0.8

        Examples all produce equivalently transposed effects with ``axis="columns"``.
        """
        axis = self.data._get_axis_number(axis)
        if axis == 0:
            obj, objs, alt = "index", "index", "rows"
        else:
            obj, objs, alt = "column", "columns", "columns"

        if level is not None and subset is not None:
            raise ValueError("`subset` and `level` cannot be passed simultaneously")

        if subset is None:
            if level is None and names:
                # this combination implies user shows the index and hides just names
                setattr(self, f"hide_{obj}_names", True)
                return self

            levels_ = refactor_levels(level, getattr(self, objs))
            setattr(
                self,
                f"hide_{objs}_",
                [lev in levels_ for lev in range(getattr(self, objs).nlevels)],
            )
        else:
            if axis == 0:
                subset_ = IndexSlice[subset, :]  # new var so mypy reads not Optional
            else:
                subset_ = IndexSlice[:, subset]  # new var so mypy reads not Optional
            subset = non_reducing_slice(subset_)
            hide = self.data.loc[subset]
            h_els = getattr(self, objs).get_indexer_for(getattr(hide, objs))
            setattr(self, f"hidden_{alt}", h_els)

        if names:
            setattr(self, f"hide_{obj}_names", True)
        return self

    # -----------------------------------------------------------------------
    # A collection of "builtin" styles
    # -----------------------------------------------------------------------

    def _get_numeric_subset_default(self):
        # Returns a boolean mask indicating where `self.data` has numerical columns.
        # Choosing a mask as opposed to the column names also works for
        # boolean column labels (GH47838).
        return self.data.columns.isin(self.data.select_dtypes(include=np.number))

    @doc(
        name="background",
        alt="text",
        image_prefix="bg",
        text_threshold="""text_color_threshold : float or int\n
            Luminance threshold for determining text color in [0, 1]. Facilitates text\n
            visibility across varying background colors. All text is dark if 0, and\n
            light if 1, defaults to 0.408.""",
    )
    @Substitution(subset=subset_args)
    def background_gradient(
        self,
        cmap: str | Colormap = "PuBu",
        low: float = 0,
        high: float = 0,
        axis: Axis | None = 0,
        subset: Subset | None = None,
        text_color_threshold: float = 0.408,
        vmin: float | None = None,
        vmax: float | None = None,
        gmap: Sequence | None = None,
    ) -> Styler:
        """
        Color the {name} in a gradient style.

        The {name} color is determined according
        to the data in each column, row or frame, or by a given
        gradient map. Requires matplotlib.

        Parameters
        ----------
        cmap : str or colormap
            Matplotlib colormap.
        low : float
            Compress the color range at the low end. This is a multiple of the data
            range to extend below the minimum; good values usually in [0, 1],
            defaults to 0.
        high : float
            Compress the color range at the high end. This is a multiple of the data
            range to extend above the maximum; good values usually in [0, 1],
            defaults to 0.
        axis : {{0, 1, "index", "columns", None}}, default 0
            Apply to each column (``axis=0`` or ``'index'``), to each row
            (``axis=1`` or ``'columns'``), or to the entire DataFrame at once
            with ``axis=None``.
        %(subset)s
        {text_threshold}
        vmin : float, optional
            Minimum data value that corresponds to colormap minimum value.
            If not specified the minimum value of the data (or gmap) will be used.
        vmax : float, optional
            Maximum data value that corresponds to colormap maximum value.
            If not specified the maximum value of the data (or gmap) will be used.
        gmap : array-like, optional
            Gradient map for determining the {name} colors. If not supplied
            will use the underlying data from rows, columns or frame. If given as an
            ndarray or list-like must be an identical shape to the underlying data
            considering ``axis`` and ``subset``. If given as DataFrame or Series must
            have same index and column labels considering ``axis`` and ``subset``.
            If supplied, ``vmin`` and ``vmax`` should be given relative to this
            gradient map.

            .. versionadded:: 1.3.0

        Returns
        -------
        Styler

        See Also
        --------
        Styler.{alt}_gradient: Color the {alt} in a gradient style.

        Notes
        -----
        When using ``low`` and ``high`` the range
        of the gradient, given by the data if ``gmap`` is not given or by ``gmap``,
        is extended at the low end effectively by
        `map.min - low * map.range` and at the high end by
        `map.max + high * map.range` before the colors are normalized and determined.

        If combining with ``vmin`` and ``vmax`` the `map.min`, `map.max` and
        `map.range` are replaced by values according to the values derived from
        ``vmin`` and ``vmax``.

        This method will preselect numeric columns and ignore non-numeric columns
        unless a ``gmap`` is supplied in which case no preselection occurs.

        Examples
        --------
        >>> df = pd.DataFrame(columns=["City", "Temp (c)", "Rain (mm)", "Wind (m/s)"],
        ...                   data=[["Stockholm", 21.6, 5.0, 3.2],
        ...                         ["Oslo", 22.4, 13.3, 3.1],
        ...                         ["Copenhagen", 24.5, 0.0, 6.7]])

