File size: 87,157 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
"""
Module contains tools for processing files into DataFrames or other objects

GH#48849 provides a convenient way of deprecating keyword arguments
"""
from __future__ import annotations

from collections import (
    abc,
    defaultdict,
)
import csv
import sys
from textwrap import fill
from typing import (
    IO,
    TYPE_CHECKING,
    Any,
    Callable,
    Literal,
    NamedTuple,
    TypedDict,
    overload,
)
import warnings

import numpy as np

from pandas._config import using_copy_on_write

from pandas._libs import lib
from pandas._libs.parsers import STR_NA_VALUES
from pandas.errors import (
    AbstractMethodError,
    ParserWarning,
)
from pandas.util._decorators import Appender
from pandas.util._exceptions import find_stack_level
from pandas.util._validators import check_dtype_backend

from pandas.core.dtypes.common import (
    is_file_like,
    is_float,
    is_hashable,
    is_integer,
    is_list_like,
    pandas_dtype,
)

from pandas import Series
from pandas.core.frame import DataFrame
from pandas.core.indexes.api import RangeIndex
from pandas.core.shared_docs import _shared_docs

from pandas.io.common import (
    IOHandles,
    get_handle,
    stringify_path,
    validate_header_arg,
)
from pandas.io.parsers.arrow_parser_wrapper import ArrowParserWrapper
from pandas.io.parsers.base_parser import (
    ParserBase,
    is_index_col,
    parser_defaults,
)
from pandas.io.parsers.c_parser_wrapper import CParserWrapper
from pandas.io.parsers.python_parser import (
    FixedWidthFieldParser,
    PythonParser,
)

if TYPE_CHECKING:
    from collections.abc import (
        Hashable,
        Iterable,
        Mapping,
        Sequence,
    )
    from types import TracebackType

    from pandas._typing import (
        CompressionOptions,
        CSVEngine,
        DtypeArg,
        DtypeBackend,
        FilePath,
        IndexLabel,
        ReadCsvBuffer,
        Self,
        StorageOptions,
        UsecolsArgType,
    )
_doc_read_csv_and_table = (
    r"""
{summary}

Also supports optionally iterating or breaking of the file
into chunks.

Additional help can be found in the online docs for
`IO Tools <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_.

Parameters
----------
filepath_or_buffer : str, path object or file-like object
    Any valid string path is acceptable. The string could be a URL. Valid
    URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is
    expected. A local file could be: file://localhost/path/to/table.csv.

    If you want to pass in a path object, pandas accepts any ``os.PathLike``.

    By file-like object, we refer to objects with a ``read()`` method, such as
    a file handle (e.g. via builtin ``open`` function) or ``StringIO``.
sep : str, default {_default_sep}
    Character or regex pattern to treat as the delimiter. If ``sep=None``, the
    C engine cannot automatically detect
    the separator, but the Python parsing engine can, meaning the latter will
    be used and automatically detect the separator from only the first valid
    row of the file by Python's builtin sniffer tool, ``csv.Sniffer``.
    In addition, separators longer than 1 character and different from
    ``'\s+'`` will be interpreted as regular expressions and will also force
    the use of the Python parsing engine. Note that regex delimiters are prone
    to ignoring quoted data. Regex example: ``'\r\t'``.
delimiter : str, optional
    Alias for ``sep``.
header : int, Sequence of int, 'infer' or None, default 'infer'
    Row number(s) containing column labels and marking the start of the
    data (zero-indexed). Default behavior is to infer the column names: if no ``names``
    are passed the behavior is identical to ``header=0`` and column
    names are inferred from the first line of the file, if column
    names are passed explicitly to ``names`` then the behavior is identical to
    ``header=None``. Explicitly pass ``header=0`` to be able to
    replace existing names. The header can be a list of integers that
    specify row locations for a :class:`~pandas.MultiIndex` on the columns
    e.g. ``[0, 1, 3]``. Intervening rows that are not specified will be
    skipped (e.g. 2 in this example is skipped). Note that this
    parameter ignores commented lines and empty lines if
    ``skip_blank_lines=True``, so ``header=0`` denotes the first line of
    data rather than the first line of the file.
names : Sequence of Hashable, optional
    Sequence of column labels to apply. If the file contains a header row,
    then you should explicitly pass ``header=0`` to override the column names.
    Duplicates in this list are not allowed.
index_col : Hashable, Sequence of Hashable or False, optional
  Column(s) to use as row label(s), denoted either by column labels or column
  indices.  If a sequence of labels or indices is given, :class:`~pandas.MultiIndex`
  will be formed for the row labels.

  Note: ``index_col=False`` can be used to force pandas to *not* use the first
  column as the index, e.g., when you have a malformed file with delimiters at
  the end of each line.
usecols : Sequence of Hashable or Callable, optional
    Subset of columns to select, denoted either by column labels or column indices.
    If list-like, all elements must either
    be positional (i.e. integer indices into the document columns) or strings
    that correspond to column names provided either by the user in ``names`` or
    inferred from the document header row(s). If ``names`` are given, the document
    header row(s) are not taken into account. For example, a valid list-like
    ``usecols`` parameter would be ``[0, 1, 2]`` or ``['foo', 'bar', 'baz']``.
    Element order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``.
    To instantiate a :class:`~pandas.DataFrame` from ``data`` with element order
    preserved use ``pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]``
    for columns in ``['foo', 'bar']`` order or
    ``pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]``
    for ``['bar', 'foo']`` order.

    If callable, the callable function will be evaluated against the column
    names, returning names where the callable function evaluates to ``True``. An
    example of a valid callable argument would be ``lambda x: x.upper() in
    ['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster
    parsing time and lower memory usage.
dtype : dtype or dict of {{Hashable : dtype}}, optional
    Data type(s) to apply to either the whole dataset or individual columns.
    E.g., ``{{'a': np.float64, 'b': np.int32, 'c': 'Int64'}}``
    Use ``str`` or ``object`` together with suitable ``na_values`` settings
    to preserve and not interpret ``dtype``.
    If ``converters`` are specified, they will be applied INSTEAD
    of ``dtype`` conversion.

    .. versionadded:: 1.5.0

        Support for ``defaultdict`` was added. Specify a ``defaultdict`` as input where
        the default determines the ``dtype`` of the columns which are not explicitly
        listed.
engine : {{'c', 'python', 'pyarrow'}}, optional
    Parser engine to use. The C and pyarrow engines are faster, while the python engine
    is currently more feature-complete. Multithreading is currently only supported by
    the pyarrow engine.

    .. versionadded:: 1.4.0

        The 'pyarrow' engine was added as an *experimental* engine, and some features
        are unsupported, or may not work correctly, with this engine.
converters : dict of {{Hashable : Callable}}, optional
    Functions for converting values in specified columns. Keys can either
    be column labels or column indices.
true_values : list, optional
    Values to consider as ``True`` in addition to case-insensitive variants of 'True'.
false_values : list, optional
    Values to consider as ``False`` in addition to case-insensitive variants of 'False'.
skipinitialspace : bool, default False
    Skip spaces after delimiter.
skiprows : int, list of int or Callable, optional
    Line numbers to skip (0-indexed) or number of lines to skip (``int``)
    at the start of the file.

    If callable, the callable function will be evaluated against the row
    indices, returning ``True`` if the row should be skipped and ``False`` otherwise.
    An example of a valid callable argument would be ``lambda x: x in [0, 2]``.
skipfooter : int, default 0
    Number of lines at bottom of file to skip (Unsupported with ``engine='c'``).
nrows : int, optional
    Number of rows of file to read. Useful for reading pieces of large files.
na_values : Hashable, Iterable of Hashable or dict of {{Hashable : Iterable}}, optional
    Additional strings to recognize as ``NA``/``NaN``. If ``dict`` passed, specific
    per-column ``NA`` values.  By default the following values are interpreted as
    ``NaN``: " """
    + fill('", "'.join(sorted(STR_NA_VALUES)), 70, subsequent_indent="    ")
    + """ ".

keep_default_na : bool, default True
    Whether or not to include the default ``NaN`` values when parsing the data.
    Depending on whether ``na_values`` is passed in, the behavior is as follows:

    * If ``keep_default_na`` is ``True``, and ``na_values`` are specified, ``na_values``
      is appended to the default ``NaN`` values used for parsing.
    * If ``keep_default_na`` is ``True``, and ``na_values`` are not specified, only
      the default ``NaN`` values are used for parsing.
    * If ``keep_default_na`` is ``False``, and ``na_values`` are specified, only
      the ``NaN`` values specified ``na_values`` are used for parsing.
    * If ``keep_default_na`` is ``False``, and ``na_values`` are not specified, no
      strings will be parsed as ``NaN``.

    Note that if ``na_filter`` is passed in as ``False``, the ``keep_default_na`` and
    ``na_values`` parameters will be ignored.
na_filter : bool, default True
    Detect missing value markers (empty strings and the value of ``na_values``). In
    data without any ``NA`` values, passing ``na_filter=False`` can improve the
    performance of reading a large file.
verbose : bool, default False
    Indicate number of ``NA`` values placed in non-numeric columns.

    .. deprecated:: 2.2.0
skip_blank_lines : bool, default True
    If ``True``, skip over blank lines rather than interpreting as ``NaN`` values.
parse_dates : bool, list of Hashable, list of lists or dict of {{Hashable : list}}, \
default False
    The behavior is as follows:

    * ``bool``. If ``True`` -> try parsing the index. Note: Automatically set to
      ``True`` if ``date_format`` or ``date_parser`` arguments have been passed.
    * ``list`` of ``int`` or names. e.g. If ``[1, 2, 3]`` -> try parsing columns 1, 2, 3
      each as a separate date column.
    * ``list`` of ``list``. e.g.  If ``[[1, 3]]`` -> combine columns 1 and 3 and parse
      as a single date column. Values are joined with a space before parsing.
    * ``dict``, e.g. ``{{'foo' : [1, 3]}}`` -> parse columns 1, 3 as date and call
      result 'foo'. Values are joined with a space before parsing.

