File size: 177,239 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
"""
High level interface to PyTables for reading and writing pandas data structures
to disk
"""
from __future__ import annotations

from contextlib import suppress
import copy
from datetime import (
    date,
    tzinfo,
)
import itertools
import os
import re
from textwrap import dedent
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Final,
    Literal,
    cast,
    overload,
)
import warnings

import numpy as np

from pandas._config import (
    config,
    get_option,
    using_copy_on_write,
    using_pyarrow_string_dtype,
)

from pandas._libs import (
    lib,
    writers as libwriters,
)
from pandas._libs.lib import is_string_array
from pandas._libs.tslibs import timezones
from pandas.compat._optional import import_optional_dependency
from pandas.compat.pickle_compat import patch_pickle
from pandas.errors import (
    AttributeConflictWarning,
    ClosedFileError,
    IncompatibilityWarning,
    PerformanceWarning,
    PossibleDataLossError,
)
from pandas.util._decorators import cache_readonly
from pandas.util._exceptions import find_stack_level

from pandas.core.dtypes.common import (
    ensure_object,
    is_bool_dtype,
    is_complex_dtype,
    is_list_like,
    is_string_dtype,
    needs_i8_conversion,
)
from pandas.core.dtypes.dtypes import (
    CategoricalDtype,
    DatetimeTZDtype,
    ExtensionDtype,
    PeriodDtype,
)
from pandas.core.dtypes.missing import array_equivalent

from pandas import (
    DataFrame,
    DatetimeIndex,
    Index,
    MultiIndex,
    PeriodIndex,
    RangeIndex,
    Series,
    TimedeltaIndex,
    concat,
    isna,
)
from pandas.core.arrays import (
    Categorical,
    DatetimeArray,
    PeriodArray,
)
import pandas.core.common as com
from pandas.core.computation.pytables import (
    PyTablesExpr,
    maybe_expression,
)
from pandas.core.construction import extract_array
from pandas.core.indexes.api import ensure_index
from pandas.core.internals import (
    ArrayManager,
    BlockManager,
)

from pandas.io.common import stringify_path
from pandas.io.formats.printing import (
    adjoin,
    pprint_thing,
)

if TYPE_CHECKING:
    from collections.abc import (
        Hashable,
        Iterator,
        Sequence,
    )
    from types import TracebackType

    from tables import (
        Col,
        File,
        Node,
    )

    from pandas._typing import (
        AnyArrayLike,
        ArrayLike,
        AxisInt,
        DtypeArg,
        FilePath,
        Self,
        Shape,
        npt,
    )

    from pandas.core.internals import Block

# versioning attribute
_version = "0.15.2"

# encoding
_default_encoding = "UTF-8"


def _ensure_decoded(s):
    """if we have bytes, decode them to unicode"""
    if isinstance(s, np.bytes_):
        s = s.decode("UTF-8")
    return s


def _ensure_encoding(encoding: str | None) -> str:
    # set the encoding if we need
    if encoding is None:
        encoding = _default_encoding

    return encoding


def _ensure_str(name):
    """
    Ensure that an index / column name is a str (python 3); otherwise they
    may be np.string dtype. Non-string dtypes are passed through unchanged.

    https://github.com/pandas-dev/pandas/issues/13492
    """
    if isinstance(name, str):
        name = str(name)
    return name


Term = PyTablesExpr


def _ensure_term(where, scope_level: int):
    """
    Ensure that the where is a Term or a list of Term.

    This makes sure that we are capturing the scope of variables that are
    passed create the terms here with a frame_level=2 (we are 2 levels down)
    """
    # only consider list/tuple here as an ndarray is automatically a coordinate
    # list
    level = scope_level + 1
    if isinstance(where, (list, tuple)):
        where = [
            Term(term, scope_level=level + 1) if maybe_expression(term) else term
            for term in where
            if term is not None
        ]
    elif maybe_expression(where):
        where = Term(where, scope_level=level)
    return where if where is None or len(where) else None


incompatibility_doc: Final = """
where criteria is being ignored as this version [%s] is too old (or
not-defined), read the file in and write it out to a new file to upgrade (with
the copy_to method)
"""

attribute_conflict_doc: Final = """
the [%s] attribute of the existing index is [%s] which conflicts with the new
[%s], resetting the attribute to None
"""

performance_doc: Final = """
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->%s,key->%s] [items->%s]
"""

# formats
_FORMAT_MAP = {"f": "fixed", "fixed": "fixed", "t": "table", "table": "table"}

# axes map
_AXES_MAP = {DataFrame: [0]}

# register our configuration options
dropna_doc: Final = """
: boolean
    drop ALL nan rows when appending to a table
"""
format_doc: Final = """
: format
    default format writing format, if None, then
    put will default to 'fixed' and append will default to 'table'
"""

with config.config_prefix("io.hdf"):
    config.register_option("dropna_table", False, dropna_doc, validator=config.is_bool)
    config.register_option(
        "default_format",
        None,
        format_doc,
        validator=config.is_one_of_factory(["fixed", "table", None]),
    )

# oh the troubles to reduce import time
_table_mod = None
_table_file_open_policy_is_strict = False


def _tables():
    global _table_mod
    global _table_file_open_policy_is_strict
    if _table_mod is None:
        import tables

        _table_mod = tables

        # set the file open policy
        # return the file open policy; this changes as of pytables 3.1
        # depending on the HDF5 version
        with suppress(AttributeError):
            _table_file_open_policy_is_strict = (
                tables.file._FILE_OPEN_POLICY == "strict"
            )

    return _table_mod


# interface to/from ###


def to_hdf(
    path_or_buf: FilePath | HDFStore,
    key: str,
    value: DataFrame | Series,
    mode: str = "a",
    complevel: int | None = None,
    complib: str | None = None,
    append: bool = False,
    format: str | None = None,
    index: bool = True,
    min_itemsize: int | dict[str, int] | None = None,
    nan_rep=None,
    dropna: bool | None = None,
    data_columns: Literal[True] | list[str] | None = None,
    errors: str = "strict",
    encoding: str = "UTF-8",
) -> None:
    """store this object, close it if we opened it"""
    if append:
        f = lambda store: store.append(
            key,
            value,
            format=format,
            index=index,
            min_itemsize=min_itemsize,
            nan_rep=nan_rep,
            dropna=dropna,
            data_columns=data_columns,
            errors=errors,
            encoding=encoding,
        )
    else:
        # NB: dropna is not passed to `put`
        f = lambda store: store.put(
            key,
            value,
            format=format,
            index=index,
            min_itemsize=min_itemsize,
            nan_rep=nan_rep,
            data_columns=data_columns,
            errors=errors,
            encoding=encoding,
            dropna=dropna,
        )

    path_or_buf = stringify_path(path_or_buf)
    if isinstance(path_or_buf, str):
        with HDFStore(
            path_or_buf, mode=mode, complevel=complevel, complib=complib
        ) as store:
            f(store)
    else:
        f(path_or_buf)


def read_hdf(
    path_or_buf: FilePath | HDFStore,
    key=None,
    mode: str = "r",
    errors: str = "strict",
    where: str | list | None = None,
    start: int | None = None,
    stop: int | None = None,
    columns: list[str] | None = None,
    iterator: bool = False,
    chunksize: int | None = None,
    **kwargs,
):
    """
    Read from the store, close it if we opened it.

    Retrieve pandas object stored in file, optionally based on where
    criteria.

    .. warning::

       Pandas uses PyTables for reading and writing HDF5 files, which allows
       serializing object-dtype data with pickle when using the "fixed" format.
       Loading pickled data received from untrusted sources can be unsafe.

       See: https://docs.python.org/3/library/pickle.html for more.

    Parameters
    ----------
    path_or_buf : str, path object, pandas.HDFStore
        Any valid string path is acceptable. Only supports the local file system,
        remote URLs and file-like objects are not supported.

        If you want to pass in a path object, pandas accepts any
        ``os.PathLike``.

        Alternatively, pandas accepts an open :class:`pandas.HDFStore` object.

    key : object, optional
        The group identifier in the store. Can be omitted if the HDF file
        contains a single pandas object.
    mode : {'r', 'r+', 'a'}, default 'r'
        Mode to use when opening the file. Ignored if path_or_buf is a
        :class:`pandas.HDFStore`. Default is 'r'.
    errors : str, default 'strict'
        Specifies how encoding and decoding errors are to be handled.
        See the errors argument for :func:`open` for a full list
        of options.
    where : list, optional
        A list of Term (or convertible) objects.
    start : int, optional
        Row number to start selection.
    stop  : int, optional
        Row number to stop selection.
    columns : list, optional
        A list of columns names to return.
    iterator : bool, optional
        Return an iterator object.
    chunksize : int, optional
        Number of rows to include in an iteration when using an iterator.
    **kwargs
        Additional keyword arguments passed to HDFStore.

    Returns
    -------
    object
        The selected object. Return type depends on the object stored.

    See Also
    --------
    DataFrame.to_hdf : Write a HDF file from a DataFrame.
    HDFStore : Low-level access to HDF files.

    Examples
    --------
    >>> df = pd.DataFrame([[1, 1.0, 'a']], columns=['x', 'y', 'z'])  # doctest: +SKIP
    >>> df.to_hdf('./store.h5', 'data')  # doctest: +SKIP
    >>> reread = pd.read_hdf('./store.h5')  # doctest: +SKIP
    """
    if mode not in ["r", "r+", "a"]:
        raise ValueError(
            f"mode {mode} is not allowed while performing a read. "
            f"Allowed modes are r, r+ and a."
        )
    # grab the scope
    if where is not None:
        where = _ensure_term(where, scope_level=1)

    if isinstance(path_or_buf, HDFStore):
        if not path_or_buf.is_open:
            raise OSError("The HDFStore must be open for reading.")

        store = path_or_buf
        auto_close = False
    else:
        path_or_buf = stringify_path(path_or_buf)
        if not isinstance(path_or_buf, str):
            raise NotImplementedError(
                "Support for generic buffers has not been implemented."
            )
        try:
            exists = os.path.exists(path_or_buf)

        # if filepath is too long
        except (TypeError, ValueError):
            exists = False

        if not exists:
            raise FileNotFoundError(f"File {path_or_buf} does not exist")

        store = HDFStore(path_or_buf, mode=mode, errors=errors, **kwargs)
        # can't auto open/close if we are using an iterator
        # so delegate to the iterator
        auto_close = True

    try:
        if key is None:
            groups = store.groups()
            if len(groups) == 0:
                raise ValueError(
                    "Dataset(s) incompatible with Pandas data types, "
                    "not table, or no datasets found in HDF5 file."
                )
            candidate_only_group = groups[0]

            # For the HDF file to have only one dataset, all other groups
            # should then be metadata groups for that candidate group. (This
            # assumes that the groups() method enumerates parent groups
            # before their children.)
            for group_to_check in groups[1:]:
                if not _is_metadata_of(group_to_check, candidate_only_group):
                    raise ValueError(
                        "key must be provided when HDF5 "
                        "file contains multiple datasets."
                    )
            key = candidate_only_group._v_pathname
        return store.select(
            key,
            where=where,
            start=start,
            stop=stop,
            columns=columns,
            iterator=iterator,
            chunksize=chunksize,
            auto_close=auto_close,
        )
    except (ValueError, TypeError, LookupError):
        if not isinstance(path_or_buf, HDFStore):
            # if there is an error, close the store if we opened it.
            with suppress(AttributeError):
                store.close()

        raise


def _is_metadata_of(group: Node, parent_group: Node) -> bool:
    """Check if a given group is a metadata group for a given parent_group."""
    if group._v_depth <= parent_group._v_depth:
        return False

    current = group
    while current._v_depth > 1:
        parent = current._v_parent
        if parent == parent_group and current._v_name == "meta":
            return True
        current = current._v_parent
    return False


class HDFStore:
    """
    Dict-like IO interface for storing pandas objects in PyTables.

    Either Fixed or Table format.

    .. warning::

       Pandas uses PyTables for reading and writing HDF5 files, which allows
       serializing object-dtype data with pickle when using the "fixed" format.
       Loading pickled data received from untrusted sources can be unsafe.