        Shading the values column-wise, with ``axis=0``, preselecting numeric columns

        >>> df.style.{name}_gradient(axis=0)  # doctest: +SKIP

        .. figure:: ../../_static/style/{image_prefix}_ax0.png

        Shading all values collectively using ``axis=None``

        >>> df.style.{name}_gradient(axis=None)  # doctest: +SKIP

        .. figure:: ../../_static/style/{image_prefix}_axNone.png

        Compress the color map from the both ``low`` and ``high`` ends

        >>> df.style.{name}_gradient(axis=None, low=0.75, high=1.0)  # doctest: +SKIP

        .. figure:: ../../_static/style/{image_prefix}_axNone_lowhigh.png

        Manually setting ``vmin`` and ``vmax`` gradient thresholds

        >>> df.style.{name}_gradient(axis=None, vmin=6.7, vmax=21.6)  # doctest: +SKIP

        .. figure:: ../../_static/style/{image_prefix}_axNone_vminvmax.png

        Setting a ``gmap`` and applying to all columns with another ``cmap``

        >>> df.style.{name}_gradient(axis=0, gmap=df['Temp (c)'], cmap='YlOrRd')
        ...  # doctest: +SKIP

        .. figure:: ../../_static/style/{image_prefix}_gmap.png

        Setting the gradient map for a dataframe (i.e. ``axis=None``), we need to
        explicitly state ``subset`` to match the ``gmap`` shape

        >>> gmap = np.array([[1,2,3], [2,3,4], [3,4,5]])
        >>> df.style.{name}_gradient(axis=None, gmap=gmap,
        ...     cmap='YlOrRd', subset=['Temp (c)', 'Rain (mm)', 'Wind (m/s)']
        ... )  # doctest: +SKIP

        .. figure:: ../../_static/style/{image_prefix}_axNone_gmap.png
        """
        if subset is None and gmap is None:
            subset = self._get_numeric_subset_default()

        self.apply(
            _background_gradient,
            cmap=cmap,
            subset=subset,
            axis=axis,
            low=low,
            high=high,
            text_color_threshold=text_color_threshold,
            vmin=vmin,
            vmax=vmax,
            gmap=gmap,
        )
        return self

    @doc(
        background_gradient,
        name="text",
        alt="background",
        image_prefix="tg",
        text_threshold="",
    )
    def text_gradient(
        self,
        cmap: str | Colormap = "PuBu",
        low: float = 0,
        high: float = 0,
        axis: Axis | None = 0,
        subset: Subset | None = None,
        vmin: float | None = None,
        vmax: float | None = None,
        gmap: Sequence | None = None,
    ) -> Styler:
        if subset is None and gmap is None:
            subset = self._get_numeric_subset_default()

        return self.apply(
            _background_gradient,
            cmap=cmap,
            subset=subset,
            axis=axis,
            low=low,
            high=high,
            vmin=vmin,
            vmax=vmax,
            gmap=gmap,
            text_only=True,
        )

    @Substitution(subset=subset_args)
    def set_properties(self, subset: Subset | None = None, **kwargs) -> Styler:
        """
        Set defined CSS-properties to each ``<td>`` HTML element for the given subset.

        Parameters
        ----------
        %(subset)s
        **kwargs : dict
            A dictionary of property, value pairs to be set for each cell.

        Returns
        -------
        Styler

        Notes
        -----
        This is a convenience methods which wraps the :meth:`Styler.map` calling a
        function returning the CSS-properties independently of the data.

        Examples
        --------
        >>> df = pd.DataFrame(np.random.randn(10, 4))
        >>> df.style.set_properties(color="white", align="right")  # doctest: +SKIP
        >>> df.style.set_properties(**{'background-color': 'yellow'})  # doctest: +SKIP

        See `Table Visualization <../../user_guide/style.ipynb>`_ user guide for
        more details.
        """
        values = "".join([f"{p}: {v};" for p, v in kwargs.items()])
        return self.map(lambda x: values, subset=subset)

    @Substitution(subset=subset_args)
    def bar(  # pylint: disable=disallowed-name
        self,
        subset: Subset | None = None,
        axis: Axis | None = 0,
        *,
        color: str | list | tuple | None = None,
        cmap: Any | None = None,
        width: float = 100,
        height: float = 100,
        align: str | float | Callable = "mid",
        vmin: float | None = None,
        vmax: float | None = None,
        props: str = "width: 10em;",
    ) -> Styler:
        """
        Draw bar chart in the cell backgrounds.

        .. versionchanged:: 1.4.0

        Parameters
        ----------
        %(subset)s
        axis : {0 or 'index', 1 or 'columns', None}, default 0
            Apply to each column (``axis=0`` or ``'index'``), to each row
            (``axis=1`` or ``'columns'``), or to the entire DataFrame at once
            with ``axis=None``.
        color : str or 2-tuple/list
            If a str is passed, the color is the same for both
            negative and positive numbers. If 2-tuple/list is used, the
            first element is the color_negative and the second is the
            color_positive (eg: ['#d65f5f', '#5fba7d']).
        cmap : str, matplotlib.cm.ColorMap
            A string name of a matplotlib Colormap, or a Colormap object. Cannot be
            used together with ``color``.

            .. versionadded:: 1.4.0
        width : float, default 100
            The percentage of the cell, measured from the left, in which to draw the
            bars, in [0, 100].
        height : float, default 100
            The percentage height of the bar in the cell, centrally aligned, in [0,100].

            .. versionadded:: 1.4.0
        align : str, int, float, callable, default 'mid'
            How to align the bars within the cells relative to a width adjusted center.
            If string must be one of:

            - 'left' : bars are drawn rightwards from the minimum data value.
            - 'right' : bars are drawn leftwards from the maximum data value.
            - 'zero' : a value of zero is located at the center of the cell.
            - 'mid' : a value of (max-min)/2 is located at the center of the cell,
              or if all values are negative (positive) the zero is
              aligned at the right (left) of the cell.
            - 'mean' : the mean value of the data is located at the center of the cell.