    If a column or index cannot be represented as an array of ``datetime``,
    say because of an unparsable value or a mixture of timezones, the column
    or index will be returned unaltered as an ``object`` data type. For
    non-standard ``datetime`` parsing, use :func:`~pandas.to_datetime` after
    :func:`~pandas.read_csv`.

    Note: A fast-path exists for iso8601-formatted dates.
infer_datetime_format : bool, default False
    If ``True`` and ``parse_dates`` is enabled, pandas will attempt to infer the
    format of the ``datetime`` strings in the columns, and if it can be inferred,
    switch to a faster method of parsing them. In some cases this can increase
    the parsing speed by 5-10x.

    .. deprecated:: 2.0.0
        A strict version of this argument is now the default, passing it has no effect.

keep_date_col : bool, default False
    If ``True`` and ``parse_dates`` specifies combining multiple columns then
    keep the original columns.
date_parser : Callable, optional
    Function to use for converting a sequence of string columns to an array of
    ``datetime`` instances. The default uses ``dateutil.parser.parser`` to do the
    conversion. pandas will try to call ``date_parser`` in three different ways,
    advancing to the next if an exception occurs: 1) Pass one or more arrays
    (as defined by ``parse_dates``) as arguments; 2) concatenate (row-wise) the
    string values from the columns defined by ``parse_dates`` into a single array
    and pass that; and 3) call ``date_parser`` once for each row using one or
    more strings (corresponding to the columns defined by ``parse_dates``) as
    arguments.

    .. deprecated:: 2.0.0
       Use ``date_format`` instead, or read in as ``object`` and then apply
       :func:`~pandas.to_datetime` as-needed.
date_format : str or dict of column -> format, optional
    Format to use for parsing dates when used in conjunction with ``parse_dates``.
    The strftime to parse time, e.g. :const:`"%d/%m/%Y"`. See
    `strftime documentation
    <https://docs.python.org/3/library/datetime.html
    #strftime-and-strptime-behavior>`_ for more information on choices, though
    note that :const:`"%f"` will parse all the way up to nanoseconds.
    You can also pass:

    - "ISO8601", to parse any `ISO8601 <https://en.wikipedia.org/wiki/ISO_8601>`_
        time string (not necessarily in exactly the same format);
    - "mixed", to infer the format for each element individually. This is risky,
        and you should probably use it along with `dayfirst`.

    .. versionadded:: 2.0.0
dayfirst : bool, default False
    DD/MM format dates, international and European format.
cache_dates : bool, default True
    If ``True``, use a cache of unique, converted dates to apply the ``datetime``
    conversion. May produce significant speed-up when parsing duplicate
    date strings, especially ones with timezone offsets.

iterator : bool, default False
    Return ``TextFileReader`` object for iteration or getting chunks with
    ``get_chunk()``.
chunksize : int, optional
    Number of lines to read from the file per chunk. Passing a value will cause the
    function to return a ``TextFileReader`` object for iteration.
    See the `IO Tools docs
    <https://pandas.pydata.org/pandas-docs/stable/io.html#io-chunking>`_
    for more information on ``iterator`` and ``chunksize``.

{decompression_options}

    .. versionchanged:: 1.4.0 Zstandard support.

thousands : str (length 1), optional
    Character acting as the thousands separator in numerical values.
decimal : str (length 1), default '.'
    Character to recognize as decimal point (e.g., use ',' for European data).
lineterminator : str (length 1), optional
    Character used to denote a line break. Only valid with C parser.
quotechar : str (length 1), optional
    Character used to denote the start and end of a quoted item. Quoted
    items can include the ``delimiter`` and it will be ignored.
quoting : {{0 or csv.QUOTE_MINIMAL, 1 or csv.QUOTE_ALL, 2 or csv.QUOTE_NONNUMERIC, \
3 or csv.QUOTE_NONE}}, default csv.QUOTE_MINIMAL
    Control field quoting behavior per ``csv.QUOTE_*`` constants. Default is
    ``csv.QUOTE_MINIMAL`` (i.e., 0) which implies that only fields containing special
    characters are quoted (e.g., characters defined in ``quotechar``, ``delimiter``,
    or ``lineterminator``.
doublequote : bool, default True
   When ``quotechar`` is specified and ``quoting`` is not ``QUOTE_NONE``, indicate
   whether or not to interpret two consecutive ``quotechar`` elements INSIDE a
   field as a single ``quotechar`` element.
escapechar : str (length 1), optional
    Character used to escape other characters.
comment : str (length 1), optional
    Character indicating that the remainder of line should not be parsed.
    If found at the beginning
    of a line, the line will be ignored altogether. This parameter must be a
    single character. Like empty lines (as long as ``skip_blank_lines=True``),
    fully commented lines are ignored by the parameter ``header`` but not by
    ``skiprows``. For example, if ``comment='#'``, parsing
    ``#empty\\na,b,c\\n1,2,3`` with ``header=0`` will result in ``'a,b,c'`` being
    treated as the header.
encoding : str, optional, default 'utf-8'
    Encoding to use for UTF when reading/writing (ex. ``'utf-8'``). `List of Python
    standard encodings
    <https://docs.python.org/3/library/codecs.html#standard-encodings>`_ .

encoding_errors : str, optional, default 'strict'
    How encoding errors are treated. `List of possible values
    <https://docs.python.org/3/library/codecs.html#error-handlers>`_ .

    .. versionadded:: 1.3.0

dialect : str or csv.Dialect, optional
    If provided, this parameter will override values (default or not) for the
    following parameters: ``delimiter``, ``doublequote``, ``escapechar``,
    ``skipinitialspace``, ``quotechar``, and ``quoting``. If it is necessary to
    override values, a ``ParserWarning`` will be issued. See ``csv.Dialect``
    documentation for more details.
on_bad_lines : {{'error', 'warn', 'skip'}} or Callable, default 'error'
    Specifies what to do upon encountering a bad line (a line with too many fields).
    Allowed values are :

    - ``'error'``, raise an Exception when a bad line is encountered.
    - ``'warn'``, raise a warning when a bad line is encountered and skip that line.
    - ``'skip'``, skip bad lines without raising or warning when they are encountered.

    .. versionadded:: 1.3.0

    .. versionadded:: 1.4.0

        - Callable, function with signature
          ``(bad_line: list[str]) -> list[str] | None`` that will process a single
          bad line. ``bad_line`` is a list of strings split by the ``sep``.
          If the function returns ``None``, the bad line will be ignored.
          If the function returns a new ``list`` of strings with more elements than
          expected, a ``ParserWarning`` will be emitted while dropping extra elements.
          Only supported when ``engine='python'``

    .. versionchanged:: 2.2.0

        - Callable, function with signature
          as described in `pyarrow documentation
          <https://arrow.apache.org/docs/python/generated/pyarrow.csv.ParseOptions.html
          #pyarrow.csv.ParseOptions.invalid_row_handler>`_ when ``engine='pyarrow'``

delim_whitespace : bool, default False
    Specifies whether or not whitespace (e.g. ``' '`` or ``'\\t'``) will be
    used as the ``sep`` delimiter. Equivalent to setting ``sep='\\s+'``. If this option
    is set to ``True``, nothing should be passed in for the ``delimiter``
    parameter.

    .. deprecated:: 2.2.0
        Use ``sep="\\s+"`` instead.
low_memory : bool, default True
    Internally process the file in chunks, resulting in lower memory use
    while parsing, but possibly mixed type inference.  To ensure no mixed
    types either set ``False``, or specify the type with the ``dtype`` parameter.
    Note that the entire file is read into a single :class:`~pandas.DataFrame`
    regardless, use the ``chunksize`` or ``iterator`` parameter to return the data in
    chunks. (Only valid with C parser).
memory_map : bool, default False
    If a filepath is provided for ``filepath_or_buffer``, map the file object
    directly onto memory and access the data directly from there. Using this
    option can improve performance because there is no longer any I/O overhead.
float_precision : {{'high', 'legacy', 'round_trip'}}, optional
    Specifies which converter the C engine should use for floating-point
    values. The options are ``None`` or ``'high'`` for the ordinary converter,
    ``'legacy'`` for the original lower precision pandas converter, and
    ``'round_trip'`` for the round-trip converter.

{storage_options}

dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable'
    Back-end data type applied to the resultant :class:`DataFrame`
    (still experimental). Behaviour is as follows:

    * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
      (default).
    * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
      DataFrame.

    .. versionadded:: 2.0

Returns
-------
DataFrame or TextFileReader
    A comma-separated values (csv) file is returned as two-dimensional
    data structure with labeled axes.

See Also
--------
DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file.
{see_also_func_name} : {see_also_func_summary}
read_fwf : Read a table of fixed-width formatted lines into DataFrame.

Examples
--------
>>> pd.{func_name}('data.csv')  # doctest: +SKIP
"""
)


class _C_Parser_Defaults(TypedDict):
    delim_whitespace: Literal[False]
    na_filter: Literal[True]
    low_memory: Literal[True]
    memory_map: Literal[False]
    float_precision: None


_c_parser_defaults: _C_Parser_Defaults = {
    "delim_whitespace": False,
    "na_filter": True,
    "low_memory": True,
    "memory_map": False,
    "float_precision": None,
}


class _Fwf_Defaults(TypedDict):
    colspecs: Literal["infer"]
    infer_nrows: Literal[100]
    widths: None


_fwf_defaults: _Fwf_Defaults = {"colspecs": "infer", "infer_nrows": 100, "widths": None}
_c_unsupported = {"skipfooter"}
_python_unsupported = {"low_memory", "float_precision"}
_pyarrow_unsupported = {
    "skipfooter",
    "float_precision",
    "chunksize",
    "comment",
    "nrows",
    "thousands",
    "memory_map",
    "dialect",
    "delim_whitespace",
    "quoting",
    "lineterminator",
    "converters",
    "iterator",
    "dayfirst",
    "verbose",
    "skipinitialspace",
    "low_memory",
}


class _DeprecationConfig(NamedTuple):
    default_value: Any
    msg: str | None


@overload
def validate_integer(name: str, val: None, min_val: int = ...) -> None:
    ...