       See: https://docs.python.org/3/library/pickle.html for more.

    Parameters
    ----------
    path : str
        File path to HDF5 file.
    mode : {'a', 'w', 'r', 'r+'}, default 'a'

        ``'r'``
            Read-only; no data can be modified.
        ``'w'``
            Write; a new file is created (an existing file with the same
            name would be deleted).
        ``'a'``
            Append; an existing file is opened for reading and writing,
            and if the file does not exist it is created.
        ``'r+'``
            It is similar to ``'a'``, but the file must already exist.
    complevel : int, 0-9, default None
        Specifies a compression level for data.
        A value of 0 or None disables compression.
    complib : {'zlib', 'lzo', 'bzip2', 'blosc'}, default 'zlib'
        Specifies the compression library to be used.
        These additional compressors for Blosc are supported
        (default if no compressor specified: 'blosc:blosclz'):
        {'blosc:blosclz', 'blosc:lz4', 'blosc:lz4hc', 'blosc:snappy',
         'blosc:zlib', 'blosc:zstd'}.
        Specifying a compression library which is not available issues
        a ValueError.
    fletcher32 : bool, default False
        If applying compression use the fletcher32 checksum.
    **kwargs
        These parameters will be passed to the PyTables open_file method.

    Examples
    --------
    >>> bar = pd.DataFrame(np.random.randn(10, 4))
    >>> store = pd.HDFStore('test.h5')
    >>> store['foo'] = bar   # write to HDF5
    >>> bar = store['foo']   # retrieve
    >>> store.close()

    **Create or load HDF5 file in-memory**

    When passing the `driver` option to the PyTables open_file method through
    **kwargs, the HDF5 file is loaded or created in-memory and will only be
    written when closed:

    >>> bar = pd.DataFrame(np.random.randn(10, 4))
    >>> store = pd.HDFStore('test.h5', driver='H5FD_CORE')
    >>> store['foo'] = bar
    >>> store.close()   # only now, data is written to disk
    """

    _handle: File | None
    _mode: str

    def __init__(
        self,
        path,
        mode: str = "a",
        complevel: int | None = None,
        complib=None,
        fletcher32: bool = False,
        **kwargs,
    ) -> None:
        if "format" in kwargs:
            raise ValueError("format is not a defined argument for HDFStore")

        tables = import_optional_dependency("tables")

        if complib is not None and complib not in tables.filters.all_complibs:
            raise ValueError(
                f"complib only supports {tables.filters.all_complibs} compression."
            )

        if complib is None and complevel is not None:
            complib = tables.filters.default_complib

        self._path = stringify_path(path)
        if mode is None:
            mode = "a"
        self._mode = mode
        self._handle = None
        self._complevel = complevel if complevel else 0
        self._complib = complib
        self._fletcher32 = fletcher32
        self._filters = None
        self.open(mode=mode, **kwargs)

    def __fspath__(self) -> str:
        return self._path

    @property
    def root(self):
        """return the root node"""
        self._check_if_open()
        assert self._handle is not None  # for mypy
        return self._handle.root

    @property
    def filename(self) -> str:
        return self._path

    def __getitem__(self, key: str):
        return self.get(key)

    def __setitem__(self, key: str, value) -> None:
        self.put(key, value)

    def __delitem__(self, key: str) -> None:
        return self.remove(key)

    def __getattr__(self, name: str):
        """allow attribute access to get stores"""
        try:
            return self.get(name)
        except (KeyError, ClosedFileError):
            pass
        raise AttributeError(
            f"'{type(self).__name__}' object has no attribute '{name}'"
        )

    def __contains__(self, key: str) -> bool:
        """
        check for existence of this key
        can match the exact pathname or the pathnm w/o the leading '/'
        """
        node = self.get_node(key)
        if node is not None:
            name = node._v_pathname
            if key in (name, name[1:]):
                return True
        return False

    def __len__(self) -> int:
        return len(self.groups())

    def __repr__(self) -> str:
        pstr = pprint_thing(self._path)
        return f"{type(self)}\nFile path: {pstr}\n"

    def __enter__(self) -> Self:
        return self

    def __exit__(
        self,
        exc_type: type[BaseException] | None,
        exc_value: BaseException | None,
        traceback: TracebackType | None,
    ) -> None:
        self.close()

    def keys(self, include: str = "pandas") -> list[str]:
        """
        Return a list of keys corresponding to objects stored in HDFStore.

        Parameters
        ----------

        include : str, default 'pandas'
                When kind equals 'pandas' return pandas objects.
                When kind equals 'native' return native HDF5 Table objects.

        Returns
        -------
        list
            List of ABSOLUTE path-names (e.g. have the leading '/').

        Raises
        ------
        raises ValueError if kind has an illegal value

        Examples
        --------
        >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B'])
        >>> store = pd.HDFStore("store.h5", 'w')  # doctest: +SKIP
        >>> store.put('data', df)  # doctest: +SKIP
        >>> store.get('data')  # doctest: +SKIP
        >>> print(store.keys())  # doctest: +SKIP
        ['/data1', '/data2']
        >>> store.close()  # doctest: +SKIP
        """
        if include == "pandas":
            return [n._v_pathname for n in self.groups()]

        elif include == "native":
            assert self._handle is not None  # mypy
            return [
                n._v_pathname for n in self._handle.walk_nodes("/", classname="Table")
            ]
        raise ValueError(
            f"`include` should be either 'pandas' or 'native' but is '{include}'"
        )

    def __iter__(self) -> Iterator[str]:
        return iter(self.keys())

    def items(self) -> Iterator[tuple[str, list]]:
        """
        iterate on key->group
        """
        for g in self.groups():
            yield g._v_pathname, g

    def open(self, mode: str = "a", **kwargs) -> None:
        """
        Open the file in the specified mode

        Parameters
        ----------
        mode : {'a', 'w', 'r', 'r+'}, default 'a'
            See HDFStore docstring or tables.open_file for info about modes
        **kwargs
            These parameters will be passed to the PyTables open_file method.
        """
        tables = _tables()

        if self._mode != mode:
            # if we are changing a write mode to read, ok
            if self._mode in ["a", "w"] and mode in ["r", "r+"]:
                pass
            elif mode in ["w"]:
                # this would truncate, raise here
                if self.is_open:
                    raise PossibleDataLossError(
                        f"Re-opening the file [{self._path}] with mode [{self._mode}] "
                        "will delete the current file!"
                    )

            self._mode = mode

        # close and reopen the handle
        if self.is_open:
            self.close()

        if self._complevel and self._complevel > 0:
            self._filters = _tables().Filters(
                self._complevel, self._complib, fletcher32=self._fletcher32
            )

        if _table_file_open_policy_is_strict and self.is_open:
            msg = (
                "Cannot open HDF5 file, which is already opened, "
                "even in read-only mode."
            )
            raise ValueError(msg)

        self._handle = tables.open_file(self._path, self._mode, **kwargs)

    def close(self) -> None:
        """
        Close the PyTables file handle
        """
        if self._handle is not None:
            self._handle.close()
        self._handle = None

    @property
    def is_open(self) -> bool:
        """
        return a boolean indicating whether the file is open
        """
        if self._handle is None:
            return False
        return bool(self._handle.isopen)

    def flush(self, fsync: bool = False) -> None:
        """
        Force all buffered modifications to be written to disk.

        Parameters
        ----------
        fsync : bool (default False)
          call ``os.fsync()`` on the file handle to force writing to disk.

        Notes
        -----
        Without ``fsync=True``, flushing may not guarantee that the OS writes
        to disk. With fsync, the operation will block until the OS claims the
        file has been written; however, other caching layers may still
        interfere.
        """
        if self._handle is not None:
            self._handle.flush()
            if fsync:
                with suppress(OSError):
                    os.fsync(self._handle.fileno())

    def get(self, key: str):
        """
        Retrieve pandas object stored in file.

        Parameters
        ----------
        key : str

        Returns
        -------
        object
            Same type as object stored in file.

        Examples
        --------
        >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B'])
        >>> store = pd.HDFStore("store.h5", 'w')  # doctest: +SKIP
        >>> store.put('data', df)  # doctest: +SKIP
        >>> store.get('data')  # doctest: +SKIP
        >>> store.close()  # doctest: +SKIP
        """
        with patch_pickle():
            # GH#31167 Without this patch, pickle doesn't know how to unpickle
            #  old DateOffset objects now that they are cdef classes.
            group = self.get_node(key)
            if group is None:
                raise KeyError(f"No object named {key} in the file")
            return self._read_group(group)

    def select(
        self,
        key: str,
        where=None,
        start=None,
        stop=None,
        columns=None,
        iterator: bool = False,
        chunksize: int | None = None,
        auto_close: bool = False,
    ):
        """
        Retrieve pandas object stored in file, optionally based on where criteria.

        .. warning::

           Pandas uses PyTables for reading and writing HDF5 files, which allows
           serializing object-dtype data with pickle when using the "fixed" format.
           Loading pickled data received from untrusted sources can be unsafe.

           See: https://docs.python.org/3/library/pickle.html for more.

        Parameters
        ----------
        key : str
            Object being retrieved from file.
        where : list or None
            List of Term (or convertible) objects, optional.
        start : int or None
            Row number to start selection.
        stop : int, default None
            Row number to stop selection.
        columns : list or None
            A list of columns that if not None, will limit the return columns.
        iterator : bool or False
            Returns an iterator.
        chunksize : int or None
            Number or rows to include in iteration, return an iterator.
        auto_close : bool or False
            Should automatically close the store when finished.

        Returns
        -------
        object
            Retrieved object from file.

        Examples
        --------
        >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B'])
        >>> store = pd.HDFStore("store.h5", 'w')  # doctest: +SKIP
        >>> store.put('data', df)  # doctest: +SKIP
        >>> store.get('data')  # doctest: +SKIP
        >>> print(store.keys())  # doctest: +SKIP
        ['/data1', '/data2']
        >>> store.select('/data1')  # doctest: +SKIP
           A  B
        0  1  2
        1  3  4
        >>> store.select('/data1', where='columns == A')  # doctest: +SKIP
           A
        0  1
        1  3
        >>> store.close()  # doctest: +SKIP
        """
        group = self.get_node(key)
        if group is None:
            raise KeyError(f"No object named {key} in the file")

        # create the storer and axes
        where = _ensure_term(where, scope_level=1)
        s = self._create_storer(group)
        s.infer_axes()

        # function to call on iteration
        def func(_start, _stop, _where):
            return s.read(start=_start, stop=_stop, where=_where, columns=columns)

        # create the iterator
        it = TableIterator(
            self,
            s,
            func,
            where=where,
            nrows=s.nrows,
            start=start,
            stop=stop,
            iterator=iterator,
            chunksize=chunksize,
            auto_close=auto_close,
        )

        return it.get_result()

    def select_as_coordinates(
        self,
        key: str,
        where=None,
        start: int | None = None,
        stop: int | None = None,
    ):
        """
        return the selection as an Index

        .. warning::

           Pandas uses PyTables for reading and writing HDF5 files, which allows
           serializing object-dtype data with pickle when using the "fixed" format.
           Loading pickled data received from untrusted sources can be unsafe.

           See: https://docs.python.org/3/library/pickle.html for more.


        Parameters
        ----------
        key : str
        where : list of Term (or convertible) objects, optional
        start : integer (defaults to None), row number to start selection
        stop  : integer (defaults to None), row number to stop selection
        """
        where = _ensure_term(where, scope_level=1)
        tbl = self.get_storer(key)
        if not isinstance(tbl, Table):
            raise TypeError("can only read_coordinates with a table")
        return tbl.read_coordinates(where=where, start=start, stop=stop)

    def select_column(
        self,
        key: str,
        column: str,
        start: int | None = None,
        stop: int | None = None,
    ):
        """
        return a single column from the table. This is generally only useful to
        select an indexable

        .. warning::

           Pandas uses PyTables for reading and writing HDF5 files, which allows
           serializing object-dtype data with pickle when using the "fixed" format.
           Loading pickled data received from untrusted sources can be unsafe.

           See: https://docs.python.org/3/library/pickle.html for more.