            If a float or integer is given this will indicate the center of the cell.

            If a callable should take a 1d or 2d array and return a scalar.

            .. versionchanged:: 1.4.0

        vmin : float, optional
            Minimum bar value, defining the left hand limit
            of the bar drawing range, lower values are clipped to `vmin`.
            When None (default): the minimum value of the data will be used.
        vmax : float, optional
            Maximum bar value, defining the right hand limit
            of the bar drawing range, higher values are clipped to `vmax`.
            When None (default): the maximum value of the data will be used.
        props : str, optional
            The base CSS of the cell that is extended to add the bar chart. Defaults to
            `"width: 10em;"`.

            .. versionadded:: 1.4.0

        Returns
        -------
        Styler

        Notes
        -----
        This section of the user guide:
        `Table Visualization <../../user_guide/style.ipynb>`_ gives
        a number of examples for different settings and color coordination.

        Examples
        --------
        >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]})
        >>> df.style.bar(subset=['A'], color='gray')  # doctest: +SKIP
        """
        if color is None and cmap is None:
            color = "#d65f5f"
        elif color is not None and cmap is not None:
            raise ValueError("`color` and `cmap` cannot both be given")
        elif color is not None:
            if (isinstance(color, (list, tuple)) and len(color) > 2) or not isinstance(
                color, (str, list, tuple)
            ):
                raise ValueError(
                    "`color` must be string or list or tuple of 2 strings,"
                    "(eg: color=['#d65f5f', '#5fba7d'])"
                )

        if not 0 <= width <= 100:
            raise ValueError(f"`width` must be a value in [0, 100], got {width}")
        if not 0 <= height <= 100:
            raise ValueError(f"`height` must be a value in [0, 100], got {height}")

        if subset is None:
            subset = self._get_numeric_subset_default()

        self.apply(
            _bar,
            subset=subset,
            axis=axis,
            align=align,
            colors=color,
            cmap=cmap,
            width=width / 100,
            height=height / 100,
            vmin=vmin,
            vmax=vmax,
            base_css=props,
        )

        return self

    @Substitution(
        subset=subset_args,
        props=properties_args,
        color=coloring_args.format(default="red"),
    )
    def highlight_null(
        self,
        color: str = "red",
        subset: Subset | None = None,
        props: str | None = None,
    ) -> Styler:
        """
        Highlight missing values with a style.

        Parameters
        ----------
        %(color)s

            .. versionadded:: 1.5.0

        %(subset)s

        %(props)s

            .. versionadded:: 1.3.0

        Returns
        -------
        Styler

        See Also
        --------
        Styler.highlight_max: Highlight the maximum with a style.
        Styler.highlight_min: Highlight the minimum with a style.
        Styler.highlight_between: Highlight a defined range with a style.
        Styler.highlight_quantile: Highlight values defined by a quantile with a style.

        Examples
        --------
        >>> df = pd.DataFrame({'A': [1, 2], 'B': [3, np.nan]})
        >>> df.style.highlight_null(color='yellow')  # doctest: +SKIP

        Please see:
        `Table Visualization <../../user_guide/style.ipynb>`_ for more examples.
        """

        def f(data: DataFrame, props: str) -> np.ndarray:
            return np.where(pd.isna(data).to_numpy(), props, "")

        if props is None:
            props = f"background-color: {color};"
        return self.apply(f, axis=None, subset=subset, props=props)

    @Substitution(
        subset=subset_args,
        color=coloring_args.format(default="yellow"),
        props=properties_args,
    )
    def highlight_max(
        self,
        subset: Subset | None = None,
        color: str = "yellow",
        axis: Axis | None = 0,
        props: str | None = None,
    ) -> Styler:
        """
        Highlight the maximum with a style.

        Parameters
        ----------
        %(subset)s
        %(color)s
        axis : {0 or 'index', 1 or 'columns', None}, default 0
            Apply to each column (``axis=0`` or ``'index'``), to each row
            (``axis=1`` or ``'columns'``), or to the entire DataFrame at once
            with ``axis=None``.
        %(props)s

            .. versionadded:: 1.3.0

        Returns
        -------
        Styler

        See Also
        --------
        Styler.highlight_null: Highlight missing values with a style.
        Styler.highlight_min: Highlight the minimum with a style.
        Styler.highlight_between: Highlight a defined range with a style.
        Styler.highlight_quantile: Highlight values defined by a quantile with a style.

        Examples
        --------
        >>> df = pd.DataFrame({'A': [2, 1], 'B': [3, 4]})
        >>> df.style.highlight_max(color='yellow')  # doctest: +SKIP

        Please see:
        `Table Visualization <../../user_guide/style.ipynb>`_ for more examples.
        """

        if props is None:
            props = f"background-color: {color};"
        return self.apply(
            partial(_highlight_value, op="max"),
            axis=axis,
            subset=subset,
            props=props,
        )

    @Substitution(
        subset=subset_args,
        color=coloring_args.format(default="yellow"),
        props=properties_args,
    )
    def highlight_min(
        self,
        subset: Subset | None = None,
        color: str = "yellow",
        axis: Axis | None = 0,
        props: str | None = None,
    ) -> Styler:
        """
        Highlight the minimum with a style.