@overload
def validate_integer(name: str, val: float, min_val: int = ...) -> int:
    ...


@overload
def validate_integer(name: str, val: int | None, min_val: int = ...) -> int | None:
    ...


def validate_integer(
    name: str, val: int | float | None, min_val: int = 0
) -> int | None:
    """
    Checks whether the 'name' parameter for parsing is either
    an integer OR float that can SAFELY be cast to an integer
    without losing accuracy. Raises a ValueError if that is
    not the case.

    Parameters
    ----------
    name : str
        Parameter name (used for error reporting)
    val : int or float
        The value to check
    min_val : int
        Minimum allowed value (val < min_val will result in a ValueError)
    """
    if val is None:
        return val

    msg = f"'{name:s}' must be an integer >={min_val:d}"
    if is_float(val):
        if int(val) != val:
            raise ValueError(msg)
        val = int(val)
    elif not (is_integer(val) and val >= min_val):
        raise ValueError(msg)

    return int(val)


def _validate_names(names: Sequence[Hashable] | None) -> None:
    """
    Raise ValueError if the `names` parameter contains duplicates or has an
    invalid data type.

    Parameters
    ----------
    names : array-like or None
        An array containing a list of the names used for the output DataFrame.

    Raises
    ------
    ValueError
        If names are not unique or are not ordered (e.g. set).
    """
    if names is not None:
        if len(names) != len(set(names)):
            raise ValueError("Duplicate names are not allowed.")
        if not (
            is_list_like(names, allow_sets=False) or isinstance(names, abc.KeysView)
        ):
            raise ValueError("Names should be an ordered collection.")


def _read(
    filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], kwds
) -> DataFrame | TextFileReader:
    """Generic reader of line files."""
    # if we pass a date_parser and parse_dates=False, we should not parse the
    # dates GH#44366
    if kwds.get("parse_dates", None) is None:
        if (
            kwds.get("date_parser", lib.no_default) is lib.no_default
            and kwds.get("date_format", None) is None
        ):
            kwds["parse_dates"] = False
        else:
            kwds["parse_dates"] = True

    # Extract some of the arguments (pass chunksize on).
    iterator = kwds.get("iterator", False)
    chunksize = kwds.get("chunksize", None)
    if kwds.get("engine") == "pyarrow":
        if iterator:
            raise ValueError(
                "The 'iterator' option is not supported with the 'pyarrow' engine"
            )

        if chunksize is not None:
            raise ValueError(
                "The 'chunksize' option is not supported with the 'pyarrow' engine"
            )
    else:
        chunksize = validate_integer("chunksize", chunksize, 1)

    nrows = kwds.get("nrows", None)

    # Check for duplicates in names.
    _validate_names(kwds.get("names", None))

    # Create the parser.
    parser = TextFileReader(filepath_or_buffer, **kwds)

    if chunksize or iterator:
        return parser

    with parser:
        return parser.read(nrows)


# iterator=True -> TextFileReader
@overload
def read_csv(
    filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
    *,
    sep: str | None | lib.NoDefault = ...,
    delimiter: str | None | lib.NoDefault = ...,
    header: int | Sequence[int] | None | Literal["infer"] = ...,
    names: Sequence[Hashable] | None | lib.NoDefault = ...,
    index_col: IndexLabel | Literal[False] | None = ...,
    usecols: UsecolsArgType = ...,
    dtype: DtypeArg | None = ...,
    engine: CSVEngine | None = ...,
    converters: Mapping[Hashable, Callable] | None = ...,
    true_values: list | None = ...,
    false_values: list | None = ...,
    skipinitialspace: bool = ...,
    skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
    skipfooter: int = ...,
    nrows: int | None = ...,
    na_values: Hashable
    | Iterable[Hashable]
    | Mapping[Hashable, Iterable[Hashable]]
    | None = ...,
    na_filter: bool = ...,
    verbose: bool | lib.NoDefault = ...,
    skip_blank_lines: bool = ...,
    parse_dates: bool | Sequence[Hashable] | None = ...,
    infer_datetime_format: bool | lib.NoDefault = ...,
    keep_date_col: bool | lib.NoDefault = ...,
    date_parser: Callable | lib.NoDefault = ...,
    date_format: str | dict[Hashable, str] | None = ...,
    dayfirst: bool = ...,
    cache_dates: bool = ...,
    iterator: Literal[True],
    chunksize: int | None = ...,
    compression: CompressionOptions = ...,
    thousands: str | None = ...,
    decimal: str = ...,
    lineterminator: str | None = ...,
    quotechar: str = ...,
    quoting: int = ...,
    doublequote: bool = ...,
    escapechar: str | None = ...,
    comment: str | None = ...,
    encoding: str | None = ...,
    encoding_errors: str | None = ...,
    dialect: str | csv.Dialect | None = ...,
    on_bad_lines=...,
    delim_whitespace: bool | lib.NoDefault = ...,
    low_memory: bool = ...,
    memory_map: bool = ...,
    float_precision: Literal["high", "legacy"] | None = ...,
    storage_options: StorageOptions = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> TextFileReader:
    ...


# chunksize=int -> TextFileReader
@overload
def read_csv(
    filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
    *,
    sep: str | None | lib.NoDefault = ...,
    delimiter: str | None | lib.NoDefault = ...,
    header: int | Sequence[int] | None | Literal["infer"] = ...,
    names: Sequence[Hashable] | None | lib.NoDefault = ...,
    index_col: IndexLabel | Literal[False] | None = ...,
    usecols: UsecolsArgType = ...,
    dtype: DtypeArg | None = ...,
    engine: CSVEngine | None = ...,
    converters: Mapping[Hashable, Callable] | None = ...,
    true_values: list | None = ...,
    false_values: list | None = ...,
    skipinitialspace: bool = ...,
    skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
    skipfooter: int = ...,
    nrows: int | None = ...,
    na_values: Hashable
    | Iterable[Hashable]
    | Mapping[Hashable, Iterable[Hashable]]
    | None = ...,
    keep_default_na: bool = ...,
    na_filter: bool = ...,
    verbose: bool | lib.NoDefault = ...,
    skip_blank_lines: bool = ...,
    parse_dates: bool | Sequence[Hashable] | None = ...,
    infer_datetime_format: bool | lib.NoDefault = ...,
    keep_date_col: bool | lib.NoDefault = ...,
    date_parser: Callable | lib.NoDefault = ...,
    date_format: str | dict[Hashable, str] | None = ...,
    dayfirst: bool = ...,
    cache_dates: bool = ...,
    iterator: bool = ...,
    chunksize: int,
    compression: CompressionOptions = ...,
    thousands: str | None = ...,
    decimal: str = ...,
    lineterminator: str | None = ...,
    quotechar: str = ...,
    quoting: int = ...,
    doublequote: bool = ...,
    escapechar: str | None = ...,
    comment: str | None = ...,
    encoding: str | None = ...,
    encoding_errors: str | None = ...,
    dialect: str | csv.Dialect | None = ...,
    on_bad_lines=...,
    delim_whitespace: bool | lib.NoDefault = ...,
    low_memory: bool = ...,
    memory_map: bool = ...,
    float_precision: Literal["high", "legacy"] | None = ...,
    storage_options: StorageOptions = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> TextFileReader:
    ...


# default case -> DataFrame
@overload
def read_csv(
    filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
    *,
    sep: str | None | lib.NoDefault = ...,
    delimiter: str | None | lib.NoDefault = ...,
    header: int | Sequence[int] | None | Literal["infer"] = ...,
    names: Sequence[Hashable] | None | lib.NoDefault = ...,
    index_col: IndexLabel | Literal[False] | None = ...,
    usecols: UsecolsArgType = ...,
    dtype: DtypeArg | None = ...,
    engine: CSVEngine | None = ...,
    converters: Mapping[Hashable, Callable] | None = ...,
    true_values: list | None = ...,
    false_values: list | None = ...,
    skipinitialspace: bool = ...,
    skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
    skipfooter: int = ...,
    nrows: int | None = ...,
    na_values: Hashable
    | Iterable[Hashable]
    | Mapping[Hashable, Iterable[Hashable]]
    | None = ...,
    keep_default_na: bool = ...,
    na_filter: bool = ...,
    verbose: bool | lib.NoDefault = ...,
    skip_blank_lines: bool = ...,
    parse_dates: bool | Sequence[Hashable] | None = ...,
    infer_datetime_format: bool | lib.NoDefault = ...,
    keep_date_col: bool | lib.NoDefault = ...,
    date_parser: Callable | lib.NoDefault = ...,
    date_format: str | dict[Hashable, str] | None = ...,
    dayfirst: bool = ...,
    cache_dates: bool = ...,
    iterator: Literal[False] = ...,
    chunksize: None = ...,
    compression: CompressionOptions = ...,
    thousands: str | None = ...,
    decimal: str = ...,
    lineterminator: str | None = ...,
    quotechar: str = ...,
    quoting: int = ...,
    doublequote: bool = ...,
    escapechar: str | None = ...,
    comment: str | None = ...,
    encoding: str | None = ...,
    encoding_errors: str | None = ...,
    dialect: str | csv.Dialect | None = ...,
    on_bad_lines=...,
    delim_whitespace: bool | lib.NoDefault = ...,
    low_memory: bool = ...,
    memory_map: bool = ...,
    float_precision: Literal["high", "legacy"] | None = ...,
    storage_options: StorageOptions = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> DataFrame:
    ...