        Parameters
        ----------
        key : str
        column : str
            The column of interest.
        start : int or None, default None
        stop : int or None, default None

        Raises
        ------
        raises KeyError if the column is not found (or key is not a valid
            store)
        raises ValueError if the column can not be extracted individually (it
            is part of a data block)

        """
        tbl = self.get_storer(key)
        if not isinstance(tbl, Table):
            raise TypeError("can only read_column with a table")
        return tbl.read_column(column=column, start=start, stop=stop)

    def select_as_multiple(
        self,
        keys,
        where=None,
        selector=None,
        columns=None,
        start=None,
        stop=None,
        iterator: bool = False,
        chunksize: int | None = None,
        auto_close: bool = False,
    ):
        """
        Retrieve pandas objects from multiple tables.

        .. warning::

           Pandas uses PyTables for reading and writing HDF5 files, which allows
           serializing object-dtype data with pickle when using the "fixed" format.
           Loading pickled data received from untrusted sources can be unsafe.

           See: https://docs.python.org/3/library/pickle.html for more.

        Parameters
        ----------
        keys : a list of the tables
        selector : the table to apply the where criteria (defaults to keys[0]
            if not supplied)
        columns : the columns I want back
        start : integer (defaults to None), row number to start selection
        stop  : integer (defaults to None), row number to stop selection
        iterator : bool, return an iterator, default False
        chunksize : nrows to include in iteration, return an iterator
        auto_close : bool, default False
            Should automatically close the store when finished.

        Raises
        ------
        raises KeyError if keys or selector is not found or keys is empty
        raises TypeError if keys is not a list or tuple
        raises ValueError if the tables are not ALL THE SAME DIMENSIONS
        """
        # default to single select
        where = _ensure_term(where, scope_level=1)
        if isinstance(keys, (list, tuple)) and len(keys) == 1:
            keys = keys[0]
        if isinstance(keys, str):
            return self.select(
                key=keys,
                where=where,
                columns=columns,
                start=start,
                stop=stop,
                iterator=iterator,
                chunksize=chunksize,
                auto_close=auto_close,
            )

        if not isinstance(keys, (list, tuple)):
            raise TypeError("keys must be a list/tuple")

        if not len(keys):
            raise ValueError("keys must have a non-zero length")

        if selector is None:
            selector = keys[0]

        # collect the tables
        tbls = [self.get_storer(k) for k in keys]
        s = self.get_storer(selector)

        # validate rows
        nrows = None
        for t, k in itertools.chain([(s, selector)], zip(tbls, keys)):
            if t is None:
                raise KeyError(f"Invalid table [{k}]")
            if not t.is_table:
                raise TypeError(
                    f"object [{t.pathname}] is not a table, and cannot be used in all "
                    "select as multiple"
                )

            if nrows is None:
                nrows = t.nrows
            elif t.nrows != nrows:
                raise ValueError("all tables must have exactly the same nrows!")

        # The isinstance checks here are redundant with the check above,
        #  but necessary for mypy; see GH#29757
        _tbls = [x for x in tbls if isinstance(x, Table)]

        # axis is the concentration axes
        axis = {t.non_index_axes[0][0] for t in _tbls}.pop()

        def func(_start, _stop, _where):
            # retrieve the objs, _where is always passed as a set of
            # coordinates here
            objs = [
                t.read(where=_where, columns=columns, start=_start, stop=_stop)
                for t in tbls
            ]

            # concat and return
            return concat(objs, axis=axis, verify_integrity=False)._consolidate()

        # create the iterator
        it = TableIterator(
            self,
            s,
            func,
            where=where,
            nrows=nrows,
            start=start,
            stop=stop,
            iterator=iterator,
            chunksize=chunksize,
            auto_close=auto_close,
        )

        return it.get_result(coordinates=True)

    def put(
        self,
        key: str,
        value: DataFrame | Series,
        format=None,
        index: bool = True,
        append: bool = False,
        complib=None,
        complevel: int | None = None,
        min_itemsize: int | dict[str, int] | None = None,
        nan_rep=None,
        data_columns: Literal[True] | list[str] | None = None,
        encoding=None,
        errors: str = "strict",
        track_times: bool = True,
        dropna: bool = False,
    ) -> None:
        """
        Store object in HDFStore.

        Parameters
        ----------
        key : str
        value : {Series, DataFrame}
        format : 'fixed(f)|table(t)', default is 'fixed'
            Format to use when storing object in HDFStore. Value can be one of:

            ``'fixed'``
                Fixed format.  Fast writing/reading. Not-appendable, nor searchable.
            ``'table'``
                Table format.  Write as a PyTables Table structure which may perform
                worse but allow more flexible operations like searching / selecting
                subsets of the data.
        index : bool, default True
            Write DataFrame index as a column.
        append : bool, default False
            This will force Table format, append the input data to the existing.
        data_columns : list of columns or True, default None
            List of columns to create as data columns, or True to use all columns.
            See `here
            <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#query-via-data-columns>`__.
        encoding : str, default None
            Provide an encoding for strings.
        track_times : bool, default True
            Parameter is propagated to 'create_table' method of 'PyTables'.
            If set to False it enables to have the same h5 files (same hashes)
            independent on creation time.
        dropna : bool, default False, optional
            Remove missing values.

        Examples
        --------
        >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B'])
        >>> store = pd.HDFStore("store.h5", 'w')  # doctest: +SKIP
        >>> store.put('data', df)  # doctest: +SKIP
        """
        if format is None:
            format = get_option("io.hdf.default_format") or "fixed"
        format = self._validate_format(format)
        self._write_to_group(
            key,
            value,
            format=format,
            index=index,
            append=append,
            complib=complib,
            complevel=complevel,
            min_itemsize=min_itemsize,
            nan_rep=nan_rep,
            data_columns=data_columns,
            encoding=encoding,
            errors=errors,
            track_times=track_times,
            dropna=dropna,
        )

    def remove(self, key: str, where=None, start=None, stop=None) -> None:
        """
        Remove pandas object partially by specifying the where condition

        Parameters
        ----------
        key : str
            Node to remove or delete rows from
        where : list of Term (or convertible) objects, optional
        start : integer (defaults to None), row number to start selection
        stop  : integer (defaults to None), row number to stop selection

        Returns
        -------
        number of rows removed (or None if not a Table)

        Raises
        ------
        raises KeyError if key is not a valid store

        """
        where = _ensure_term(where, scope_level=1)
        try:
            s = self.get_storer(key)
        except KeyError:
            # the key is not a valid store, re-raising KeyError
            raise
        except AssertionError:
            # surface any assertion errors for e.g. debugging
            raise
        except Exception as err:
            # In tests we get here with ClosedFileError, TypeError, and
            #  _table_mod.NoSuchNodeError.  TODO: Catch only these?

            if where is not None:
                raise ValueError(
                    "trying to remove a node with a non-None where clause!"
                ) from err

            # we are actually trying to remove a node (with children)
            node = self.get_node(key)
            if node is not None:
                node._f_remove(recursive=True)
                return None

        # remove the node
        if com.all_none(where, start, stop):
            s.group._f_remove(recursive=True)

        # delete from the table
        else:
            if not s.is_table:
                raise ValueError(
                    "can only remove with where on objects written as tables"
                )
            return s.delete(where=where, start=start, stop=stop)

    def append(
        self,
        key: str,
        value: DataFrame | Series,
        format=None,
        axes=None,
        index: bool | list[str] = True,
        append: bool = True,
        complib=None,
        complevel: int | None = None,
        columns=None,
        min_itemsize: int | dict[str, int] | None = None,
        nan_rep=None,
        chunksize: int | None = None,
        expectedrows=None,
        dropna: bool | None = None,
        data_columns: Literal[True] | list[str] | None = None,
        encoding=None,
        errors: str = "strict",
    ) -> None:
        """
        Append to Table in file.

        Node must already exist and be Table format.

        Parameters
        ----------
        key : str
        value : {Series, DataFrame}
        format : 'table' is the default
            Format to use when storing object in HDFStore.  Value can be one of:

            ``'table'``
                Table format. Write as a PyTables Table structure which may perform
                worse but allow more flexible operations like searching / selecting
                subsets of the data.
        index : bool, default True
            Write DataFrame index as a column.
        append       : bool, default True
            Append the input data to the existing.
        data_columns : list of columns, or True, default None
            List of columns to create as indexed data columns for on-disk
            queries, or True to use all columns. By default only the axes
            of the object are indexed. See `here
            <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#query-via-data-columns>`__.
        min_itemsize : dict of columns that specify minimum str sizes
        nan_rep      : str to use as str nan representation
        chunksize    : size to chunk the writing
        expectedrows : expected TOTAL row size of this table
        encoding     : default None, provide an encoding for str
        dropna : bool, default False, optional
            Do not write an ALL nan row to the store settable
            by the option 'io.hdf.dropna_table'.

        Notes
        -----
        Does *not* check if data being appended overlaps with existing
        data in the table, so be careful

        Examples
        --------
        >>> df1 = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B'])
        >>> store = pd.HDFStore("store.h5", 'w')  # doctest: +SKIP
        >>> store.put('data', df1, format='table')  # doctest: +SKIP
        >>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=['A', 'B'])
        >>> store.append('data', df2)  # doctest: +SKIP
        >>> store.close()  # doctest: +SKIP
           A  B
        0  1  2
        1  3  4
        0  5  6
        1  7  8
        """
        if columns is not None:
            raise TypeError(
                "columns is not a supported keyword in append, try data_columns"
            )

        if dropna is None:
            dropna = get_option("io.hdf.dropna_table")
        if format is None:
            format = get_option("io.hdf.default_format") or "table"
        format = self._validate_format(format)
        self._write_to_group(
            key,
            value,
            format=format,
            axes=axes,
            index=index,
            append=append,
            complib=complib,
            complevel=complevel,
            min_itemsize=min_itemsize,
            nan_rep=nan_rep,
            chunksize=chunksize,
            expectedrows=expectedrows,
            dropna=dropna,
            data_columns=data_columns,
            encoding=encoding,
            errors=errors,
        )

    def append_to_multiple(
        self,
        d: dict,
        value,
        selector,
        data_columns=None,
        axes=None,
        dropna: bool = False,
        **kwargs,
    ) -> None:
        """
        Append to multiple tables

        Parameters
        ----------
        d : a dict of table_name to table_columns, None is acceptable as the
            values of one node (this will get all the remaining columns)
        value : a pandas object
        selector : a string that designates the indexable table; all of its
            columns will be designed as data_columns, unless data_columns is
            passed, in which case these are used
        data_columns : list of columns to create as data columns, or True to
            use all columns
        dropna : if evaluates to True, drop rows from all tables if any single
                 row in each table has all NaN. Default False.

        Notes
        -----
        axes parameter is currently not accepted

        """
        if axes is not None:
            raise TypeError(
                "axes is currently not accepted as a parameter to append_to_multiple; "
                "you can create the tables independently instead"
            )

        if not isinstance(d, dict):
            raise ValueError(
                "append_to_multiple must have a dictionary specified as the "
                "way to split the value"
            )

        if selector not in d:
            raise ValueError(
                "append_to_multiple requires a selector that is in passed dict"
            )

        # figure out the splitting axis (the non_index_axis)
        axis = next(iter(set(range(value.ndim)) - set(_AXES_MAP[type(value)])))

        # figure out how to split the value
        remain_key = None
        remain_values: list = []
        for k, v in d.items():
            if v is None:
                if remain_key is not None:
                    raise ValueError(
                        "append_to_multiple can only have one value in d that is None"
                    )
                remain_key = k
            else:
                remain_values.extend(v)
        if remain_key is not None:
            ordered = value.axes[axis]
            ordd = ordered.difference(Index(remain_values))
            ordd = sorted(ordered.get_indexer(ordd))
            d[remain_key] = ordered.take(ordd)

        # data_columns
        if data_columns is None:
            data_columns = d[selector]

        # ensure rows are synchronized across the tables
        if dropna:
            idxs = (value[cols].dropna(how="all").index for cols in d.values())
            valid_index = next(idxs)
            for index in idxs:
                valid_index = valid_index.intersection(index)
            value = value.loc[valid_index]

        min_itemsize = kwargs.pop("min_itemsize", None)

        # append
        for k, v in d.items():
            dc = data_columns if k == selector else None

            # compute the val
            val = value.reindex(v, axis=axis)

            filtered = (
                {key: value for (key, value) in min_itemsize.items() if key in v}
                if min_itemsize is not None
                else None
            )
            self.append(k, val, data_columns=dc, min_itemsize=filtered, **kwargs)

    def create_table_index(
        self,
        key: str,
        columns=None,
        optlevel: int | None = None,
        kind: str | None = None,
    ) -> None:
        """
        Create a pytables index on the table.