        Parameters
        ----------
        %(subset)s
        %(color)s
        axis : {0 or 'index', 1 or 'columns', None}, default 0
            Apply to each column (``axis=0`` or ``'index'``), to each row
            (``axis=1`` or ``'columns'``), or to the entire DataFrame at once
            with ``axis=None``.
        %(props)s

            .. versionadded:: 1.3.0

        Returns
        -------
        Styler

        See Also
        --------
        Styler.highlight_null: Highlight missing values with a style.
        Styler.highlight_max: Highlight the maximum with a style.
        Styler.highlight_between: Highlight a defined range with a style.
        Styler.highlight_quantile: Highlight values defined by a quantile with a style.

        Examples
        --------
        >>> df = pd.DataFrame({'A': [2, 1], 'B': [3, 4]})
        >>> df.style.highlight_min(color='yellow')  # doctest: +SKIP

        Please see:
        `Table Visualization <../../user_guide/style.ipynb>`_ for more examples.
        """

        if props is None:
            props = f"background-color: {color};"
        return self.apply(
            partial(_highlight_value, op="min"),
            axis=axis,
            subset=subset,
            props=props,
        )

    @Substitution(
        subset=subset_args,
        color=coloring_args.format(default="yellow"),
        props=properties_args,
    )
    def highlight_between(
        self,
        subset: Subset | None = None,
        color: str = "yellow",
        axis: Axis | None = 0,
        left: Scalar | Sequence | None = None,
        right: Scalar | Sequence | None = None,
        inclusive: IntervalClosedType = "both",
        props: str | None = None,
    ) -> Styler:
        """
        Highlight a defined range with a style.

        .. versionadded:: 1.3.0

        Parameters
        ----------
        %(subset)s
        %(color)s
        axis : {0 or 'index', 1 or 'columns', None}, default 0
            If ``left`` or ``right`` given as sequence, axis along which to apply those
            boundaries. See examples.
        left : scalar or datetime-like, or sequence or array-like, default None
            Left bound for defining the range.
        right : scalar or datetime-like, or sequence or array-like, default None
            Right bound for defining the range.
        inclusive : {'both', 'neither', 'left', 'right'}
            Identify whether bounds are closed or open.
        %(props)s

        Returns
        -------
        Styler

        See Also
        --------
        Styler.highlight_null: Highlight missing values with a style.
        Styler.highlight_max: Highlight the maximum with a style.
        Styler.highlight_min: Highlight the minimum with a style.
        Styler.highlight_quantile: Highlight values defined by a quantile with a style.

        Notes
        -----
        If ``left`` is ``None`` only the right bound is applied.
        If ``right`` is ``None`` only the left bound is applied. If both are ``None``
        all values are highlighted.

        ``axis`` is only needed if ``left`` or ``right`` are provided as a sequence or
        an array-like object for aligning the shapes. If ``left`` and ``right`` are
        both scalars then all ``axis`` inputs will give the same result.

        This function only works with compatible ``dtypes``. For example a datetime-like
        region can only use equivalent datetime-like ``left`` and ``right`` arguments.
        Use ``subset`` to control regions which have multiple ``dtypes``.

        Examples
        --------
        Basic usage

        >>> df = pd.DataFrame({
        ...     'One': [1.2, 1.6, 1.5],
        ...     'Two': [2.9, 2.1, 2.5],
        ...     'Three': [3.1, 3.2, 3.8],
        ... })
        >>> df.style.highlight_between(left=2.1, right=2.9)  # doctest: +SKIP

        .. figure:: ../../_static/style/hbetw_basic.png

        Using a range input sequence along an ``axis``, in this case setting a ``left``
        and ``right`` for each column individually

        >>> df.style.highlight_between(left=[1.4, 2.4, 3.4], right=[1.6, 2.6, 3.6],
        ...     axis=1, color="#fffd75")  # doctest: +SKIP

        .. figure:: ../../_static/style/hbetw_seq.png

        Using ``axis=None`` and providing the ``left`` argument as an array that
        matches the input DataFrame, with a constant ``right``

        >>> df.style.highlight_between(left=[[2,2,3],[2,2,3],[3,3,3]], right=3.5,
        ...     axis=None, color="#fffd75")  # doctest: +SKIP

        .. figure:: ../../_static/style/hbetw_axNone.png

        Using ``props`` instead of default background coloring

        >>> df.style.highlight_between(left=1.5, right=3.5,
        ...     props='font-weight:bold;color:#e83e8c')  # doctest: +SKIP

        .. figure:: ../../_static/style/hbetw_props.png
        """
        if props is None:
            props = f"background-color: {color};"
        return self.apply(
            _highlight_between,
            axis=axis,
            subset=subset,
            props=props,
            left=left,
            right=right,
            inclusive=inclusive,
        )

    @Substitution(
        subset=subset_args,
        color=coloring_args.format(default="yellow"),
        props=properties_args,
    )
    def highlight_quantile(
        self,
        subset: Subset | None = None,
        color: str = "yellow",
        axis: Axis | None = 0,
        q_left: float = 0.0,
        q_right: float = 1.0,
        interpolation: QuantileInterpolation = "linear",
        inclusive: IntervalClosedType = "both",
        props: str | None = None,
    ) -> Styler:
        """
        Highlight values defined by a quantile with a style.