# Unions -> DataFrame | TextFileReader
@overload
def read_csv(
    filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
    *,
    sep: str | None | lib.NoDefault = ...,
    delimiter: str | None | lib.NoDefault = ...,
    header: int | Sequence[int] | None | Literal["infer"] = ...,
    names: Sequence[Hashable] | None | lib.NoDefault = ...,
    index_col: IndexLabel | Literal[False] | None = ...,
    usecols: UsecolsArgType = ...,
    dtype: DtypeArg | None = ...,
    engine: CSVEngine | None = ...,
    converters: Mapping[Hashable, Callable] | None = ...,
    true_values: list | None = ...,
    false_values: list | None = ...,
    skipinitialspace: bool = ...,
    skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
    skipfooter: int = ...,
    nrows: int | None = ...,
    na_values: Hashable
    | Iterable[Hashable]
    | Mapping[Hashable, Iterable[Hashable]]
    | None = ...,
    keep_default_na: bool = ...,
    na_filter: bool = ...,
    verbose: bool | lib.NoDefault = ...,
    skip_blank_lines: bool = ...,
    parse_dates: bool | Sequence[Hashable] | None = ...,
    infer_datetime_format: bool | lib.NoDefault = ...,
    keep_date_col: bool | lib.NoDefault = ...,
    date_parser: Callable | lib.NoDefault = ...,
    date_format: str | dict[Hashable, str] | None = ...,
    dayfirst: bool = ...,
    cache_dates: bool = ...,
    iterator: bool = ...,
    chunksize: int | None = ...,
    compression: CompressionOptions = ...,
    thousands: str | None = ...,
    decimal: str = ...,
    lineterminator: str | None = ...,
    quotechar: str = ...,
    quoting: int = ...,
    doublequote: bool = ...,
    escapechar: str | None = ...,
    comment: str | None = ...,
    encoding: str | None = ...,
    encoding_errors: str | None = ...,
    dialect: str | csv.Dialect | None = ...,
    on_bad_lines=...,
    delim_whitespace: bool | lib.NoDefault = ...,
    low_memory: bool = ...,
    memory_map: bool = ...,
    float_precision: Literal["high", "legacy"] | None = ...,
    storage_options: StorageOptions = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> DataFrame | TextFileReader:
    ...


@Appender(
    _doc_read_csv_and_table.format(
        func_name="read_csv",
        summary="Read a comma-separated values (csv) file into DataFrame.",
        see_also_func_name="read_table",
        see_also_func_summary="Read general delimited file into DataFrame.",
        _default_sep="','",
        storage_options=_shared_docs["storage_options"],
        decompression_options=_shared_docs["decompression_options"]
        % "filepath_or_buffer",
    )
)
def read_csv(
    filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
    *,
    sep: str | None | lib.NoDefault = lib.no_default,
    delimiter: str | None | lib.NoDefault = None,
    # Column and Index Locations and Names
    header: int | Sequence[int] | None | Literal["infer"] = "infer",
    names: Sequence[Hashable] | None | lib.NoDefault = lib.no_default,
    index_col: IndexLabel | Literal[False] | None = None,
    usecols: UsecolsArgType = None,
    # General Parsing Configuration
    dtype: DtypeArg | None = None,
    engine: CSVEngine | None = None,
    converters: Mapping[Hashable, Callable] | None = None,
    true_values: list | None = None,
    false_values: list | None = None,
    skipinitialspace: bool = False,
    skiprows: list[int] | int | Callable[[Hashable], bool] | None = None,
    skipfooter: int = 0,
    nrows: int | None = None,
    # NA and Missing Data Handling
    na_values: Hashable
    | Iterable[Hashable]
    | Mapping[Hashable, Iterable[Hashable]]
    | None = None,
    keep_default_na: bool = True,
    na_filter: bool = True,
    verbose: bool | lib.NoDefault = lib.no_default,
    skip_blank_lines: bool = True,
    # Datetime Handling
    parse_dates: bool | Sequence[Hashable] | None = None,
    infer_datetime_format: bool | lib.NoDefault = lib.no_default,
    keep_date_col: bool | lib.NoDefault = lib.no_default,
    date_parser: Callable | lib.NoDefault = lib.no_default,
    date_format: str | dict[Hashable, str] | None = None,
    dayfirst: bool = False,
    cache_dates: bool = True,
    # Iteration
    iterator: bool = False,
    chunksize: int | None = None,
    # Quoting, Compression, and File Format
    compression: CompressionOptions = "infer",
    thousands: str | None = None,
    decimal: str = ".",
    lineterminator: str | None = None,
    quotechar: str = '"',
    quoting: int = csv.QUOTE_MINIMAL,
    doublequote: bool = True,
    escapechar: str | None = None,
    comment: str | None = None,
    encoding: str | None = None,
    encoding_errors: str | None = "strict",
    dialect: str | csv.Dialect | None = None,
    # Error Handling
    on_bad_lines: str = "error",
    # Internal
    delim_whitespace: bool | lib.NoDefault = lib.no_default,
    low_memory: bool = _c_parser_defaults["low_memory"],
    memory_map: bool = False,
    float_precision: Literal["high", "legacy"] | None = None,
    storage_options: StorageOptions | None = None,
    dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
) -> DataFrame | TextFileReader:
    if keep_date_col is not lib.no_default:
        # GH#55569
        warnings.warn(
            "The 'keep_date_col' keyword in pd.read_csv is deprecated and "
            "will be removed in a future version. Explicitly remove unwanted "
            "columns after parsing instead.",
            FutureWarning,
            stacklevel=find_stack_level(),
        )
    else:
        keep_date_col = False

    if lib.is_list_like(parse_dates):
        # GH#55569
        depr = False
        # error: Item "bool" of "bool | Sequence[Hashable] | None" has no
        # attribute "__iter__" (not iterable)
        if not all(is_hashable(x) for x in parse_dates):  # type: ignore[union-attr]
            depr = True
        elif isinstance(parse_dates, dict) and any(
            lib.is_list_like(x) for x in parse_dates.values()
        ):
            depr = True
        if depr:
            warnings.warn(
                "Support for nested sequences for 'parse_dates' in pd.read_csv "
                "is deprecated. Combine the desired columns with pd.to_datetime "
                "after parsing instead.",
                FutureWarning,
                stacklevel=find_stack_level(),
            )

    if infer_datetime_format is not lib.no_default:
        warnings.warn(
            "The argument 'infer_datetime_format' is deprecated and will "
            "be removed in a future version. "
            "A strict version of it is now the default, see "
            "https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. "
            "You can safely remove this argument.",
            FutureWarning,
            stacklevel=find_stack_level(),
        )

    if delim_whitespace is not lib.no_default:
        # GH#55569
        warnings.warn(
            "The 'delim_whitespace' keyword in pd.read_csv is deprecated and "
            "will be removed in a future version. Use ``sep='\\s+'`` instead",
            FutureWarning,
            stacklevel=find_stack_level(),
        )
    else:
        delim_whitespace = False

    if verbose is not lib.no_default:
        # GH#55569
        warnings.warn(
            "The 'verbose' keyword in pd.read_csv is deprecated and "
            "will be removed in a future version.",
            FutureWarning,
            stacklevel=find_stack_level(),
        )
    else:
        verbose = False

    # locals() should never be modified
    kwds = locals().copy()
    del kwds["filepath_or_buffer"]
    del kwds["sep"]

    kwds_defaults = _refine_defaults_read(
        dialect,
        delimiter,
        delim_whitespace,
        engine,
        sep,
        on_bad_lines,
        names,
        defaults={"delimiter": ","},
        dtype_backend=dtype_backend,
    )
    kwds.update(kwds_defaults)

    return _read(filepath_or_buffer, kwds)


# iterator=True -> TextFileReader
@overload
def read_table(
    filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
    *,
    sep: str | None | lib.NoDefault = ...,
    delimiter: str | None | lib.NoDefault = ...,
    header: int | Sequence[int] | None | Literal["infer"] = ...,
    names: Sequence[Hashable] | None | lib.NoDefault = ...,
    index_col: IndexLabel | Literal[False] | None = ...,
    usecols: UsecolsArgType = ...,
    dtype: DtypeArg | None = ...,
    engine: CSVEngine | None = ...,
    converters: Mapping[Hashable, Callable] | None = ...,
    true_values: list | None = ...,
    false_values: list | None = ...,
    skipinitialspace: bool = ...,
    skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
    skipfooter: int = ...,
    nrows: int | None = ...,
    na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = ...,
    keep_default_na: bool = ...,
    na_filter: bool = ...,
    verbose: bool | lib.NoDefault = ...,
    skip_blank_lines: bool = ...,
    parse_dates: bool | Sequence[Hashable] = ...,
    infer_datetime_format: bool | lib.NoDefault = ...,
    keep_date_col: bool | lib.NoDefault = ...,
    date_parser: Callable | lib.NoDefault = ...,
    date_format: str | dict[Hashable, str] | None = ...,
    dayfirst: bool = ...,
    cache_dates: bool = ...,
    iterator: Literal[True],
    chunksize: int | None = ...,
    compression: CompressionOptions = ...,
    thousands: str | None = ...,
    decimal: str = ...,
    lineterminator: str | None = ...,
    quotechar: str = ...,
    quoting: int = ...,
    doublequote: bool = ...,
    escapechar: str | None = ...,
    comment: str | None = ...,
    encoding: str | None = ...,
    encoding_errors: str | None = ...,
    dialect: str | csv.Dialect | None = ...,
    on_bad_lines=...,
    delim_whitespace: bool = ...,
    low_memory: bool = ...,
    memory_map: bool = ...,
    float_precision: str | None = ...,
    storage_options: StorageOptions = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> TextFileReader:
    ...