        Parameters
        ----------
        key : str
        columns : None, bool, or listlike[str]
            Indicate which columns to create an index on.

            * False : Do not create any indexes.
            * True : Create indexes on all columns.
            * None : Create indexes on all columns.
            * listlike : Create indexes on the given columns.

        optlevel : int or None, default None
            Optimization level, if None, pytables defaults to 6.
        kind : str or None, default None
            Kind of index, if None, pytables defaults to "medium".

        Raises
        ------
        TypeError: raises if the node is not a table
        """
        # version requirements
        _tables()
        s = self.get_storer(key)
        if s is None:
            return

        if not isinstance(s, Table):
            raise TypeError("cannot create table index on a Fixed format store")
        s.create_index(columns=columns, optlevel=optlevel, kind=kind)

    def groups(self) -> list:
        """
        Return a list of all the top-level nodes.

        Each node returned is not a pandas storage object.

        Returns
        -------
        list
            List of objects.

        Examples
        --------
        >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B'])
        >>> store = pd.HDFStore("store.h5", 'w')  # doctest: +SKIP
        >>> store.put('data', df)  # doctest: +SKIP
        >>> print(store.groups())  # doctest: +SKIP
        >>> store.close()  # doctest: +SKIP
        [/data (Group) ''
          children := ['axis0' (Array), 'axis1' (Array), 'block0_values' (Array),
          'block0_items' (Array)]]
        """
        _tables()
        self._check_if_open()
        assert self._handle is not None  # for mypy
        assert _table_mod is not None  # for mypy
        return [
            g
            for g in self._handle.walk_groups()
            if (
                not isinstance(g, _table_mod.link.Link)
                and (
                    getattr(g._v_attrs, "pandas_type", None)
                    or getattr(g, "table", None)
                    or (isinstance(g, _table_mod.table.Table) and g._v_name != "table")
                )
            )
        ]

    def walk(self, where: str = "/") -> Iterator[tuple[str, list[str], list[str]]]:
        """
        Walk the pytables group hierarchy for pandas objects.

        This generator will yield the group path, subgroups and pandas object
        names for each group.

        Any non-pandas PyTables objects that are not a group will be ignored.

        The `where` group itself is listed first (preorder), then each of its
        child groups (following an alphanumerical order) is also traversed,
        following the same procedure.

        Parameters
        ----------
        where : str, default "/"
            Group where to start walking.

        Yields
        ------
        path : str
            Full path to a group (without trailing '/').
        groups : list
            Names (strings) of the groups contained in `path`.
        leaves : list
            Names (strings) of the pandas objects contained in `path`.

        Examples
        --------
        >>> df1 = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B'])
        >>> store = pd.HDFStore("store.h5", 'w')  # doctest: +SKIP
        >>> store.put('data', df1, format='table')  # doctest: +SKIP
        >>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=['A', 'B'])
        >>> store.append('data', df2)  # doctest: +SKIP
        >>> store.close()  # doctest: +SKIP
        >>> for group in store.walk():  # doctest: +SKIP
        ...     print(group)  # doctest: +SKIP
        >>> store.close()  # doctest: +SKIP
        """
        _tables()
        self._check_if_open()
        assert self._handle is not None  # for mypy
        assert _table_mod is not None  # for mypy

        for g in self._handle.walk_groups(where):
            if getattr(g._v_attrs, "pandas_type", None) is not None:
                continue

            groups = []
            leaves = []
            for child in g._v_children.values():
                pandas_type = getattr(child._v_attrs, "pandas_type", None)
                if pandas_type is None:
                    if isinstance(child, _table_mod.group.Group):
                        groups.append(child._v_name)
                else:
                    leaves.append(child._v_name)

            yield (g._v_pathname.rstrip("/"), groups, leaves)

    def get_node(self, key: str) -> Node | None:
        """return the node with the key or None if it does not exist"""
        self._check_if_open()
        if not key.startswith("/"):
            key = "/" + key

        assert self._handle is not None
        assert _table_mod is not None  # for mypy
        try:
            node = self._handle.get_node(self.root, key)
        except _table_mod.exceptions.NoSuchNodeError:
            return None

        assert isinstance(node, _table_mod.Node), type(node)
        return node

    def get_storer(self, key: str) -> GenericFixed | Table:
        """return the storer object for a key, raise if not in the file"""
        group = self.get_node(key)
        if group is None:
            raise KeyError(f"No object named {key} in the file")

        s = self._create_storer(group)
        s.infer_axes()
        return s

    def copy(
        self,
        file,
        mode: str = "w",
        propindexes: bool = True,
        keys=None,
        complib=None,
        complevel: int | None = None,
        fletcher32: bool = False,
        overwrite: bool = True,
    ) -> HDFStore:
        """
        Copy the existing store to a new file, updating in place.

        Parameters
        ----------
        propindexes : bool, default True
            Restore indexes in copied file.
        keys : list, optional
            List of keys to include in the copy (defaults to all).
        overwrite : bool, default True
            Whether to overwrite (remove and replace) existing nodes in the new store.
        mode, complib, complevel, fletcher32 same as in HDFStore.__init__

        Returns
        -------
        open file handle of the new store
        """
        new_store = HDFStore(
            file, mode=mode, complib=complib, complevel=complevel, fletcher32=fletcher32
        )
        if keys is None:
            keys = list(self.keys())
        if not isinstance(keys, (tuple, list)):
            keys = [keys]
        for k in keys:
            s = self.get_storer(k)
            if s is not None:
                if k in new_store:
                    if overwrite:
                        new_store.remove(k)

                data = self.select(k)
                if isinstance(s, Table):
                    index: bool | list[str] = False
                    if propindexes:
                        index = [a.name for a in s.axes if a.is_indexed]
                    new_store.append(
                        k,
                        data,
                        index=index,
                        data_columns=getattr(s, "data_columns", None),
                        encoding=s.encoding,
                    )
                else:
                    new_store.put(k, data, encoding=s.encoding)

        return new_store

    def info(self) -> str:
        """
        Print detailed information on the store.

        Returns
        -------
        str

        Examples
        --------
        >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B'])
        >>> store = pd.HDFStore("store.h5", 'w')  # doctest: +SKIP
        >>> store.put('data', df)  # doctest: +SKIP
        >>> print(store.info())  # doctest: +SKIP
        >>> store.close()  # doctest: +SKIP
        <class 'pandas.io.pytables.HDFStore'>
        File path: store.h5
        /data    frame    (shape->[2,2])
        """
        path = pprint_thing(self._path)
        output = f"{type(self)}\nFile path: {path}\n"

        if self.is_open:
            lkeys = sorted(self.keys())
            if len(lkeys):
                keys = []
                values = []

                for k in lkeys:
                    try:
                        s = self.get_storer(k)
                        if s is not None:
                            keys.append(pprint_thing(s.pathname or k))
                            values.append(pprint_thing(s or "invalid_HDFStore node"))
                    except AssertionError:
                        # surface any assertion errors for e.g. debugging
                        raise
                    except Exception as detail:
                        keys.append(k)
                        dstr = pprint_thing(detail)
                        values.append(f"[invalid_HDFStore node: {dstr}]")

                output += adjoin(12, keys, values)
            else:
                output += "Empty"
        else:
            output += "File is CLOSED"

        return output

    # ------------------------------------------------------------------------
    # private methods

    def _check_if_open(self) -> None:
        if not self.is_open:
            raise ClosedFileError(f"{self._path} file is not open!")

    def _validate_format(self, format: str) -> str:
        """validate / deprecate formats"""
        # validate
        try:
            format = _FORMAT_MAP[format.lower()]
        except KeyError as err:
            raise TypeError(f"invalid HDFStore format specified [{format}]") from err

        return format

    def _create_storer(
        self,
        group,
        format=None,
        value: DataFrame | Series | None = None,
        encoding: str = "UTF-8",
        errors: str = "strict",
    ) -> GenericFixed | Table:
        """return a suitable class to operate"""
        cls: type[GenericFixed | Table]

        if value is not None and not isinstance(value, (Series, DataFrame)):
            raise TypeError("value must be None, Series, or DataFrame")

        pt = _ensure_decoded(getattr(group._v_attrs, "pandas_type", None))
        tt = _ensure_decoded(getattr(group._v_attrs, "table_type", None))

        # infer the pt from the passed value
        if pt is None:
            if value is None:
                _tables()
                assert _table_mod is not None  # for mypy
                if getattr(group, "table", None) or isinstance(
                    group, _table_mod.table.Table
                ):
                    pt = "frame_table"
                    tt = "generic_table"
                else:
                    raise TypeError(
                        "cannot create a storer if the object is not existing "
                        "nor a value are passed"
                    )
            else:
                if isinstance(value, Series):
                    pt = "series"
                else:
                    pt = "frame"

                # we are actually a table
                if format == "table":
                    pt += "_table"

        # a storer node
        if "table" not in pt:
            _STORER_MAP = {"series": SeriesFixed, "frame": FrameFixed}
            try:
                cls = _STORER_MAP[pt]
            except KeyError as err:
                raise TypeError(
                    f"cannot properly create the storer for: [_STORER_MAP] [group->"
                    f"{group},value->{type(value)},format->{format}"
                ) from err
            return cls(self, group, encoding=encoding, errors=errors)

        # existing node (and must be a table)
        if tt is None:
            # if we are a writer, determine the tt
            if value is not None:
                if pt == "series_table":
                    index = getattr(value, "index", None)
                    if index is not None:
                        if index.nlevels == 1:
                            tt = "appendable_series"
                        elif index.nlevels > 1:
                            tt = "appendable_multiseries"
                elif pt == "frame_table":
                    index = getattr(value, "index", None)
                    if index is not None:
                        if index.nlevels == 1:
                            tt = "appendable_frame"
                        elif index.nlevels > 1:
                            tt = "appendable_multiframe"

        _TABLE_MAP = {
            "generic_table": GenericTable,
            "appendable_series": AppendableSeriesTable,
            "appendable_multiseries": AppendableMultiSeriesTable,
            "appendable_frame": AppendableFrameTable,
            "appendable_multiframe": AppendableMultiFrameTable,
            "worm": WORMTable,
        }
        try:
            cls = _TABLE_MAP[tt]
        except KeyError as err:
            raise TypeError(
                f"cannot properly create the storer for: [_TABLE_MAP] [group->"
                f"{group},value->{type(value)},format->{format}"
            ) from err

        return cls(self, group, encoding=encoding, errors=errors)

    def _write_to_group(
        self,
        key: str,
        value: DataFrame | Series,
        format,
        axes=None,
        index: bool | list[str] = True,
        append: bool = False,
        complib=None,
        complevel: int | None = None,
        fletcher32=None,
        min_itemsize: int | dict[str, int] | None = None,
        chunksize: int | None = None,
        expectedrows=None,
        dropna: bool = False,
        nan_rep=None,
        data_columns=None,
        encoding=None,
        errors: str = "strict",
        track_times: bool = True,
    ) -> None:
        # we don't want to store a table node at all if our object is 0-len
        # as there are not dtypes
        if getattr(value, "empty", None) and (format == "table" or append):
            return

        group = self._identify_group(key, append)

        s = self._create_storer(group, format, value, encoding=encoding, errors=errors)
        if append:
            # raise if we are trying to append to a Fixed format,
            #       or a table that exists (and we are putting)
            if not s.is_table or (s.is_table and format == "fixed" and s.is_exists):
                raise ValueError("Can only append to Tables")
            if not s.is_exists:
                s.set_object_info()
        else:
            s.set_object_info()

        if not s.is_table and complib:
            raise ValueError("Compression not supported on Fixed format stores")