        .. versionadded:: 1.3.0

        Parameters
        ----------
        %(subset)s
        %(color)s
        axis : {0 or 'index', 1 or 'columns', None}, default 0
            Axis along which to determine and highlight quantiles. If ``None`` quantiles
            are measured over the entire DataFrame. See examples.
        q_left : float, default 0
            Left bound, in [0, q_right), for the target quantile range.
        q_right : float, default 1
            Right bound, in (q_left, 1], for the target quantile range.
        interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
            Argument passed to ``Series.quantile`` or ``DataFrame.quantile`` for
            quantile estimation.
        inclusive : {'both', 'neither', 'left', 'right'}
            Identify whether quantile bounds are closed or open.
        %(props)s

        Returns
        -------
        Styler

        See Also
        --------
        Styler.highlight_null: Highlight missing values with a style.
        Styler.highlight_max: Highlight the maximum with a style.
        Styler.highlight_min: Highlight the minimum with a style.
        Styler.highlight_between: Highlight a defined range with a style.

        Notes
        -----
        This function does not work with ``str`` dtypes.

        Examples
        --------
        Using ``axis=None`` and apply a quantile to all collective data

        >>> df = pd.DataFrame(np.arange(10).reshape(2,5) + 1)
        >>> df.style.highlight_quantile(axis=None, q_left=0.8, color="#fffd75")
        ...  # doctest: +SKIP

        .. figure:: ../../_static/style/hq_axNone.png

        Or highlight quantiles row-wise or column-wise, in this case by row-wise

        >>> df.style.highlight_quantile(axis=1, q_left=0.8, color="#fffd75")
        ...  # doctest: +SKIP

        .. figure:: ../../_static/style/hq_ax1.png

        Use ``props`` instead of default background coloring

        >>> df.style.highlight_quantile(axis=None, q_left=0.2, q_right=0.8,
        ...     props='font-weight:bold;color:#e83e8c')  # doctest: +SKIP

        .. figure:: ../../_static/style/hq_props.png
        """
        subset_ = slice(None) if subset is None else subset
        subset_ = non_reducing_slice(subset_)
        data = self.data.loc[subset_]

        # after quantile is found along axis, e.g. along rows,
        # applying the calculated quantile to alternate axis, e.g. to each column
        quantiles = [q_left, q_right]
        if axis is None:
            q = Series(data.to_numpy().ravel()).quantile(
                q=quantiles, interpolation=interpolation
            )
            axis_apply: int | None = None
        else:
            axis = self.data._get_axis_number(axis)
            q = data.quantile(
                axis=axis, numeric_only=False, q=quantiles, interpolation=interpolation
            )
            axis_apply = 1 - axis

        if props is None:
            props = f"background-color: {color};"
        return self.apply(
            _highlight_between,
            axis=axis_apply,
            subset=subset,
            props=props,
            left=q.iloc[0],
            right=q.iloc[1],
            inclusive=inclusive,
        )

    @classmethod
    def from_custom_template(
        cls,
        searchpath: Sequence[str],
        html_table: str | None = None,
        html_style: str | None = None,
    ) -> type[Styler]:
        """
        Factory function for creating a subclass of ``Styler``.

        Uses custom templates and Jinja environment.

        .. versionchanged:: 1.3.0

        Parameters
        ----------
        searchpath : str or list
            Path or paths of directories containing the templates.
        html_table : str
            Name of your custom template to replace the html_table template.

            .. versionadded:: 1.3.0

        html_style : str
            Name of your custom template to replace the html_style template.

            .. versionadded:: 1.3.0

        Returns
        -------
        MyStyler : subclass of Styler
            Has the correct ``env``,``template_html``, ``template_html_table`` and
            ``template_html_style`` class attributes set.

        Examples
        --------
        >>> from pandas.io.formats.style import Styler
        >>> EasyStyler = Styler.from_custom_template("path/to/template",
        ...                                          "template.tpl",
        ...                                          )  # doctest: +SKIP
        >>> df = pd.DataFrame({"A": [1, 2]})
        >>> EasyStyler(df)  # doctest: +SKIP

        Please see:
        `Table Visualization <../../user_guide/style.ipynb>`_ for more examples.
        """
        loader = jinja2.ChoiceLoader([jinja2.FileSystemLoader(searchpath), cls.loader])

        # mypy doesn't like dynamically-defined classes
        # error: Variable "cls" is not valid as a type
        # error: Invalid base class "cls"
        class MyStyler(cls):  # type: ignore[valid-type,misc]
            env = jinja2.Environment(loader=loader)
            if html_table:
                template_html_table = env.get_template(html_table)
            if html_style:
                template_html_style = env.get_template(html_style)

        return MyStyler

    def pipe(self, func: Callable, *args, **kwargs):
        """
        Apply ``func(self, *args, **kwargs)``, and return the result.

        Parameters
        ----------
        func : function
            Function to apply to the Styler.  Alternatively, a
            ``(callable, keyword)`` tuple where ``keyword`` is a string
            indicating the keyword of ``callable`` that expects the Styler.
        *args : optional
            Arguments passed to `func`.
        **kwargs : optional
            A dictionary of keyword arguments passed into ``func``.

        Returns
        -------
        object :
            The value returned by ``func``.

        See Also
        --------
        DataFrame.pipe : Analogous method for DataFrame.
        Styler.apply : Apply a CSS-styling function column-wise, row-wise, or
            table-wise.

        Notes
        -----
        Like :meth:`DataFrame.pipe`, this method can simplify the
        application of several user-defined functions to a styler.  Instead
        of writing:

        .. code-block:: python

            f(g(df.style.format(precision=3), arg1=a), arg2=b, arg3=c)

        users can write:

        .. code-block:: python

            (df.style.format(precision=3)
               .pipe(g, arg1=a)
               .pipe(f, arg2=b, arg3=c))

        In particular, this allows users to define functions that take a
        styler object, along with other parameters, and return the styler after
        making styling changes (such as calling :meth:`Styler.apply` or
        :meth:`Styler.set_properties`).