# chunksize=int -> TextFileReader
@overload
def read_table(
    filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
    *,
    sep: str | None | lib.NoDefault = ...,
    delimiter: str | None | lib.NoDefault = ...,
    header: int | Sequence[int] | None | Literal["infer"] = ...,
    names: Sequence[Hashable] | None | lib.NoDefault = ...,
    index_col: IndexLabel | Literal[False] | None = ...,
    usecols: UsecolsArgType = ...,
    dtype: DtypeArg | None = ...,
    engine: CSVEngine | None = ...,
    converters: Mapping[Hashable, Callable] | None = ...,
    true_values: list | None = ...,
    false_values: list | None = ...,
    skipinitialspace: bool = ...,
    skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
    skipfooter: int = ...,
    nrows: int | None = ...,
    na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = ...,
    keep_default_na: bool = ...,
    na_filter: bool = ...,
    verbose: bool | lib.NoDefault = ...,
    skip_blank_lines: bool = ...,
    parse_dates: bool | Sequence[Hashable] = ...,
    infer_datetime_format: bool | lib.NoDefault = ...,
    keep_date_col: bool | lib.NoDefault = ...,
    date_parser: Callable | lib.NoDefault = ...,
    date_format: str | dict[Hashable, str] | None = ...,
    dayfirst: bool = ...,
    cache_dates: bool = ...,
    iterator: bool = ...,
    chunksize: int,
    compression: CompressionOptions = ...,
    thousands: str | None = ...,
    decimal: str = ...,
    lineterminator: str | None = ...,
    quotechar: str = ...,
    quoting: int = ...,
    doublequote: bool = ...,
    escapechar: str | None = ...,
    comment: str | None = ...,
    encoding: str | None = ...,
    encoding_errors: str | None = ...,
    dialect: str | csv.Dialect | None = ...,
    on_bad_lines=...,
    delim_whitespace: bool = ...,
    low_memory: bool = ...,
    memory_map: bool = ...,
    float_precision: str | None = ...,
    storage_options: StorageOptions = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> TextFileReader:
    ...


# default -> DataFrame
@overload
def read_table(
    filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
    *,
    sep: str | None | lib.NoDefault = ...,
    delimiter: str | None | lib.NoDefault = ...,
    header: int | Sequence[int] | None | Literal["infer"] = ...,
    names: Sequence[Hashable] | None | lib.NoDefault = ...,
    index_col: IndexLabel | Literal[False] | None = ...,
    usecols: UsecolsArgType = ...,
    dtype: DtypeArg | None = ...,
    engine: CSVEngine | None = ...,
    converters: Mapping[Hashable, Callable] | None = ...,
    true_values: list | None = ...,
    false_values: list | None = ...,
    skipinitialspace: bool = ...,
    skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
    skipfooter: int = ...,
    nrows: int | None = ...,
    na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = ...,
    keep_default_na: bool = ...,
    na_filter: bool = ...,
    verbose: bool | lib.NoDefault = ...,
    skip_blank_lines: bool = ...,
    parse_dates: bool | Sequence[Hashable] = ...,
    infer_datetime_format: bool | lib.NoDefault = ...,
    keep_date_col: bool | lib.NoDefault = ...,
    date_parser: Callable | lib.NoDefault = ...,
    date_format: str | dict[Hashable, str] | None = ...,
    dayfirst: bool = ...,
    cache_dates: bool = ...,
    iterator: Literal[False] = ...,
    chunksize: None = ...,
    compression: CompressionOptions = ...,
    thousands: str | None = ...,
    decimal: str = ...,
    lineterminator: str | None = ...,
    quotechar: str = ...,
    quoting: int = ...,
    doublequote: bool = ...,
    escapechar: str | None = ...,
    comment: str | None = ...,
    encoding: str | None = ...,
    encoding_errors: str | None = ...,
    dialect: str | csv.Dialect | None = ...,
    on_bad_lines=...,
    delim_whitespace: bool = ...,
    low_memory: bool = ...,
    memory_map: bool = ...,
    float_precision: str | None = ...,
    storage_options: StorageOptions = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> DataFrame:
    ...


# Unions -> DataFrame | TextFileReader
@overload
def read_table(
    filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
    *,
    sep: str | None | lib.NoDefault = ...,
    delimiter: str | None | lib.NoDefault = ...,
    header: int | Sequence[int] | None | Literal["infer"] = ...,
    names: Sequence[Hashable] | None | lib.NoDefault = ...,
    index_col: IndexLabel | Literal[False] | None = ...,
    usecols: UsecolsArgType = ...,
    dtype: DtypeArg | None = ...,
    engine: CSVEngine | None = ...,
    converters: Mapping[Hashable, Callable] | None = ...,
    true_values: list | None = ...,
    false_values: list | None = ...,
    skipinitialspace: bool = ...,
    skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
    skipfooter: int = ...,
    nrows: int | None = ...,
    na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = ...,
    keep_default_na: bool = ...,
    na_filter: bool = ...,
    verbose: bool | lib.NoDefault = ...,
    skip_blank_lines: bool = ...,
    parse_dates: bool | Sequence[Hashable] = ...,
    infer_datetime_format: bool | lib.NoDefault = ...,
    keep_date_col: bool | lib.NoDefault = ...,
    date_parser: Callable | lib.NoDefault = ...,
    date_format: str | dict[Hashable, str] | None = ...,
    dayfirst: bool = ...,
    cache_dates: bool = ...,
    iterator: bool = ...,
    chunksize: int | None = ...,
    compression: CompressionOptions = ...,
    thousands: str | None = ...,
    decimal: str = ...,
    lineterminator: str | None = ...,
    quotechar: str = ...,
    quoting: int = ...,
    doublequote: bool = ...,
    escapechar: str | None = ...,
    comment: str | None = ...,
    encoding: str | None = ...,
    encoding_errors: str | None = ...,
    dialect: str | csv.Dialect | None = ...,
    on_bad_lines=...,
    delim_whitespace: bool = ...,
    low_memory: bool = ...,
    memory_map: bool = ...,
    float_precision: str | None = ...,
    storage_options: StorageOptions = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> DataFrame | TextFileReader:
    ...


@Appender(
    _doc_read_csv_and_table.format(
        func_name="read_table",
        summary="Read general delimited file into DataFrame.",
        see_also_func_name="read_csv",
        see_also_func_summary=(
            "Read a comma-separated values (csv) file into DataFrame."
        ),
        _default_sep=r"'\\t' (tab-stop)",
        storage_options=_shared_docs["storage_options"],
        decompression_options=_shared_docs["decompression_options"]
        % "filepath_or_buffer",
    )
)
def read_table(
    filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
    *,
    sep: str | None | lib.NoDefault = lib.no_default,
    delimiter: str | None | lib.NoDefault = None,
    # Column and Index Locations and Names
    header: int | Sequence[int] | None | Literal["infer"] = "infer",
    names: Sequence[Hashable] | None | lib.NoDefault = lib.no_default,
    index_col: IndexLabel | Literal[False] | None = None,
    usecols: UsecolsArgType = None,
    # General Parsing Configuration
    dtype: DtypeArg | None = None,
    engine: CSVEngine | None = None,
    converters: Mapping[Hashable, Callable] | None = None,
    true_values: list | None = None,
    false_values: list | None = None,
    skipinitialspace: bool = False,
    skiprows: list[int] | int | Callable[[Hashable], bool] | None = None,
    skipfooter: int = 0,
    nrows: int | None = None,
    # NA and Missing Data Handling
    na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = None,
    keep_default_na: bool = True,
    na_filter: bool = True,
    verbose: bool | lib.NoDefault = lib.no_default,
    skip_blank_lines: bool = True,
    # Datetime Handling
    parse_dates: bool | Sequence[Hashable] = False,
    infer_datetime_format: bool | lib.NoDefault = lib.no_default,
    keep_date_col: bool | lib.NoDefault = lib.no_default,
    date_parser: Callable | lib.NoDefault = lib.no_default,
    date_format: str | dict[Hashable, str] | None = None,
    dayfirst: bool = False,
    cache_dates: bool = True,
    # Iteration
    iterator: bool = False,
    chunksize: int | None = None,
    # Quoting, Compression, and File Format
    compression: CompressionOptions = "infer",
    thousands: str | None = None,
    decimal: str = ".",
    lineterminator: str | None = None,
    quotechar: str = '"',
    quoting: int = csv.QUOTE_MINIMAL,
    doublequote: bool = True,
    escapechar: str | None = None,
    comment: str | None = None,
    encoding: str | None = None,
    encoding_errors: str | None = "strict",
    dialect: str | csv.Dialect | None = None,
    # Error Handling
    on_bad_lines: str = "error",
    # Internal
    delim_whitespace: bool | lib.NoDefault = lib.no_default,
    low_memory: bool = _c_parser_defaults["low_memory"],
    memory_map: bool = False,
    float_precision: str | None = None,
    storage_options: StorageOptions | None = None,
    dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
) -> DataFrame | TextFileReader:
    if keep_date_col is not lib.no_default:
        # GH#55569
        warnings.warn(
            "The 'keep_date_col' keyword in pd.read_table is deprecated and "
            "will be removed in a future version. Explicitly remove unwanted "
            "columns after parsing instead.",
            FutureWarning,
            stacklevel=find_stack_level(),
        )
    else:
        keep_date_col = False