        # write the object
        s.write(
            obj=value,
            axes=axes,
            append=append,
            complib=complib,
            complevel=complevel,
            fletcher32=fletcher32,
            min_itemsize=min_itemsize,
            chunksize=chunksize,
            expectedrows=expectedrows,
            dropna=dropna,
            nan_rep=nan_rep,
            data_columns=data_columns,
            track_times=track_times,
        )

        if isinstance(s, Table) and index:
            s.create_index(columns=index)

    def _read_group(self, group: Node):
        s = self._create_storer(group)
        s.infer_axes()
        return s.read()

    def _identify_group(self, key: str, append: bool) -> Node:
        """Identify HDF5 group based on key, delete/create group if needed."""
        group = self.get_node(key)

        # we make this assertion for mypy; the get_node call will already
        # have raised if this is incorrect
        assert self._handle is not None

        # remove the node if we are not appending
        if group is not None and not append:
            self._handle.remove_node(group, recursive=True)
            group = None

        if group is None:
            group = self._create_nodes_and_group(key)

        return group

    def _create_nodes_and_group(self, key: str) -> Node:
        """Create nodes from key and return group name."""
        # assertion for mypy
        assert self._handle is not None

        paths = key.split("/")
        # recursively create the groups
        path = "/"
        for p in paths:
            if not len(p):
                continue
            new_path = path
            if not path.endswith("/"):
                new_path += "/"
            new_path += p
            group = self.get_node(new_path)
            if group is None:
                group = self._handle.create_group(path, p)
            path = new_path
        return group


class TableIterator:
    """
    Define the iteration interface on a table

    Parameters
    ----------
    store : HDFStore
    s     : the referred storer
    func  : the function to execute the query
    where : the where of the query
    nrows : the rows to iterate on
    start : the passed start value (default is None)
    stop  : the passed stop value (default is None)
    iterator : bool, default False
        Whether to use the default iterator.
    chunksize : the passed chunking value (default is 100000)
    auto_close : bool, default False
        Whether to automatically close the store at the end of iteration.
    """

    chunksize: int | None
    store: HDFStore
    s: GenericFixed | Table

    def __init__(
        self,
        store: HDFStore,
        s: GenericFixed | Table,
        func,
        where,
        nrows,
        start=None,
        stop=None,
        iterator: bool = False,
        chunksize: int | None = None,
        auto_close: bool = False,
    ) -> None:
        self.store = store
        self.s = s
        self.func = func
        self.where = where

        # set start/stop if they are not set if we are a table
        if self.s.is_table:
            if nrows is None:
                nrows = 0
            if start is None:
                start = 0
            if stop is None:
                stop = nrows
            stop = min(nrows, stop)

        self.nrows = nrows
        self.start = start
        self.stop = stop

        self.coordinates = None
        if iterator or chunksize is not None:
            if chunksize is None:
                chunksize = 100000
            self.chunksize = int(chunksize)
        else:
            self.chunksize = None

        self.auto_close = auto_close

    def __iter__(self) -> Iterator:
        # iterate
        current = self.start
        if self.coordinates is None:
            raise ValueError("Cannot iterate until get_result is called.")
        while current < self.stop:
            stop = min(current + self.chunksize, self.stop)
            value = self.func(None, None, self.coordinates[current:stop])
            current = stop
            if value is None or not len(value):
                continue

            yield value

        self.close()

    def close(self) -> None:
        if self.auto_close:
            self.store.close()

    def get_result(self, coordinates: bool = False):
        #  return the actual iterator
        if self.chunksize is not None:
            if not isinstance(self.s, Table):
                raise TypeError("can only use an iterator or chunksize on a table")

            self.coordinates = self.s.read_coordinates(where=self.where)

            return self

        # if specified read via coordinates (necessary for multiple selections
        if coordinates:
            if not isinstance(self.s, Table):
                raise TypeError("can only read_coordinates on a table")
            where = self.s.read_coordinates(
                where=self.where, start=self.start, stop=self.stop
            )
        else:
            where = self.where

        # directly return the result
        results = self.func(self.start, self.stop, where)
        self.close()
        return results


class IndexCol:
    """
    an index column description class

    Parameters
    ----------
    axis   : axis which I reference
    values : the ndarray like converted values
    kind   : a string description of this type
    typ    : the pytables type
    pos    : the position in the pytables

    """

    is_an_indexable: bool = True
    is_data_indexable: bool = True
    _info_fields = ["freq", "tz", "index_name"]

    def __init__(
        self,
        name: str,
        values=None,
        kind=None,
        typ=None,
        cname: str | None = None,
        axis=None,
        pos=None,
        freq=None,
        tz=None,
        index_name=None,
        ordered=None,
        table=None,
        meta=None,
        metadata=None,
    ) -> None:
        if not isinstance(name, str):
            raise ValueError("`name` must be a str.")

        self.values = values
        self.kind = kind
        self.typ = typ
        self.name = name
        self.cname = cname or name
        self.axis = axis
        self.pos = pos
        self.freq = freq
        self.tz = tz
        self.index_name = index_name
        self.ordered = ordered
        self.table = table
        self.meta = meta
        self.metadata = metadata

        if pos is not None:
            self.set_pos(pos)

        # These are ensured as long as the passed arguments match the
        #  constructor annotations.
        assert isinstance(self.name, str)
        assert isinstance(self.cname, str)

    @property
    def itemsize(self) -> int:
        # Assumes self.typ has already been initialized
        return self.typ.itemsize

    @property
    def kind_attr(self) -> str:
        return f"{self.name}_kind"

    def set_pos(self, pos: int) -> None:
        """set the position of this column in the Table"""
        self.pos = pos
        if pos is not None and self.typ is not None:
            self.typ._v_pos = pos

    def __repr__(self) -> str:
        temp = tuple(
            map(pprint_thing, (self.name, self.cname, self.axis, self.pos, self.kind))
        )
        return ",".join(
            [
                f"{key}->{value}"
                for key, value in zip(["name", "cname", "axis", "pos", "kind"], temp)
            ]
        )

    def __eq__(self, other: object) -> bool:
        """compare 2 col items"""
        return all(
            getattr(self, a, None) == getattr(other, a, None)
            for a in ["name", "cname", "axis", "pos"]
        )

    def __ne__(self, other) -> bool:
        return not self.__eq__(other)

    @property
    def is_indexed(self) -> bool:
        """return whether I am an indexed column"""
        if not hasattr(self.table, "cols"):
            # e.g. if infer hasn't been called yet, self.table will be None.
            return False
        return getattr(self.table.cols, self.cname).is_indexed

    def convert(
        self, values: np.ndarray, nan_rep, encoding: str, errors: str
    ) -> tuple[np.ndarray, np.ndarray] | tuple[Index, Index]:
        """
        Convert the data from this selection to the appropriate pandas type.
        """
        assert isinstance(values, np.ndarray), type(values)

        # values is a recarray
        if values.dtype.fields is not None:
            # Copy, otherwise values will be a view
            # preventing the original recarry from being free'ed
            values = values[self.cname].copy()

        val_kind = _ensure_decoded(self.kind)
        values = _maybe_convert(values, val_kind, encoding, errors)
        kwargs = {}
        kwargs["name"] = _ensure_decoded(self.index_name)

        if self.freq is not None:
            kwargs["freq"] = _ensure_decoded(self.freq)

        factory: type[Index | DatetimeIndex] = Index
        if lib.is_np_dtype(values.dtype, "M") or isinstance(
            values.dtype, DatetimeTZDtype
        ):
            factory = DatetimeIndex
        elif values.dtype == "i8" and "freq" in kwargs:
            # PeriodIndex data is stored as i8
            # error: Incompatible types in assignment (expression has type
            # "Callable[[Any, KwArg(Any)], PeriodIndex]", variable has type
            # "Union[Type[Index], Type[DatetimeIndex]]")
            factory = lambda x, **kwds: PeriodIndex.from_ordinals(  # type: ignore[assignment]
                x, freq=kwds.get("freq", None)
            )._rename(
                kwds["name"]
            )

        # making an Index instance could throw a number of different errors
        try:
            new_pd_index = factory(values, **kwargs)
        except ValueError:
            # if the output freq is different that what we recorded,
            # it should be None (see also 'doc example part 2')
            if "freq" in kwargs:
                kwargs["freq"] = None
            new_pd_index = factory(values, **kwargs)
        final_pd_index = _set_tz(new_pd_index, self.tz)
        return final_pd_index, final_pd_index

    def take_data(self):
        """return the values"""
        return self.values

    @property
    def attrs(self):
        return self.table._v_attrs

    @property
    def description(self):
        return self.table.description

    @property
    def col(self):
        """return my current col description"""
        return getattr(self.description, self.cname, None)

    @property
    def cvalues(self):
        """return my cython values"""
        return self.values

    def __iter__(self) -> Iterator:
        return iter(self.values)

    def maybe_set_size(self, min_itemsize=None) -> None:
        """
        maybe set a string col itemsize:
            min_itemsize can be an integer or a dict with this columns name
            with an integer size
        """
        if _ensure_decoded(self.kind) == "string":
            if isinstance(min_itemsize, dict):
                min_itemsize = min_itemsize.get(self.name)

            if min_itemsize is not None and self.typ.itemsize < min_itemsize:
                self.typ = _tables().StringCol(itemsize=min_itemsize, pos=self.pos)

    def validate_names(self) -> None:
        pass

    def validate_and_set(self, handler: AppendableTable, append: bool) -> None:
        self.table = handler.table
        self.validate_col()
        self.validate_attr(append)
        self.validate_metadata(handler)
        self.write_metadata(handler)
        self.set_attr()

    def validate_col(self, itemsize=None):
        """validate this column: return the compared against itemsize"""
        # validate this column for string truncation (or reset to the max size)
        if _ensure_decoded(self.kind) == "string":
            c = self.col
            if c is not None:
                if itemsize is None:
                    itemsize = self.itemsize
                if c.itemsize < itemsize:
                    raise ValueError(
                        f"Trying to store a string with len [{itemsize}] in "
                        f"[{self.cname}] column but\nthis column has a limit of "
                        f"[{c.itemsize}]!\nConsider using min_itemsize to "
                        "preset the sizes on these columns"
                    )
                return c.itemsize

        return None

    def validate_attr(self, append: bool) -> None:
        # check for backwards incompatibility
        if append:
            existing_kind = getattr(self.attrs, self.kind_attr, None)
            if existing_kind is not None and existing_kind != self.kind:
                raise TypeError(
                    f"incompatible kind in col [{existing_kind} - {self.kind}]"
                )

    def update_info(self, info) -> None:
        """
        set/update the info for this indexable with the key/value
        if there is a conflict raise/warn as needed
        """
        for key in self._info_fields:
            value = getattr(self, key, None)
            idx = info.setdefault(self.name, {})

            existing_value = idx.get(key)
            if key in idx and value is not None and existing_value != value:
                # frequency/name just warn
                if key in ["freq", "index_name"]:
                    ws = attribute_conflict_doc % (key, existing_value, value)
                    warnings.warn(
                        ws, AttributeConflictWarning, stacklevel=find_stack_level()
                    )

                    # reset
                    idx[key] = None
                    setattr(self, key, None)

                else:
                    raise ValueError(
                        f"invalid info for [{self.name}] for [{key}], "
                        f"existing_value [{existing_value}] conflicts with "
                        f"new value [{value}]"
                    )
            elif value is not None or existing_value is not None:
                idx[key] = value

    def set_info(self, info) -> None:
        """set my state from the passed info"""
        idx = info.get(self.name)
        if idx is not None:
            self.__dict__.update(idx)

    def set_attr(self) -> None:
        """set the kind for this column"""
        setattr(self.attrs, self.kind_attr, self.kind)

    def validate_metadata(self, handler: AppendableTable) -> None:
        """validate that kind=category does not change the categories"""
        if self.meta == "category":
            new_metadata = self.metadata
            cur_metadata = handler.read_metadata(self.cname)
            if (
                new_metadata is not None
                and cur_metadata is not None
                and not array_equivalent(
                    new_metadata, cur_metadata, strict_nan=True, dtype_equal=True
                )
            ):
                raise ValueError(
                    "cannot append a categorical with "
                    "different categories to the existing"
                )

    def write_metadata(self, handler: AppendableTable) -> None:
        """set the meta data"""
        if self.metadata is not None:
            handler.write_metadata(self.cname, self.metadata)


class GenericIndexCol(IndexCol):
    """an index which is not represented in the data of the table"""

    @property
    def is_indexed(self) -> bool:
        return False

    def convert(
        self, values: np.ndarray, nan_rep, encoding: str, errors: str
    ) -> tuple[Index, Index]:
        """
        Convert the data from this selection to the appropriate pandas type.