        Examples
        --------

        **Common Use**

        A common usage pattern is to pre-define styling operations which
        can be easily applied to a generic styler in a single ``pipe`` call.

        >>> def some_highlights(styler, min_color="red", max_color="blue"):
        ...      styler.highlight_min(color=min_color, axis=None)
        ...      styler.highlight_max(color=max_color, axis=None)
        ...      styler.highlight_null()
        ...      return styler
        >>> df = pd.DataFrame([[1, 2, 3, pd.NA], [pd.NA, 4, 5, 6]], dtype="Int64")
        >>> df.style.pipe(some_highlights, min_color="green")  # doctest: +SKIP

        .. figure:: ../../_static/style/df_pipe_hl.png

        Since the method returns a ``Styler`` object it can be chained with other
        methods as if applying the underlying highlighters directly.

        >>> (df.style.format("{:.1f}")
        ...         .pipe(some_highlights, min_color="green")
        ...         .highlight_between(left=2, right=5))  # doctest: +SKIP

        .. figure:: ../../_static/style/df_pipe_hl2.png

        **Advanced Use**

        Sometimes it may be necessary to pre-define styling functions, but in the case
        where those functions rely on the styler, data or context. Since
        ``Styler.use`` and ``Styler.export`` are designed to be non-data dependent,
        they cannot be used for this purpose. Additionally the ``Styler.apply``
        and ``Styler.format`` type methods are not context aware, so a solution
        is to use ``pipe`` to dynamically wrap this functionality.

        Suppose we want to code a generic styling function that highlights the final
        level of a MultiIndex. The number of levels in the Index is dynamic so we
        need the ``Styler`` context to define the level.

        >>> def highlight_last_level(styler):
        ...     return styler.apply_index(
        ...         lambda v: "background-color: pink; color: yellow", axis="columns",
        ...         level=styler.columns.nlevels-1
        ...     )  # doctest: +SKIP
        >>> df.columns = pd.MultiIndex.from_product([["A", "B"], ["X", "Y"]])
        >>> df.style.pipe(highlight_last_level)  # doctest: +SKIP

        .. figure:: ../../_static/style/df_pipe_applymap.png

        Additionally suppose we want to highlight a column header if there is any
        missing data in that column.
        In this case we need the data object itself to determine the effect on the
        column headers.

        >>> def highlight_header_missing(styler, level):
        ...     def dynamic_highlight(s):
        ...         return np.where(
        ...             styler.data.isna().any(), "background-color: red;", ""
        ...         )
        ...     return styler.apply_index(dynamic_highlight, axis=1, level=level)
        >>> df.style.pipe(highlight_header_missing, level=1)  # doctest: +SKIP

        .. figure:: ../../_static/style/df_pipe_applydata.png
        """
        return com.pipe(self, func, *args, **kwargs)


def _validate_apply_axis_arg(
    arg: NDFrame | Sequence | np.ndarray,
    arg_name: str,
    dtype: Any | None,
    data: NDFrame,
) -> np.ndarray:
    """
    For the apply-type methods, ``axis=None`` creates ``data`` as DataFrame, and for
    ``axis=[1,0]`` it creates a Series. Where ``arg`` is expected as an element
    of some operator with ``data`` we must make sure that the two are compatible shapes,
    or raise.

    Parameters
    ----------
    arg : sequence, Series or DataFrame
        the user input arg
    arg_name : string
        name of the arg for use in error messages
    dtype : numpy dtype, optional
        forced numpy dtype if given
    data : Series or DataFrame
        underling subset of Styler data on which operations are performed

    Returns
    -------
    ndarray
    """
    dtype = {"dtype": dtype} if dtype else {}
    # raise if input is wrong for axis:
    if isinstance(arg, Series) and isinstance(data, DataFrame):
        raise ValueError(
            f"'{arg_name}' is a Series but underlying data for operations "
            f"is a DataFrame since 'axis=None'"
        )
    if isinstance(arg, DataFrame) and isinstance(data, Series):
        raise ValueError(
            f"'{arg_name}' is a DataFrame but underlying data for "
            f"operations is a Series with 'axis in [0,1]'"
        )
    if isinstance(arg, (Series, DataFrame)):  # align indx / cols to data
        arg = arg.reindex_like(data, method=None).to_numpy(**dtype)
    else:
        arg = np.asarray(arg, **dtype)
        assert isinstance(arg, np.ndarray)  # mypy requirement
        if arg.shape != data.shape:  # check valid input
            raise ValueError(
                f"supplied '{arg_name}' is not correct shape for data over "
                f"selected 'axis': got {arg.shape}, "
                f"expected {data.shape}"
            )
    return arg


def _background_gradient(
    data,
    cmap: str | Colormap = "PuBu",
    low: float = 0,
    high: float = 0,
    text_color_threshold: float = 0.408,
    vmin: float | None = None,
    vmax: float | None = None,
    gmap: Sequence | np.ndarray | DataFrame | Series | None = None,
    text_only: bool = False,
):
    """
    Color background in a range according to the data or a gradient map
    """
    if gmap is None:  # the data is used the gmap
        gmap = data.to_numpy(dtype=float, na_value=np.nan)
    else:  # else validate gmap against the underlying data
        gmap = _validate_apply_axis_arg(gmap, "gmap", float, data)

    with _mpl(Styler.background_gradient) as (_, _matplotlib):
        smin = np.nanmin(gmap) if vmin is None else vmin
        smax = np.nanmax(gmap) if vmax is None else vmax
        rng = smax - smin
        # extend lower / upper bounds, compresses color range
        norm = _matplotlib.colors.Normalize(smin - (rng * low), smax + (rng * high))

        if cmap is None:
            rgbas = _matplotlib.colormaps[_matplotlib.rcParams["image.cmap"]](
                norm(gmap)
            )
        else:
            rgbas = _matplotlib.colormaps.get_cmap(cmap)(norm(gmap))

        def relative_luminance(rgba) -> float:
            """
            Calculate relative luminance of a color.