    # error: Item "bool" of "bool | Sequence[Hashable]" has no attribute "__iter__"
    if lib.is_list_like(parse_dates) and not all(is_hashable(x) for x in parse_dates):  # type: ignore[union-attr]
        # GH#55569
        warnings.warn(
            "Support for nested sequences for 'parse_dates' in pd.read_table "
            "is deprecated. Combine the desired columns with pd.to_datetime "
            "after parsing instead.",
            FutureWarning,
            stacklevel=find_stack_level(),
        )

    if infer_datetime_format is not lib.no_default:
        warnings.warn(
            "The argument 'infer_datetime_format' is deprecated and will "
            "be removed in a future version. "
            "A strict version of it is now the default, see "
            "https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. "
            "You can safely remove this argument.",
            FutureWarning,
            stacklevel=find_stack_level(),
        )

    if delim_whitespace is not lib.no_default:
        # GH#55569
        warnings.warn(
            "The 'delim_whitespace' keyword in pd.read_table is deprecated and "
            "will be removed in a future version. Use ``sep='\\s+'`` instead",
            FutureWarning,
            stacklevel=find_stack_level(),
        )
    else:
        delim_whitespace = False

    if verbose is not lib.no_default:
        # GH#55569
        warnings.warn(
            "The 'verbose' keyword in pd.read_table is deprecated and "
            "will be removed in a future version.",
            FutureWarning,
            stacklevel=find_stack_level(),
        )
    else:
        verbose = False

    # locals() should never be modified
    kwds = locals().copy()
    del kwds["filepath_or_buffer"]
    del kwds["sep"]

    kwds_defaults = _refine_defaults_read(
        dialect,
        delimiter,
        delim_whitespace,
        engine,
        sep,
        on_bad_lines,
        names,
        defaults={"delimiter": "\t"},
        dtype_backend=dtype_backend,
    )
    kwds.update(kwds_defaults)

    return _read(filepath_or_buffer, kwds)


@overload
def read_fwf(
    filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
    *,
    colspecs: Sequence[tuple[int, int]] | str | None = ...,
    widths: Sequence[int] | None = ...,
    infer_nrows: int = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
    iterator: Literal[True],
    chunksize: int | None = ...,
    **kwds,
) -> TextFileReader:
    ...


@overload
def read_fwf(
    filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
    *,
    colspecs: Sequence[tuple[int, int]] | str | None = ...,
    widths: Sequence[int] | None = ...,
    infer_nrows: int = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
    iterator: bool = ...,
    chunksize: int,
    **kwds,
) -> TextFileReader:
    ...


@overload
def read_fwf(
    filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
    *,
    colspecs: Sequence[tuple[int, int]] | str | None = ...,
    widths: Sequence[int] | None = ...,
    infer_nrows: int = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
    iterator: Literal[False] = ...,
    chunksize: None = ...,
    **kwds,
) -> DataFrame:
    ...


def read_fwf(
    filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
    *,
    colspecs: Sequence[tuple[int, int]] | str | None = "infer",
    widths: Sequence[int] | None = None,
    infer_nrows: int = 100,
    dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
    iterator: bool = False,
    chunksize: int | None = None,
    **kwds,
) -> DataFrame | TextFileReader:
    r"""
    Read a table of fixed-width formatted lines into DataFrame.

    Also supports optionally iterating or breaking of the file
    into chunks.

    Additional help can be found in the `online docs for IO Tools
    <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_.

    Parameters
    ----------
    filepath_or_buffer : str, path object, or file-like object
        String, path object (implementing ``os.PathLike[str]``), or file-like
        object implementing a text ``read()`` function.The string could be a URL.
        Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is
        expected. A local file could be:
        ``file://localhost/path/to/table.csv``.
    colspecs : list of tuple (int, int) or 'infer'. optional
        A list of tuples giving the extents of the fixed-width
        fields of each line as half-open intervals (i.e.,  [from, to[ ).
        String value 'infer' can be used to instruct the parser to try
        detecting the column specifications from the first 100 rows of
        the data which are not being skipped via skiprows (default='infer').
    widths : list of int, optional
        A list of field widths which can be used instead of 'colspecs' if
        the intervals are contiguous.
    infer_nrows : int, default 100
        The number of rows to consider when letting the parser determine the
        `colspecs`.
    dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable'
        Back-end data type applied to the resultant :class:`DataFrame`
        (still experimental). Behaviour is as follows:

        * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
          (default).
        * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
          DataFrame.

        .. versionadded:: 2.0

    **kwds : optional
        Optional keyword arguments can be passed to ``TextFileReader``.

    Returns
    -------
    DataFrame or TextFileReader
        A comma-separated values (csv) file is returned as two-dimensional
        data structure with labeled axes.

    See Also
    --------
    DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file.
    read_csv : Read a comma-separated values (csv) file into DataFrame.

    Examples
    --------
    >>> pd.read_fwf('data.csv')  # doctest: +SKIP
    """
    # Check input arguments.
    if colspecs is None and widths is None:
        raise ValueError("Must specify either colspecs or widths")
    if colspecs not in (None, "infer") and widths is not None:
        raise ValueError("You must specify only one of 'widths' and 'colspecs'")

    # Compute 'colspecs' from 'widths', if specified.
    if widths is not None:
        colspecs, col = [], 0
        for w in widths:
            colspecs.append((col, col + w))
            col += w

    # for mypy
    assert colspecs is not None

    # GH#40830
    # Ensure length of `colspecs` matches length of `names`
    names = kwds.get("names")
    if names is not None:
        if len(names) != len(colspecs) and colspecs != "infer":
            # need to check len(index_col) as it might contain
            # unnamed indices, in which case it's name is not required
            len_index = 0
            if kwds.get("index_col") is not None:
                index_col: Any = kwds.get("index_col")
                if index_col is not False:
                    if not is_list_like(index_col):
                        len_index = 1
                    else:
                        len_index = len(index_col)
            if kwds.get("usecols") is None and len(names) + len_index != len(colspecs):
                # If usecols is used colspec may be longer than names
                raise ValueError("Length of colspecs must match length of names")

    kwds["colspecs"] = colspecs
    kwds["infer_nrows"] = infer_nrows
    kwds["engine"] = "python-fwf"
    kwds["iterator"] = iterator
    kwds["chunksize"] = chunksize

    check_dtype_backend(dtype_backend)
    kwds["dtype_backend"] = dtype_backend
    return _read(filepath_or_buffer, kwds)


class TextFileReader(abc.Iterator):
    """

    Passed dialect overrides any of the related parser options

    """

    def __init__(
        self,
        f: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str] | list,
        engine: CSVEngine | None = None,
        **kwds,
    ) -> None:
        if engine is not None:
            engine_specified = True
        else:
            engine = "python"
            engine_specified = False
        self.engine = engine
        self._engine_specified = kwds.get("engine_specified", engine_specified)

        _validate_skipfooter(kwds)

        dialect = _extract_dialect(kwds)
        if dialect is not None:
            if engine == "pyarrow":
                raise ValueError(
                    "The 'dialect' option is not supported with the 'pyarrow' engine"
                )
            kwds = _merge_with_dialect_properties(dialect, kwds)

        if kwds.get("header", "infer") == "infer":
            kwds["header"] = 0 if kwds.get("names") is None else None

        self.orig_options = kwds

        # miscellanea
        self._currow = 0

        options = self._get_options_with_defaults(engine)
        options["storage_options"] = kwds.get("storage_options", None)

        self.chunksize = options.pop("chunksize", None)
        self.nrows = options.pop("nrows", None)

        self._check_file_or_buffer(f, engine)
        self.options, self.engine = self._clean_options(options, engine)

        if "has_index_names" in kwds:
            self.options["has_index_names"] = kwds["has_index_names"]

        self.handles: IOHandles | None = None
        self._engine = self._make_engine(f, self.engine)

    def close(self) -> None:
        if self.handles is not None:
            self.handles.close()
        self._engine.close()

    def _get_options_with_defaults(self, engine: CSVEngine) -> dict[str, Any]:
        kwds = self.orig_options

        options = {}
        default: object | None

        for argname, default in parser_defaults.items():
            value = kwds.get(argname, default)

            # see gh-12935
            if (
                engine == "pyarrow"
                and argname in _pyarrow_unsupported
                and value != default
                and value != getattr(value, "value", default)
            ):
                raise ValueError(
                    f"The {repr(argname)} option is not supported with the "
                    f"'pyarrow' engine"
                )
            options[argname] = value

        for argname, default in _c_parser_defaults.items():
            if argname in kwds:
                value = kwds[argname]

                if engine != "c" and value != default:
                    # TODO: Refactor this logic, its pretty convoluted
                    if "python" in engine and argname not in _python_unsupported:
                        pass
                    elif "pyarrow" in engine and argname not in _pyarrow_unsupported:
                        pass
                    else:
                        raise ValueError(
                            f"The {repr(argname)} option is not supported with the "
                            f"{repr(engine)} engine"
                        )
            else:
                value = default
            options[argname] = value

        if engine == "python-fwf":
            for argname, default in _fwf_defaults.items():
                options[argname] = kwds.get(argname, default)

        return options

    def _check_file_or_buffer(self, f, engine: CSVEngine) -> None:
        # see gh-16530
        if is_file_like(f) and engine != "c" and not hasattr(f, "__iter__"):
            # The C engine doesn't need the file-like to have the "__iter__"
            # attribute. However, the Python engine needs "__iter__(...)"
            # when iterating through such an object, meaning it
            # needs to have that attribute
            raise ValueError(
                "The 'python' engine cannot iterate through this file buffer."
            )

    def _clean_options(
        self, options: dict[str, Any], engine: CSVEngine
    ) -> tuple[dict[str, Any], CSVEngine]:
        result = options.copy()

        fallback_reason = None

        # C engine not supported yet
        if engine == "c":
            if options["skipfooter"] > 0:
                fallback_reason = "the 'c' engine does not support skipfooter"
                engine = "python"

        sep = options["delimiter"]
        delim_whitespace = options["delim_whitespace"]