        Parameters
        ----------
        values : np.ndarray
        nan_rep : str
        encoding : str
        errors : str
        """
        assert isinstance(values, np.ndarray), type(values)

        index = RangeIndex(len(values))
        return index, index

    def set_attr(self) -> None:
        pass


class DataCol(IndexCol):
    """
    a data holding column, by definition this is not indexable

    Parameters
    ----------
    data   : the actual data
    cname  : the column name in the table to hold the data (typically
                values)
    meta   : a string description of the metadata
    metadata : the actual metadata
    """

    is_an_indexable = False
    is_data_indexable = False
    _info_fields = ["tz", "ordered"]

    def __init__(
        self,
        name: str,
        values=None,
        kind=None,
        typ=None,
        cname: str | None = None,
        pos=None,
        tz=None,
        ordered=None,
        table=None,
        meta=None,
        metadata=None,
        dtype: DtypeArg | None = None,
        data=None,
    ) -> None:
        super().__init__(
            name=name,
            values=values,
            kind=kind,
            typ=typ,
            pos=pos,
            cname=cname,
            tz=tz,
            ordered=ordered,
            table=table,
            meta=meta,
            metadata=metadata,
        )
        self.dtype = dtype
        self.data = data

    @property
    def dtype_attr(self) -> str:
        return f"{self.name}_dtype"

    @property
    def meta_attr(self) -> str:
        return f"{self.name}_meta"

    def __repr__(self) -> str:
        temp = tuple(
            map(
                pprint_thing, (self.name, self.cname, self.dtype, self.kind, self.shape)
            )
        )
        return ",".join(
            [
                f"{key}->{value}"
                for key, value in zip(["name", "cname", "dtype", "kind", "shape"], temp)
            ]
        )

    def __eq__(self, other: object) -> bool:
        """compare 2 col items"""
        return all(
            getattr(self, a, None) == getattr(other, a, None)
            for a in ["name", "cname", "dtype", "pos"]
        )

    def set_data(self, data: ArrayLike) -> None:
        assert data is not None
        assert self.dtype is None

        data, dtype_name = _get_data_and_dtype_name(data)

        self.data = data
        self.dtype = dtype_name
        self.kind = _dtype_to_kind(dtype_name)

    def take_data(self):
        """return the data"""
        return self.data

    @classmethod
    def _get_atom(cls, values: ArrayLike) -> Col:
        """
        Get an appropriately typed and shaped pytables.Col object for values.
        """
        dtype = values.dtype
        # error: Item "ExtensionDtype" of "Union[ExtensionDtype, dtype[Any]]" has no
        # attribute "itemsize"
        itemsize = dtype.itemsize  # type: ignore[union-attr]

        shape = values.shape
        if values.ndim == 1:
            # EA, use block shape pretending it is 2D
            # TODO(EA2D): not necessary with 2D EAs
            shape = (1, values.size)

        if isinstance(values, Categorical):
            codes = values.codes
            atom = cls.get_atom_data(shape, kind=codes.dtype.name)
        elif lib.is_np_dtype(dtype, "M") or isinstance(dtype, DatetimeTZDtype):
            atom = cls.get_atom_datetime64(shape)
        elif lib.is_np_dtype(dtype, "m"):
            atom = cls.get_atom_timedelta64(shape)
        elif is_complex_dtype(dtype):
            atom = _tables().ComplexCol(itemsize=itemsize, shape=shape[0])
        elif is_string_dtype(dtype):
            atom = cls.get_atom_string(shape, itemsize)
        else:
            atom = cls.get_atom_data(shape, kind=dtype.name)

        return atom

    @classmethod
    def get_atom_string(cls, shape, itemsize):
        return _tables().StringCol(itemsize=itemsize, shape=shape[0])

    @classmethod
    def get_atom_coltype(cls, kind: str) -> type[Col]:
        """return the PyTables column class for this column"""
        if kind.startswith("uint"):
            k4 = kind[4:]
            col_name = f"UInt{k4}Col"
        elif kind.startswith("period"):
            # we store as integer
            col_name = "Int64Col"
        else:
            kcap = kind.capitalize()
            col_name = f"{kcap}Col"

        return getattr(_tables(), col_name)

    @classmethod
    def get_atom_data(cls, shape, kind: str) -> Col:
        return cls.get_atom_coltype(kind=kind)(shape=shape[0])

    @classmethod
    def get_atom_datetime64(cls, shape):
        return _tables().Int64Col(shape=shape[0])

    @classmethod
    def get_atom_timedelta64(cls, shape):
        return _tables().Int64Col(shape=shape[0])

    @property
    def shape(self):
        return getattr(self.data, "shape", None)

    @property
    def cvalues(self):
        """return my cython values"""
        return self.data

    def validate_attr(self, append) -> None:
        """validate that we have the same order as the existing & same dtype"""
        if append:
            existing_fields = getattr(self.attrs, self.kind_attr, None)
            if existing_fields is not None and existing_fields != list(self.values):
                raise ValueError("appended items do not match existing items in table!")

            existing_dtype = getattr(self.attrs, self.dtype_attr, None)
            if existing_dtype is not None and existing_dtype != self.dtype:
                raise ValueError(
                    "appended items dtype do not match existing items dtype in table!"
                )

    def convert(self, values: np.ndarray, nan_rep, encoding: str, errors: str):
        """
        Convert the data from this selection to the appropriate pandas type.

        Parameters
        ----------
        values : np.ndarray
        nan_rep :
        encoding : str
        errors : str

        Returns
        -------
        index : listlike to become an Index
        data : ndarraylike to become a column
        """
        assert isinstance(values, np.ndarray), type(values)

        # values is a recarray
        if values.dtype.fields is not None:
            values = values[self.cname]

        assert self.typ is not None
        if self.dtype is None:
            # Note: in tests we never have timedelta64 or datetime64,
            #  so the _get_data_and_dtype_name may be unnecessary
            converted, dtype_name = _get_data_and_dtype_name(values)
            kind = _dtype_to_kind(dtype_name)
        else:
            converted = values
            dtype_name = self.dtype
            kind = self.kind

        assert isinstance(converted, np.ndarray)  # for mypy

        # use the meta if needed
        meta = _ensure_decoded(self.meta)
        metadata = self.metadata
        ordered = self.ordered
        tz = self.tz

        assert dtype_name is not None
        # convert to the correct dtype
        dtype = _ensure_decoded(dtype_name)

        # reverse converts
        if dtype.startswith("datetime64"):
            # recreate with tz if indicated
            converted = _set_tz(converted, tz, coerce=True)

        elif dtype == "timedelta64":
            converted = np.asarray(converted, dtype="m8[ns]")
        elif dtype == "date":
            try:
                converted = np.asarray(
                    [date.fromordinal(v) for v in converted], dtype=object
                )
            except ValueError:
                converted = np.asarray(
                    [date.fromtimestamp(v) for v in converted], dtype=object
                )

        elif meta == "category":
            # we have a categorical
            categories = metadata
            codes = converted.ravel()

            # if we have stored a NaN in the categories
            # then strip it; in theory we could have BOTH
            # -1s in the codes and nulls :<
            if categories is None:
                # Handle case of NaN-only categorical columns in which case
                # the categories are an empty array; when this is stored,
                # pytables cannot write a zero-len array, so on readback
                # the categories would be None and `read_hdf()` would fail.
                categories = Index([], dtype=np.float64)
            else:
                mask = isna(categories)
                if mask.any():
                    categories = categories[~mask]
                    codes[codes != -1] -= mask.astype(int).cumsum()._values

            converted = Categorical.from_codes(
                codes, categories=categories, ordered=ordered, validate=False
            )

        else:
            try:
                converted = converted.astype(dtype, copy=False)
            except TypeError:
                converted = converted.astype("O", copy=False)

        # convert nans / decode
        if _ensure_decoded(kind) == "string":
            converted = _unconvert_string_array(
                converted, nan_rep=nan_rep, encoding=encoding, errors=errors
            )

        return self.values, converted

    def set_attr(self) -> None:
        """set the data for this column"""
        setattr(self.attrs, self.kind_attr, self.values)
        setattr(self.attrs, self.meta_attr, self.meta)
        assert self.dtype is not None
        setattr(self.attrs, self.dtype_attr, self.dtype)


class DataIndexableCol(DataCol):
    """represent a data column that can be indexed"""

    is_data_indexable = True

    def validate_names(self) -> None:
        if not is_string_dtype(Index(self.values).dtype):
            # TODO: should the message here be more specifically non-str?
            raise ValueError("cannot have non-object label DataIndexableCol")

    @classmethod
    def get_atom_string(cls, shape, itemsize):
        return _tables().StringCol(itemsize=itemsize)

    @classmethod
    def get_atom_data(cls, shape, kind: str) -> Col:
        return cls.get_atom_coltype(kind=kind)()

    @classmethod
    def get_atom_datetime64(cls, shape):
        return _tables().Int64Col()

    @classmethod
    def get_atom_timedelta64(cls, shape):
        return _tables().Int64Col()


class GenericDataIndexableCol(DataIndexableCol):
    """represent a generic pytables data column"""


class Fixed:
    """
    represent an object in my store
    facilitate read/write of various types of objects
    this is an abstract base class

    Parameters
    ----------
    parent : HDFStore
    group : Node
        The group node where the table resides.
    """

    pandas_kind: str
    format_type: str = "fixed"  # GH#30962 needed by dask
    obj_type: type[DataFrame | Series]
    ndim: int
    parent: HDFStore
    is_table: bool = False

    def __init__(
        self,
        parent: HDFStore,
        group: Node,
        encoding: str | None = "UTF-8",
        errors: str = "strict",
    ) -> None:
        assert isinstance(parent, HDFStore), type(parent)
        assert _table_mod is not None  # needed for mypy
        assert isinstance(group, _table_mod.Node), type(group)
        self.parent = parent
        self.group = group
        self.encoding = _ensure_encoding(encoding)
        self.errors = errors

    @property
    def is_old_version(self) -> bool:
        return self.version[0] <= 0 and self.version[1] <= 10 and self.version[2] < 1

    @property
    def version(self) -> tuple[int, int, int]:
        """compute and set our version"""
        version = _ensure_decoded(getattr(self.group._v_attrs, "pandas_version", None))
        try:
            version = tuple(int(x) for x in version.split("."))
            if len(version) == 2:
                version = version + (0,)
        except AttributeError:
            version = (0, 0, 0)
        return version

    @property
    def pandas_type(self):
        return _ensure_decoded(getattr(self.group._v_attrs, "pandas_type", None))

    def __repr__(self) -> str:
        """return a pretty representation of myself"""
        self.infer_axes()
        s = self.shape
        if s is not None:
            if isinstance(s, (list, tuple)):
                jshape = ",".join([pprint_thing(x) for x in s])
                s = f"[{jshape}]"
            return f"{self.pandas_type:12.12} (shape->{s})"
        return self.pandas_type

    def set_object_info(self) -> None:
        """set my pandas type & version"""
        self.attrs.pandas_type = str(self.pandas_kind)
        self.attrs.pandas_version = str(_version)

    def copy(self) -> Fixed:
        new_self = copy.copy(self)
        return new_self

    @property
    def shape(self):
        return self.nrows

    @property
    def pathname(self):
        return self.group._v_pathname

    @property
    def _handle(self):
        return self.parent._handle

    @property
    def _filters(self):
        return self.parent._filters

    @property
    def _complevel(self) -> int:
        return self.parent._complevel

    @property
    def _fletcher32(self) -> bool:
        return self.parent._fletcher32