            The calculation adheres to the W3C standards
            (https://www.w3.org/WAI/GL/wiki/Relative_luminance)

            Parameters
            ----------
            color : rgb or rgba tuple

            Returns
            -------
            float
                The relative luminance as a value from 0 to 1
            """
            r, g, b = (
                x / 12.92 if x <= 0.04045 else ((x + 0.055) / 1.055) ** 2.4
                for x in rgba[:3]
            )
            return 0.2126 * r + 0.7152 * g + 0.0722 * b

        def css(rgba, text_only) -> str:
            if not text_only:
                dark = relative_luminance(rgba) < text_color_threshold
                text_color = "#f1f1f1" if dark else "#000000"
                return (
                    f"background-color: {_matplotlib.colors.rgb2hex(rgba)};"
                    f"color: {text_color};"
                )
            else:
                return f"color: {_matplotlib.colors.rgb2hex(rgba)};"

        if data.ndim == 1:
            return [css(rgba, text_only) for rgba in rgbas]
        else:
            return DataFrame(
                [[css(rgba, text_only) for rgba in row] for row in rgbas],
                index=data.index,
                columns=data.columns,
            )


def _highlight_between(
    data: NDFrame,
    props: str,
    left: Scalar | Sequence | np.ndarray | NDFrame | None = None,
    right: Scalar | Sequence | np.ndarray | NDFrame | None = None,
    inclusive: bool | str = True,
) -> np.ndarray:
    """
    Return an array of css props based on condition of data values within given range.
    """
    if np.iterable(left) and not isinstance(left, str):
        left = _validate_apply_axis_arg(left, "left", None, data)

    if np.iterable(right) and not isinstance(right, str):
        right = _validate_apply_axis_arg(right, "right", None, data)

    # get ops with correct boundary attribution
    if inclusive == "both":
        ops = (operator.ge, operator.le)
    elif inclusive == "neither":
        ops = (operator.gt, operator.lt)
    elif inclusive == "left":
        ops = (operator.ge, operator.lt)
    elif inclusive == "right":
        ops = (operator.gt, operator.le)
    else:
        raise ValueError(
            f"'inclusive' values can be 'both', 'left', 'right', or 'neither' "
            f"got {inclusive}"
        )

    g_left = (
        # error: Argument 2 to "ge" has incompatible type "Union[str, float,
        # Period, Timedelta, Interval[Any], datetime64, timedelta64, datetime,
        # Sequence[Any], ndarray[Any, Any], NDFrame]"; expected "Union
        # [SupportsDunderLE, SupportsDunderGE, SupportsDunderGT, SupportsDunderLT]"
        ops[0](data, left)  # type: ignore[arg-type]
        if left is not None
        else np.full(data.shape, True, dtype=bool)
    )
    if isinstance(g_left, (DataFrame, Series)):
        g_left = g_left.where(pd.notna(g_left), False)
    l_right = (
        # error: Argument 2 to "le" has incompatible type "Union[str, float,
        # Period, Timedelta, Interval[Any], datetime64, timedelta64, datetime,
        # Sequence[Any], ndarray[Any, Any], NDFrame]"; expected "Union
        # [SupportsDunderLE, SupportsDunderGE, SupportsDunderGT, SupportsDunderLT]"
        ops[1](data, right)  # type: ignore[arg-type]
        if right is not None
        else np.full(data.shape, True, dtype=bool)
    )
    if isinstance(l_right, (DataFrame, Series)):
        l_right = l_right.where(pd.notna(l_right), False)
    return np.where(g_left & l_right, props, "")


def _highlight_value(data: DataFrame | Series, op: str, props: str) -> np.ndarray:
    """
    Return an array of css strings based on the condition of values matching an op.
    """
    value = getattr(data, op)(skipna=True)
    if isinstance(data, DataFrame):  # min/max must be done twice to return scalar
        value = getattr(value, op)(skipna=True)
    cond = data == value
    cond = cond.where(pd.notna(cond), False)
    return np.where(cond, props, "")


def _bar(
    data: NDFrame,
    align: str | float | Callable,
    colors: str | list | tuple,
    cmap: Any,
    width: float,
    height: float,
    vmin: float | None,
    vmax: float | None,
    base_css: str,
):
    """
    Draw bar chart in data cells using HTML CSS linear gradient.

    Parameters
    ----------
    data : Series or DataFrame
        Underling subset of Styler data on which operations are performed.
    align : str in {"left", "right", "mid", "zero", "mean"}, int, float, callable
        Method for how bars are structured or scalar value of centre point.
    colors : list-like of str
        Two listed colors as string in valid CSS.
    width : float in [0,1]
        The percentage of the cell, measured from left, where drawn bars will reside.
    height : float in [0,1]
        The percentage of the cell's height where drawn bars will reside, centrally
        aligned.
    vmin : float, optional
        Overwrite the minimum value of the window.
    vmax : float, optional
        Overwrite the maximum value of the window.
    base_css : str
        Additional CSS that is included in the cell before bars are drawn.
    """

    def css_bar(start: float, end: float, color: str) -> str:
        """
        Generate CSS code to draw a bar from start to end in a table cell.