        if sep is None and not delim_whitespace:
            if engine in ("c", "pyarrow"):
                fallback_reason = (
                    f"the '{engine}' engine does not support "
                    "sep=None with delim_whitespace=False"
                )
                engine = "python"
        elif sep is not None and len(sep) > 1:
            if engine == "c" and sep == r"\s+":
                result["delim_whitespace"] = True
                del result["delimiter"]
            elif engine not in ("python", "python-fwf"):
                # wait until regex engine integrated
                fallback_reason = (
                    f"the '{engine}' engine does not support "
                    "regex separators (separators > 1 char and "
                    r"different from '\s+' are interpreted as regex)"
                )
                engine = "python"
        elif delim_whitespace:
            if "python" in engine:
                result["delimiter"] = r"\s+"
        elif sep is not None:
            encodeable = True
            encoding = sys.getfilesystemencoding() or "utf-8"
            try:
                if len(sep.encode(encoding)) > 1:
                    encodeable = False
            except UnicodeDecodeError:
                encodeable = False
            if not encodeable and engine not in ("python", "python-fwf"):
                fallback_reason = (
                    f"the separator encoded in {encoding} "
                    f"is > 1 char long, and the '{engine}' engine "
                    "does not support such separators"
                )
                engine = "python"

        quotechar = options["quotechar"]
        if quotechar is not None and isinstance(quotechar, (str, bytes)):
            if (
                len(quotechar) == 1
                and ord(quotechar) > 127
                and engine not in ("python", "python-fwf")
            ):
                fallback_reason = (
                    "ord(quotechar) > 127, meaning the "
                    "quotechar is larger than one byte, "
                    f"and the '{engine}' engine does not support such quotechars"
                )
                engine = "python"

        if fallback_reason and self._engine_specified:
            raise ValueError(fallback_reason)

        if engine == "c":
            for arg in _c_unsupported:
                del result[arg]

        if "python" in engine:
            for arg in _python_unsupported:
                if fallback_reason and result[arg] != _c_parser_defaults.get(arg):
                    raise ValueError(
                        "Falling back to the 'python' engine because "
                        f"{fallback_reason}, but this causes {repr(arg)} to be "
                        "ignored as it is not supported by the 'python' engine."
                    )
                del result[arg]

        if fallback_reason:
            warnings.warn(
                (
                    "Falling back to the 'python' engine because "
                    f"{fallback_reason}; you can avoid this warning by specifying "
                    "engine='python'."
                ),
                ParserWarning,
                stacklevel=find_stack_level(),
            )

        index_col = options["index_col"]
        names = options["names"]
        converters = options["converters"]
        na_values = options["na_values"]
        skiprows = options["skiprows"]

        validate_header_arg(options["header"])

        if index_col is True:
            raise ValueError("The value of index_col couldn't be 'True'")
        if is_index_col(index_col):
            if not isinstance(index_col, (list, tuple, np.ndarray)):
                index_col = [index_col]
        result["index_col"] = index_col

        names = list(names) if names is not None else names

        # type conversion-related
        if converters is not None:
            if not isinstance(converters, dict):
                raise TypeError(
                    "Type converters must be a dict or subclass, "
                    f"input was a {type(converters).__name__}"
                )
        else:
            converters = {}

        # Converting values to NA
        keep_default_na = options["keep_default_na"]
        floatify = engine != "pyarrow"
        na_values, na_fvalues = _clean_na_values(
            na_values, keep_default_na, floatify=floatify
        )

        # handle skiprows; this is internally handled by the
        # c-engine, so only need for python and pyarrow parsers
        if engine == "pyarrow":
            if not is_integer(skiprows) and skiprows is not None:
                # pyarrow expects skiprows to be passed as an integer
                raise ValueError(
                    "skiprows argument must be an integer when using "
                    "engine='pyarrow'"
                )
        else:
            if is_integer(skiprows):
                skiprows = list(range(skiprows))
            if skiprows is None:
                skiprows = set()
            elif not callable(skiprows):
                skiprows = set(skiprows)

        # put stuff back
        result["names"] = names
        result["converters"] = converters
        result["na_values"] = na_values
        result["na_fvalues"] = na_fvalues
        result["skiprows"] = skiprows

        return result, engine

    def __next__(self) -> DataFrame:
        try:
            return self.get_chunk()
        except StopIteration:
            self.close()
            raise

    def _make_engine(
        self,
        f: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str] | list | IO,
        engine: CSVEngine = "c",
    ) -> ParserBase:
        mapping: dict[str, type[ParserBase]] = {
            "c": CParserWrapper,
            "python": PythonParser,
            "pyarrow": ArrowParserWrapper,
            "python-fwf": FixedWidthFieldParser,
        }
        if engine not in mapping:
            raise ValueError(
                f"Unknown engine: {engine} (valid options are {mapping.keys()})"
            )
        if not isinstance(f, list):
            # open file here
            is_text = True
            mode = "r"
            if engine == "pyarrow":
                is_text = False
                mode = "rb"
            elif (
                engine == "c"
                and self.options.get("encoding", "utf-8") == "utf-8"
                and isinstance(stringify_path(f), str)
            ):
                # c engine can decode utf-8 bytes, adding TextIOWrapper makes
                # the c-engine especially for memory_map=True far slower
                is_text = False
                if "b" not in mode:
                    mode += "b"
            self.handles = get_handle(
                f,
                mode,
                encoding=self.options.get("encoding", None),
                compression=self.options.get("compression", None),
                memory_map=self.options.get("memory_map", False),
                is_text=is_text,
                errors=self.options.get("encoding_errors", "strict"),
                storage_options=self.options.get("storage_options", None),
            )
            assert self.handles is not None
            f = self.handles.handle

        elif engine != "python":
            msg = f"Invalid file path or buffer object type: {type(f)}"
            raise ValueError(msg)

        try:
            return mapping[engine](f, **self.options)
        except Exception:
            if self.handles is not None:
                self.handles.close()
            raise

    def _failover_to_python(self) -> None:
        raise AbstractMethodError(self)

    def read(self, nrows: int | None = None) -> DataFrame:
        if self.engine == "pyarrow":
            try:
                # error: "ParserBase" has no attribute "read"
                df = self._engine.read()  # type: ignore[attr-defined]
            except Exception:
                self.close()
                raise
        else:
            nrows = validate_integer("nrows", nrows)
            try:
                # error: "ParserBase" has no attribute "read"
                (
                    index,
                    columns,
                    col_dict,
                ) = self._engine.read(  # type: ignore[attr-defined]
                    nrows
                )
            except Exception:
                self.close()
                raise

            if index is None:
                if col_dict:
                    # Any column is actually fine:
                    new_rows = len(next(iter(col_dict.values())))
                    index = RangeIndex(self._currow, self._currow + new_rows)
                else:
                    new_rows = 0
            else:
                new_rows = len(index)

            if hasattr(self, "orig_options"):
                dtype_arg = self.orig_options.get("dtype", None)
            else:
                dtype_arg = None

            if isinstance(dtype_arg, dict):
                dtype = defaultdict(lambda: None)  # type: ignore[var-annotated]
                dtype.update(dtype_arg)
            elif dtype_arg is not None and pandas_dtype(dtype_arg) in (
                np.str_,
                np.object_,
            ):
                dtype = defaultdict(lambda: dtype_arg)
            else:
                dtype = None

            if dtype is not None:
                new_col_dict = {}
                for k, v in col_dict.items():
                    d = (
                        dtype[k]
                        if pandas_dtype(dtype[k]) in (np.str_, np.object_)
                        else None
                    )
                    new_col_dict[k] = Series(v, index=index, dtype=d, copy=False)
            else:
                new_col_dict = col_dict

            df = DataFrame(
                new_col_dict,
                columns=columns,
                index=index,
                copy=not using_copy_on_write(),
            )

            self._currow += new_rows
        return df

    def get_chunk(self, size: int | None = None) -> DataFrame:
        if size is None:
            size = self.chunksize
        if self.nrows is not None:
            if self._currow >= self.nrows:
                raise StopIteration
            size = min(size, self.nrows - self._currow)
        return self.read(nrows=size)

    def __enter__(self) -> Self:
        return self

    def __exit__(
        self,
        exc_type: type[BaseException] | None,
        exc_value: BaseException | None,
        traceback: TracebackType | None,
    ) -> None:
        self.close()


def TextParser(*args, **kwds) -> TextFileReader:
    """
    Converts lists of lists/tuples into DataFrames with proper type inference
    and optional (e.g. string to datetime) conversion. Also enables iterating
    lazily over chunks of large files

    Parameters
    ----------
    data : file-like object or list
    delimiter : separator character to use
    dialect : str or csv.Dialect instance, optional
        Ignored if delimiter is longer than 1 character
    names : sequence, default
    header : int, default 0
        Row to use to parse column labels. Defaults to the first row. Prior
        rows will be discarded
    index_col : int or list, optional
        Column or columns to use as the (possibly hierarchical) index
    has_index_names: bool, default False
        True if the cols defined in index_col have an index name and are
        not in the header.
    na_values : scalar, str, list-like, or dict, optional
        Additional strings to recognize as NA/NaN.
    keep_default_na : bool, default True
    thousands : str, optional
        Thousands separator
    comment : str, optional
        Comment out remainder of line
    parse_dates : bool, default False
    keep_date_col : bool, default False
    date_parser : function, optional

        .. deprecated:: 2.0.0
    date_format : str or dict of column -> format, default ``None``

        .. versionadded:: 2.0.0
    skiprows : list of integers
        Row numbers to skip
    skipfooter : int
        Number of line at bottom of file to skip
    converters : dict, optional
        Dict of functions for converting values in certain columns. Keys can
        either be integers or column labels, values are functions that take one
        input argument, the cell (not column) content, and return the
        transformed content.
    encoding : str, optional
        Encoding to use for UTF when reading/writing (ex. 'utf-8')
    float_precision : str, optional
        Specifies which converter the C engine should use for floating-point
        values. The options are `None` or `high` for the ordinary converter,
        `legacy` for the original lower precision pandas converter, and
        `round_trip` for the round-trip converter.
    """
    kwds["engine"] = "python"
    return TextFileReader(*args, **kwds)


def _clean_na_values(na_values, keep_default_na: bool = True, floatify: bool = True):
    na_fvalues: set | dict
    if na_values is None:
        if keep_default_na:
            na_values = STR_NA_VALUES
        else:
            na_values = set()
        na_fvalues = set()
    elif isinstance(na_values, dict):
        old_na_values = na_values.copy()
        na_values = {}  # Prevent aliasing.