    @property
    def attrs(self):
        return self.group._v_attrs

    def set_attrs(self) -> None:
        """set our object attributes"""

    def get_attrs(self) -> None:
        """get our object attributes"""

    @property
    def storable(self):
        """return my storable"""
        return self.group

    @property
    def is_exists(self) -> bool:
        return False

    @property
    def nrows(self):
        return getattr(self.storable, "nrows", None)

    def validate(self, other) -> Literal[True] | None:
        """validate against an existing storable"""
        if other is None:
            return None
        return True

    def validate_version(self, where=None) -> None:
        """are we trying to operate on an old version?"""

    def infer_axes(self) -> bool:
        """
        infer the axes of my storer
        return a boolean indicating if we have a valid storer or not
        """
        s = self.storable
        if s is None:
            return False
        self.get_attrs()
        return True

    def read(
        self,
        where=None,
        columns=None,
        start: int | None = None,
        stop: int | None = None,
    ):
        raise NotImplementedError(
            "cannot read on an abstract storer: subclasses should implement"
        )

    def write(self, obj, **kwargs) -> None:
        raise NotImplementedError(
            "cannot write on an abstract storer: subclasses should implement"
        )

    def delete(
        self, where=None, start: int | None = None, stop: int | None = None
    ) -> None:
        """
        support fully deleting the node in its entirety (only) - where
        specification must be None
        """
        if com.all_none(where, start, stop):
            self._handle.remove_node(self.group, recursive=True)
            return None

        raise TypeError("cannot delete on an abstract storer")


class GenericFixed(Fixed):
    """a generified fixed version"""

    _index_type_map = {DatetimeIndex: "datetime", PeriodIndex: "period"}
    _reverse_index_map = {v: k for k, v in _index_type_map.items()}
    attributes: list[str] = []

    # indexer helpers
    def _class_to_alias(self, cls) -> str:
        return self._index_type_map.get(cls, "")

    def _alias_to_class(self, alias):
        if isinstance(alias, type):  # pragma: no cover
            # compat: for a short period of time master stored types
            return alias
        return self._reverse_index_map.get(alias, Index)

    def _get_index_factory(self, attrs):
        index_class = self._alias_to_class(
            _ensure_decoded(getattr(attrs, "index_class", ""))
        )

        factory: Callable

        if index_class == DatetimeIndex:

            def f(values, freq=None, tz=None):
                # data are already in UTC, localize and convert if tz present
                dta = DatetimeArray._simple_new(
                    values.values, dtype=values.dtype, freq=freq
                )
                result = DatetimeIndex._simple_new(dta, name=None)
                if tz is not None:
                    result = result.tz_localize("UTC").tz_convert(tz)
                return result

            factory = f
        elif index_class == PeriodIndex:

            def f(values, freq=None, tz=None):
                dtype = PeriodDtype(freq)
                parr = PeriodArray._simple_new(values, dtype=dtype)
                return PeriodIndex._simple_new(parr, name=None)

            factory = f
        else:
            factory = index_class

        kwargs = {}
        if "freq" in attrs:
            kwargs["freq"] = attrs["freq"]
            if index_class is Index:
                # DTI/PI would be gotten by _alias_to_class
                factory = TimedeltaIndex

        if "tz" in attrs:
            if isinstance(attrs["tz"], bytes):
                # created by python2
                kwargs["tz"] = attrs["tz"].decode("utf-8")
            else:
                # created by python3
                kwargs["tz"] = attrs["tz"]
            assert index_class is DatetimeIndex  # just checking

        return factory, kwargs

    def validate_read(self, columns, where) -> None:
        """
        raise if any keywords are passed which are not-None
        """
        if columns is not None:
            raise TypeError(
                "cannot pass a column specification when reading "
                "a Fixed format store. this store must be selected in its entirety"
            )
        if where is not None:
            raise TypeError(
                "cannot pass a where specification when reading "
                "from a Fixed format store. this store must be selected in its entirety"
            )

    @property
    def is_exists(self) -> bool:
        return True

    def set_attrs(self) -> None:
        """set our object attributes"""
        self.attrs.encoding = self.encoding
        self.attrs.errors = self.errors

    def get_attrs(self) -> None:
        """retrieve our attributes"""
        self.encoding = _ensure_encoding(getattr(self.attrs, "encoding", None))
        self.errors = _ensure_decoded(getattr(self.attrs, "errors", "strict"))
        for n in self.attributes:
            setattr(self, n, _ensure_decoded(getattr(self.attrs, n, None)))

    def write(self, obj, **kwargs) -> None:
        self.set_attrs()

    def read_array(self, key: str, start: int | None = None, stop: int | None = None):
        """read an array for the specified node (off of group"""
        import tables

        node = getattr(self.group, key)
        attrs = node._v_attrs

        transposed = getattr(attrs, "transposed", False)

        if isinstance(node, tables.VLArray):
            ret = node[0][start:stop]
        else:
            dtype = _ensure_decoded(getattr(attrs, "value_type", None))
            shape = getattr(attrs, "shape", None)

            if shape is not None:
                # length 0 axis
                ret = np.empty(shape, dtype=dtype)
            else:
                ret = node[start:stop]

            if dtype and dtype.startswith("datetime64"):
                # reconstruct a timezone if indicated
                tz = getattr(attrs, "tz", None)
                ret = _set_tz(ret, tz, coerce=True)

            elif dtype == "timedelta64":
                ret = np.asarray(ret, dtype="m8[ns]")

        if transposed:
            return ret.T
        else:
            return ret

    def read_index(
        self, key: str, start: int | None = None, stop: int | None = None
    ) -> Index:
        variety = _ensure_decoded(getattr(self.attrs, f"{key}_variety"))

        if variety == "multi":
            return self.read_multi_index(key, start=start, stop=stop)
        elif variety == "regular":
            node = getattr(self.group, key)
            index = self.read_index_node(node, start=start, stop=stop)
            return index
        else:  # pragma: no cover
            raise TypeError(f"unrecognized index variety: {variety}")

    def write_index(self, key: str, index: Index) -> None:
        if isinstance(index, MultiIndex):
            setattr(self.attrs, f"{key}_variety", "multi")
            self.write_multi_index(key, index)
        else:
            setattr(self.attrs, f"{key}_variety", "regular")
            converted = _convert_index("index", index, self.encoding, self.errors)

            self.write_array(key, converted.values)

            node = getattr(self.group, key)
            node._v_attrs.kind = converted.kind
            node._v_attrs.name = index.name

            if isinstance(index, (DatetimeIndex, PeriodIndex)):
                node._v_attrs.index_class = self._class_to_alias(type(index))

            if isinstance(index, (DatetimeIndex, PeriodIndex, TimedeltaIndex)):
                node._v_attrs.freq = index.freq

            if isinstance(index, DatetimeIndex) and index.tz is not None:
                node._v_attrs.tz = _get_tz(index.tz)

    def write_multi_index(self, key: str, index: MultiIndex) -> None:
        setattr(self.attrs, f"{key}_nlevels", index.nlevels)

        for i, (lev, level_codes, name) in enumerate(
            zip(index.levels, index.codes, index.names)
        ):
            # write the level
            if isinstance(lev.dtype, ExtensionDtype):
                raise NotImplementedError(
                    "Saving a MultiIndex with an extension dtype is not supported."
                )
            level_key = f"{key}_level{i}"
            conv_level = _convert_index(level_key, lev, self.encoding, self.errors)
            self.write_array(level_key, conv_level.values)
            node = getattr(self.group, level_key)
            node._v_attrs.kind = conv_level.kind
            node._v_attrs.name = name

            # write the name
            setattr(node._v_attrs, f"{key}_name{name}", name)

            # write the labels
            label_key = f"{key}_label{i}"
            self.write_array(label_key, level_codes)

    def read_multi_index(
        self, key: str, start: int | None = None, stop: int | None = None
    ) -> MultiIndex:
        nlevels = getattr(self.attrs, f"{key}_nlevels")

        levels = []
        codes = []
        names: list[Hashable] = []
        for i in range(nlevels):
            level_key = f"{key}_level{i}"
            node = getattr(self.group, level_key)
            lev = self.read_index_node(node, start=start, stop=stop)
            levels.append(lev)
            names.append(lev.name)

            label_key = f"{key}_label{i}"
            level_codes = self.read_array(label_key, start=start, stop=stop)
            codes.append(level_codes)

        return MultiIndex(
            levels=levels, codes=codes, names=names, verify_integrity=True
        )

    def read_index_node(
        self, node: Node, start: int | None = None, stop: int | None = None
    ) -> Index:
        data = node[start:stop]
        # If the index was an empty array write_array_empty() will
        # have written a sentinel. Here we replace it with the original.
        if "shape" in node._v_attrs and np.prod(node._v_attrs.shape) == 0:
            data = np.empty(node._v_attrs.shape, dtype=node._v_attrs.value_type)
        kind = _ensure_decoded(node._v_attrs.kind)
        name = None

        if "name" in node._v_attrs:
            name = _ensure_str(node._v_attrs.name)
            name = _ensure_decoded(name)

        attrs = node._v_attrs
        factory, kwargs = self._get_index_factory(attrs)

        if kind in ("date", "object"):
            index = factory(
                _unconvert_index(
                    data, kind, encoding=self.encoding, errors=self.errors
                ),
                dtype=object,
                **kwargs,
            )
        else:
            index = factory(
                _unconvert_index(
                    data, kind, encoding=self.encoding, errors=self.errors
                ),
                **kwargs,
            )

        index.name = name

        return index

    def write_array_empty(self, key: str, value: ArrayLike) -> None:
        """write a 0-len array"""
        # ugly hack for length 0 axes
        arr = np.empty((1,) * value.ndim)
        self._handle.create_array(self.group, key, arr)
        node = getattr(self.group, key)
        node._v_attrs.value_type = str(value.dtype)
        node._v_attrs.shape = value.shape

    def write_array(
        self, key: str, obj: AnyArrayLike, items: Index | None = None
    ) -> None:
        # TODO: we only have a few tests that get here, the only EA
        #  that gets passed is DatetimeArray, and we never have
        #  both self._filters and EA

        value = extract_array(obj, extract_numpy=True)

        if key in self.group:
            self._handle.remove_node(self.group, key)

        # Transform needed to interface with pytables row/col notation
        empty_array = value.size == 0
        transposed = False

        if isinstance(value.dtype, CategoricalDtype):
            raise NotImplementedError(
                "Cannot store a category dtype in a HDF5 dataset that uses format="
                '"fixed". Use format="table".'
            )
        if not empty_array:
            if hasattr(value, "T"):
                # ExtensionArrays (1d) may not have transpose.
                value = value.T
                transposed = True

        atom = None
        if self._filters is not None:
            with suppress(ValueError):
                # get the atom for this datatype
                atom = _tables().Atom.from_dtype(value.dtype)

        if atom is not None:
            # We only get here if self._filters is non-None and
            #  the Atom.from_dtype call succeeded

            # create an empty chunked array and fill it from value
            if not empty_array:
                ca = self._handle.create_carray(
                    self.group, key, atom, value.shape, filters=self._filters
                )
                ca[:] = value

            else:
                self.write_array_empty(key, value)

        elif value.dtype.type == np.object_:
            # infer the type, warn if we have a non-string type here (for
            # performance)
            inferred_type = lib.infer_dtype(value, skipna=False)
            if empty_array:
                pass
            elif inferred_type == "string":
                pass
            else:
                ws = performance_doc % (inferred_type, key, items)
                warnings.warn(ws, PerformanceWarning, stacklevel=find_stack_level())

            vlarr = self._handle.create_vlarray(self.group, key, _tables().ObjectAtom())
            vlarr.append(value)

        elif lib.is_np_dtype(value.dtype, "M"):
            self._handle.create_array(self.group, key, value.view("i8"))
            getattr(self.group, key)._v_attrs.value_type = str(value.dtype)
        elif isinstance(value.dtype, DatetimeTZDtype):
            # store as UTC
            # with a zone