        Uses linear-gradient.

        Parameters
        ----------
        start : float
            Relative positional start of bar coloring in [0,1]
        end : float
            Relative positional end of the bar coloring in [0,1]
        color : str
            CSS valid color to apply.

        Returns
        -------
        str : The CSS applicable to the cell.

        Notes
        -----
        Uses ``base_css`` from outer scope.
        """
        cell_css = base_css
        if end > start:
            cell_css += "background: linear-gradient(90deg,"
            if start > 0:
                cell_css += f" transparent {start*100:.1f}%, {color} {start*100:.1f}%,"
            cell_css += f" {color} {end*100:.1f}%, transparent {end*100:.1f}%)"
        return cell_css

    def css_calc(x, left: float, right: float, align: str, color: str | list | tuple):
        """
        Return the correct CSS for bar placement based on calculated values.

        Parameters
        ----------
        x : float
            Value which determines the bar placement.
        left : float
            Value marking the left side of calculation, usually minimum of data.
        right : float
            Value marking the right side of the calculation, usually maximum of data
            (left < right).
        align : {"left", "right", "zero", "mid"}
            How the bars will be positioned.
            "left", "right", "zero" can be used with any values for ``left``, ``right``.
            "mid" can only be used where ``left <= 0`` and ``right >= 0``.
            "zero" is used to specify a center when all values ``x``, ``left``,
            ``right`` are translated, e.g. by say a mean or median.

        Returns
        -------
        str : Resultant CSS with linear gradient.

        Notes
        -----
        Uses ``colors``, ``width`` and ``height`` from outer scope.
        """
        if pd.isna(x):
            return base_css

        if isinstance(color, (list, tuple)):
            color = color[0] if x < 0 else color[1]
        assert isinstance(color, str)  # mypy redefinition

        x = left if x < left else x
        x = right if x > right else x  # trim data if outside of the window

        start: float = 0
        end: float = 1

        if align == "left":
            # all proportions are measured from the left side between left and right
            end = (x - left) / (right - left)

        elif align == "right":
            # all proportions are measured from the right side between left and right
            start = (x - left) / (right - left)

        else:
            z_frac: float = 0.5  # location of zero based on the left-right range
            if align == "zero":
                # all proportions are measured from the center at zero
                limit: float = max(abs(left), abs(right))
                left, right = -limit, limit
            elif align == "mid":
                # bars drawn from zero either leftwards or rightwards with center at mid
                mid: float = (left + right) / 2
                z_frac = (
                    -mid / (right - left) + 0.5 if mid < 0 else -left / (right - left)
                )

            if x < 0:
                start, end = (x - left) / (right - left), z_frac
            else:
                start, end = z_frac, (x - left) / (right - left)

        ret = css_bar(start * width, end * width, color)
        if height < 1 and "background: linear-gradient(" in ret:
            return (
                ret + f" no-repeat center; background-size: 100% {height * 100:.1f}%;"
            )
        else:
            return ret

    values = data.to_numpy()
    # A tricky way to address the issue where np.nanmin/np.nanmax fail to handle pd.NA.
    left = np.nanmin(data.min(skipna=True)) if vmin is None else vmin
    right = np.nanmax(data.max(skipna=True)) if vmax is None else vmax
    z: float = 0  # adjustment to translate data

    if align == "mid":
        if left >= 0:  # "mid" is documented to act as "left" if all values positive
            align, left = "left", 0 if vmin is None else vmin
        elif right <= 0:  # "mid" is documented to act as "right" if all values negative
            align, right = "right", 0 if vmax is None else vmax
    elif align == "mean":
        z, align = np.nanmean(values), "zero"
    elif callable(align):
        z, align = align(values), "zero"
    elif isinstance(align, (float, int)):
        z, align = float(align), "zero"
    elif align not in ("left", "right", "zero"):
        raise ValueError(
            "`align` should be in {'left', 'right', 'mid', 'mean', 'zero'} or be a "
            "value defining the center line or a callable that returns a float"
        )

    rgbas = None
    if cmap is not None:
        # use the matplotlib colormap input
        with _mpl(Styler.bar) as (_, _matplotlib):
            cmap = (
                _matplotlib.colormaps[cmap]
                if isinstance(cmap, str)
                else cmap  # assumed to be a Colormap instance as documented
            )
            norm = _matplotlib.colors.Normalize(left, right)
            rgbas = cmap(norm(values))
            if data.ndim == 1:
                rgbas = [_matplotlib.colors.rgb2hex(rgba) for rgba in rgbas]
            else:
                rgbas = [
                    [_matplotlib.colors.rgb2hex(rgba) for rgba in row] for row in rgbas
                ]

    assert isinstance(align, str)  # mypy: should now be in [left, right, mid, zero]
    if data.ndim == 1:
        return [
            css_calc(
                x - z, left - z, right - z, align, colors if rgbas is None else rgbas[i]
            )
            for i, x in enumerate(values)
        ]
    else:
        return np.array(
            [
                [
                    css_calc(
                        x - z,
                        left - z,
                        right - z,
                        align,
                        colors if rgbas is None else rgbas[i][j],
                    )
                    for j, x in enumerate(row)
                ]
                for i, row in enumerate(values)
            ]
        )