        # Convert the values in the na_values dictionary
        # into array-likes for further use. This is also
        # where we append the default NaN values, provided
        # that `keep_default_na=True`.
        for k, v in old_na_values.items():
            if not is_list_like(v):
                v = [v]

            if keep_default_na:
                v = set(v) | STR_NA_VALUES

            na_values[k] = v
        na_fvalues = {k: _floatify_na_values(v) for k, v in na_values.items()}
    else:
        if not is_list_like(na_values):
            na_values = [na_values]
        na_values = _stringify_na_values(na_values, floatify)
        if keep_default_na:
            na_values = na_values | STR_NA_VALUES

        na_fvalues = _floatify_na_values(na_values)

    return na_values, na_fvalues


def _floatify_na_values(na_values):
    # create float versions of the na_values
    result = set()
    for v in na_values:
        try:
            v = float(v)
            if not np.isnan(v):
                result.add(v)
        except (TypeError, ValueError, OverflowError):
            pass
    return result


def _stringify_na_values(na_values, floatify: bool):
    """return a stringified and numeric for these values"""
    result: list[str | float] = []
    for x in na_values:
        result.append(str(x))
        result.append(x)
        try:
            v = float(x)

            # we are like 999 here
            if v == int(v):
                v = int(v)
                result.append(f"{v}.0")
                result.append(str(v))

            if floatify:
                result.append(v)
        except (TypeError, ValueError, OverflowError):
            pass
        if floatify:
            try:
                result.append(int(x))
            except (TypeError, ValueError, OverflowError):
                pass
    return set(result)


def _refine_defaults_read(
    dialect: str | csv.Dialect | None,
    delimiter: str | None | lib.NoDefault,
    delim_whitespace: bool,
    engine: CSVEngine | None,
    sep: str | None | lib.NoDefault,
    on_bad_lines: str | Callable,
    names: Sequence[Hashable] | None | lib.NoDefault,
    defaults: dict[str, Any],
    dtype_backend: DtypeBackend | lib.NoDefault,
):
    """Validate/refine default values of input parameters of read_csv, read_table.

    Parameters
    ----------
    dialect : str or csv.Dialect
        If provided, this parameter will override values (default or not) for the
        following parameters: `delimiter`, `doublequote`, `escapechar`,
        `skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to
        override values, a ParserWarning will be issued. See csv.Dialect
        documentation for more details.
    delimiter : str or object
        Alias for sep.
    delim_whitespace : bool
        Specifies whether or not whitespace (e.g. ``' '`` or ``'\t'``) will be
        used as the sep. Equivalent to setting ``sep='\\s+'``. If this option
        is set to True, nothing should be passed in for the ``delimiter``
        parameter.

        .. deprecated:: 2.2.0
            Use ``sep="\\s+"`` instead.
    engine : {{'c', 'python'}}
        Parser engine to use. The C engine is faster while the python engine is
        currently more feature-complete.
    sep : str or object
        A delimiter provided by the user (str) or a sentinel value, i.e.
        pandas._libs.lib.no_default.
    on_bad_lines : str, callable
        An option for handling bad lines or a sentinel value(None).
    names : array-like, optional
        List of column names to use. If the file contains a header row,
        then you should explicitly pass ``header=0`` to override the column names.
        Duplicates in this list are not allowed.
    defaults: dict
        Default values of input parameters.

    Returns
    -------
    kwds : dict
        Input parameters with correct values.

    Raises
    ------
    ValueError :
        If a delimiter was specified with ``sep`` (or ``delimiter``) and
        ``delim_whitespace=True``.
    """
    # fix types for sep, delimiter to Union(str, Any)
    delim_default = defaults["delimiter"]
    kwds: dict[str, Any] = {}
    # gh-23761
    #
    # When a dialect is passed, it overrides any of the overlapping
    # parameters passed in directly. We don't want to warn if the
    # default parameters were passed in (since it probably means
    # that the user didn't pass them in explicitly in the first place).
    #
    # "delimiter" is the annoying corner case because we alias it to
    # "sep" before doing comparison to the dialect values later on.
    # Thus, we need a flag to indicate that we need to "override"
    # the comparison to dialect values by checking if default values
    # for BOTH "delimiter" and "sep" were provided.
    if dialect is not None:
        kwds["sep_override"] = delimiter is None and (
            sep is lib.no_default or sep == delim_default
        )

    if delimiter and (sep is not lib.no_default):
        raise ValueError("Specified a sep and a delimiter; you can only specify one.")

    kwds["names"] = None if names is lib.no_default else names

    # Alias sep -> delimiter.
    if delimiter is None:
        delimiter = sep

    if delim_whitespace and (delimiter is not lib.no_default):
        raise ValueError(
            "Specified a delimiter with both sep and "
            "delim_whitespace=True; you can only specify one."
        )

    if delimiter == "\n":
        raise ValueError(
            r"Specified \n as separator or delimiter. This forces the python engine "
            "which does not accept a line terminator. Hence it is not allowed to use "
            "the line terminator as separator.",
        )

    if delimiter is lib.no_default:
        # assign default separator value
        kwds["delimiter"] = delim_default
    else:
        kwds["delimiter"] = delimiter

    if engine is not None:
        kwds["engine_specified"] = True
    else:
        kwds["engine"] = "c"
        kwds["engine_specified"] = False

    if on_bad_lines == "error":
        kwds["on_bad_lines"] = ParserBase.BadLineHandleMethod.ERROR
    elif on_bad_lines == "warn":
        kwds["on_bad_lines"] = ParserBase.BadLineHandleMethod.WARN
    elif on_bad_lines == "skip":
        kwds["on_bad_lines"] = ParserBase.BadLineHandleMethod.SKIP
    elif callable(on_bad_lines):
        if engine not in ["python", "pyarrow"]:
            raise ValueError(
                "on_bad_line can only be a callable function "
                "if engine='python' or 'pyarrow'"
            )
        kwds["on_bad_lines"] = on_bad_lines
    else:
        raise ValueError(f"Argument {on_bad_lines} is invalid for on_bad_lines")

    check_dtype_backend(dtype_backend)

    kwds["dtype_backend"] = dtype_backend

    return kwds


def _extract_dialect(kwds: dict[str, Any]) -> csv.Dialect | None:
    """
    Extract concrete csv dialect instance.

    Returns
    -------
    csv.Dialect or None
    """
    if kwds.get("dialect") is None:
        return None

    dialect = kwds["dialect"]
    if dialect in csv.list_dialects():
        dialect = csv.get_dialect(dialect)

    _validate_dialect(dialect)

    return dialect


MANDATORY_DIALECT_ATTRS = (
    "delimiter",
    "doublequote",
    "escapechar",
    "skipinitialspace",
    "quotechar",
    "quoting",
)


def _validate_dialect(dialect: csv.Dialect) -> None:
    """
    Validate csv dialect instance.

    Raises
    ------
    ValueError
        If incorrect dialect is provided.
    """
    for param in MANDATORY_DIALECT_ATTRS:
        if not hasattr(dialect, param):
            raise ValueError(f"Invalid dialect {dialect} provided")


def _merge_with_dialect_properties(
    dialect: csv.Dialect,
    defaults: dict[str, Any],
) -> dict[str, Any]:
    """
    Merge default kwargs in TextFileReader with dialect parameters.

    Parameters
    ----------
    dialect : csv.Dialect
        Concrete csv dialect. See csv.Dialect documentation for more details.
    defaults : dict
        Keyword arguments passed to TextFileReader.

    Returns
    -------
    kwds : dict
        Updated keyword arguments, merged with dialect parameters.
    """
    kwds = defaults.copy()

    for param in MANDATORY_DIALECT_ATTRS:
        dialect_val = getattr(dialect, param)

        parser_default = parser_defaults[param]
        provided = kwds.get(param, parser_default)

        # Messages for conflicting values between the dialect
        # instance and the actual parameters provided.
        conflict_msgs = []

        # Don't warn if the default parameter was passed in,
        # even if it conflicts with the dialect (gh-23761).
        if provided not in (parser_default, dialect_val):
            msg = (
                f"Conflicting values for '{param}': '{provided}' was "
                f"provided, but the dialect specifies '{dialect_val}'. "
                "Using the dialect-specified value."
            )

            # Annoying corner case for not warning about
            # conflicts between dialect and delimiter parameter.
            # Refer to the outer "_read_" function for more info.
            if not (param == "delimiter" and kwds.pop("sep_override", False)):
                conflict_msgs.append(msg)

        if conflict_msgs:
            warnings.warn(
                "\n\n".join(conflict_msgs), ParserWarning, stacklevel=find_stack_level()
            )
        kwds[param] = dialect_val
    return kwds


def _validate_skipfooter(kwds: dict[str, Any]) -> None:
    """
    Check whether skipfooter is compatible with other kwargs in TextFileReader.

    Parameters
    ----------
    kwds : dict
        Keyword arguments passed to TextFileReader.

    Raises
    ------
    ValueError
        If skipfooter is not compatible with other parameters.
    """
    if kwds.get("skipfooter"):
        if kwds.get("iterator") or kwds.get("chunksize"):
            raise ValueError("'skipfooter' not supported for iteration")
        if kwds.get("nrows"):
            raise ValueError("'skipfooter' not supported with 'nrows'")