            # error: Item "ExtensionArray" of "Union[Any, ExtensionArray]" has no
            # attribute "asi8"
            self._handle.create_array(
                self.group, key, value.asi8  # type: ignore[union-attr]
            )

            node = getattr(self.group, key)
            # error: Item "ExtensionArray" of "Union[Any, ExtensionArray]" has no
            # attribute "tz"
            node._v_attrs.tz = _get_tz(value.tz)  # type: ignore[union-attr]
            node._v_attrs.value_type = f"datetime64[{value.dtype.unit}]"
        elif lib.is_np_dtype(value.dtype, "m"):
            self._handle.create_array(self.group, key, value.view("i8"))
            getattr(self.group, key)._v_attrs.value_type = "timedelta64"
        elif empty_array:
            self.write_array_empty(key, value)
        else:
            self._handle.create_array(self.group, key, value)

        getattr(self.group, key)._v_attrs.transposed = transposed


class SeriesFixed(GenericFixed):
    pandas_kind = "series"
    attributes = ["name"]

    name: Hashable

    @property
    def shape(self):
        try:
            return (len(self.group.values),)
        except (TypeError, AttributeError):
            return None

    def read(
        self,
        where=None,
        columns=None,
        start: int | None = None,
        stop: int | None = None,
    ) -> Series:
        self.validate_read(columns, where)
        index = self.read_index("index", start=start, stop=stop)
        values = self.read_array("values", start=start, stop=stop)
        result = Series(values, index=index, name=self.name, copy=False)
        if using_pyarrow_string_dtype() and is_string_array(values, skipna=True):
            result = result.astype("string[pyarrow_numpy]")
        return result

    def write(self, obj, **kwargs) -> None:
        super().write(obj, **kwargs)
        self.write_index("index", obj.index)
        self.write_array("values", obj)
        self.attrs.name = obj.name


class BlockManagerFixed(GenericFixed):
    attributes = ["ndim", "nblocks"]

    nblocks: int

    @property
    def shape(self) -> Shape | None:
        try:
            ndim = self.ndim

            # items
            items = 0
            for i in range(self.nblocks):
                node = getattr(self.group, f"block{i}_items")
                shape = getattr(node, "shape", None)
                if shape is not None:
                    items += shape[0]

            # data shape
            node = self.group.block0_values
            shape = getattr(node, "shape", None)
            if shape is not None:
                shape = list(shape[0 : (ndim - 1)])
            else:
                shape = []

            shape.append(items)

            return shape
        except AttributeError:
            return None

    def read(
        self,
        where=None,
        columns=None,
        start: int | None = None,
        stop: int | None = None,
    ) -> DataFrame:
        # start, stop applied to rows, so 0th axis only
        self.validate_read(columns, where)
        select_axis = self.obj_type()._get_block_manager_axis(0)

        axes = []
        for i in range(self.ndim):
            _start, _stop = (start, stop) if i == select_axis else (None, None)
            ax = self.read_index(f"axis{i}", start=_start, stop=_stop)
            axes.append(ax)

        items = axes[0]
        dfs = []

        for i in range(self.nblocks):
            blk_items = self.read_index(f"block{i}_items")
            values = self.read_array(f"block{i}_values", start=_start, stop=_stop)

            columns = items[items.get_indexer(blk_items)]
            df = DataFrame(values.T, columns=columns, index=axes[1], copy=False)
            if using_pyarrow_string_dtype() and is_string_array(values, skipna=True):
                df = df.astype("string[pyarrow_numpy]")
            dfs.append(df)

        if len(dfs) > 0:
            out = concat(dfs, axis=1, copy=True)
            if using_copy_on_write():
                # with CoW, concat ignores the copy keyword. Here, we still want
                # to copy to enforce optimized column-major layout
                out = out.copy()
            out = out.reindex(columns=items, copy=False)
            return out

        return DataFrame(columns=axes[0], index=axes[1])

    def write(self, obj, **kwargs) -> None:
        super().write(obj, **kwargs)

        # TODO(ArrayManager) HDFStore relies on accessing the blocks
        if isinstance(obj._mgr, ArrayManager):
            obj = obj._as_manager("block")

        data = obj._mgr
        if not data.is_consolidated():
            data = data.consolidate()

        self.attrs.ndim = data.ndim
        for i, ax in enumerate(data.axes):
            if i == 0 and (not ax.is_unique):
                raise ValueError("Columns index has to be unique for fixed format")
            self.write_index(f"axis{i}", ax)

        # Supporting mixed-type DataFrame objects...nontrivial
        self.attrs.nblocks = len(data.blocks)
        for i, blk in enumerate(data.blocks):
            # I have no idea why, but writing values before items fixed #2299
            blk_items = data.items.take(blk.mgr_locs)
            self.write_array(f"block{i}_values", blk.values, items=blk_items)
            self.write_index(f"block{i}_items", blk_items)


class FrameFixed(BlockManagerFixed):
    pandas_kind = "frame"
    obj_type = DataFrame


class Table(Fixed):
    """
    represent a table:
        facilitate read/write of various types of tables

    Attrs in Table Node
    -------------------
    These are attributes that are store in the main table node, they are
    necessary to recreate these tables when read back in.

    index_axes    : a list of tuples of the (original indexing axis and
        index column)
    non_index_axes: a list of tuples of the (original index axis and
        columns on a non-indexing axis)
    values_axes   : a list of the columns which comprise the data of this
        table
    data_columns  : a list of the columns that we are allowing indexing
        (these become single columns in values_axes)
    nan_rep       : the string to use for nan representations for string
        objects
    levels        : the names of levels
    metadata      : the names of the metadata columns
    """

    pandas_kind = "wide_table"
    format_type: str = "table"  # GH#30962 needed by dask
    table_type: str
    levels: int | list[Hashable] = 1
    is_table = True

    metadata: list

    def __init__(
        self,
        parent: HDFStore,
        group: Node,
        encoding: str | None = None,
        errors: str = "strict",
        index_axes: list[IndexCol] | None = None,
        non_index_axes: list[tuple[AxisInt, Any]] | None = None,
        values_axes: list[DataCol] | None = None,
        data_columns: list | None = None,
        info: dict | None = None,
        nan_rep=None,
    ) -> None:
        super().__init__(parent, group, encoding=encoding, errors=errors)
        self.index_axes = index_axes or []
        self.non_index_axes = non_index_axes or []
        self.values_axes = values_axes or []
        self.data_columns = data_columns or []
        self.info = info or {}
        self.nan_rep = nan_rep

    @property
    def table_type_short(self) -> str:
        return self.table_type.split("_")[0]

    def __repr__(self) -> str:
        """return a pretty representation of myself"""
        self.infer_axes()
        jdc = ",".join(self.data_columns) if len(self.data_columns) else ""
        dc = f",dc->[{jdc}]"

        ver = ""
        if self.is_old_version:
            jver = ".".join([str(x) for x in self.version])
            ver = f"[{jver}]"

        jindex_axes = ",".join([a.name for a in self.index_axes])
        return (
            f"{self.pandas_type:12.12}{ver} "
            f"(typ->{self.table_type_short},nrows->{self.nrows},"
            f"ncols->{self.ncols},indexers->[{jindex_axes}]{dc})"
        )

    def __getitem__(self, c: str):
        """return the axis for c"""
        for a in self.axes:
            if c == a.name:
                return a
        return None

    def validate(self, other) -> None:
        """validate against an existing table"""
        if other is None:
            return

        if other.table_type != self.table_type:
            raise TypeError(
                "incompatible table_type with existing "
                f"[{other.table_type} - {self.table_type}]"
            )

        for c in ["index_axes", "non_index_axes", "values_axes"]:
            sv = getattr(self, c, None)
            ov = getattr(other, c, None)
            if sv != ov:
                # show the error for the specific axes
                # Argument 1 to "enumerate" has incompatible type
                # "Optional[Any]"; expected "Iterable[Any]"  [arg-type]
                for i, sax in enumerate(sv):  # type: ignore[arg-type]
                    # Value of type "Optional[Any]" is not indexable  [index]
                    oax = ov[i]  # type: ignore[index]
                    if sax != oax:
                        raise ValueError(
                            f"invalid combination of [{c}] on appending data "
                            f"[{sax}] vs current table [{oax}]"
                        )

                # should never get here
                raise Exception(
                    f"invalid combination of [{c}] on appending data [{sv}] vs "
                    f"current table [{ov}]"
                )

    @property
    def is_multi_index(self) -> bool:
        """the levels attribute is 1 or a list in the case of a multi-index"""
        return isinstance(self.levels, list)

    def validate_multiindex(
        self, obj: DataFrame | Series
    ) -> tuple[DataFrame, list[Hashable]]:
        """
        validate that we can store the multi-index; reset and return the
        new object
        """
        levels = com.fill_missing_names(obj.index.names)
        try:
            reset_obj = obj.reset_index()
        except ValueError as err:
            raise ValueError(
                "duplicate names/columns in the multi-index when storing as a table"
            ) from err
        assert isinstance(reset_obj, DataFrame)  # for mypy
        return reset_obj, levels

    @property
    def nrows_expected(self) -> int:
        """based on our axes, compute the expected nrows"""
        return np.prod([i.cvalues.shape[0] for i in self.index_axes])

    @property
    def is_exists(self) -> bool:
        """has this table been created"""
        return "table" in self.group

    @property
    def storable(self):
        return getattr(self.group, "table", None)

    @property
    def table(self):
        """return the table group (this is my storable)"""
        return self.storable

    @property
    def dtype(self):
        return self.table.dtype

    @property
    def description(self):
        return self.table.description

    @property
    def axes(self) -> itertools.chain[IndexCol]:
        return itertools.chain(self.index_axes, self.values_axes)

    @property
    def ncols(self) -> int:
        """the number of total columns in the values axes"""
        return sum(len(a.values) for a in self.values_axes)

    @property
    def is_transposed(self) -> bool:
        return False

    @property
    def data_orientation(self) -> tuple[int, ...]:
        """return a tuple of my permutated axes, non_indexable at the front"""
        return tuple(
            itertools.chain(
                [int(a[0]) for a in self.non_index_axes],
                [int(a.axis) for a in self.index_axes],
            )
        )

    def queryables(self) -> dict[str, Any]:
        """return a dict of the kinds allowable columns for this object"""
        # mypy doesn't recognize DataFrame._AXIS_NAMES, so we re-write it here
        axis_names = {0: "index", 1: "columns"}

        # compute the values_axes queryables
        d1 = [(a.cname, a) for a in self.index_axes]
        d2 = [(axis_names[axis], None) for axis, values in self.non_index_axes]
        d3 = [
            (v.cname, v) for v in self.values_axes if v.name in set(self.data_columns)
        ]

        return dict(d1 + d2 + d3)

    def index_cols(self):
        """return a list of my index cols"""
        # Note: each `i.cname` below is assured to be a str.
        return [(i.axis, i.cname) for i in self.index_axes]

    def values_cols(self) -> list[str]:
        """return a list of my values cols"""
        return [i.cname for i in self.values_axes]

    def _get_metadata_path(self, key: str) -> str:
        """return the metadata pathname for this key"""
        group = self.group._v_pathname
        return f"{group}/meta/{key}/meta"

    def write_metadata(self, key: str, values: np.ndarray) -> None:
        """
        Write out a metadata array to the key as a fixed-format Series.

        Parameters
        ----------
        key : str
        values : ndarray
        """
        self.parent.put(
            self._get_metadata_path(key),
            Series(values, copy=False),
            format="table",
            encoding=self.encoding,
            errors=self.errors,
            nan_rep=self.nan_rep,
        )

    def read_metadata(self, key: str):
        """return the meta data array for this key"""
        if getattr(getattr(self.group, "meta", None), key, None) is not None:
            return self.parent.select(self._get_metadata_path(key))
        return None

    def set_attrs(self) -> None:
        """set our table type & indexables"""
        self.attrs.table_type = str(self.table_type)
        self.attrs.index_cols = self.index_cols()
        self.attrs.values_cols = self.values_cols()
        self.attrs.non_index_axes = self.non_index_axes
        self.attrs.data_columns = self.data_columns
        self.attrs.nan_rep = self.nan_rep
        self.attrs.encoding = self.encoding
        self.attrs.errors = self.errors
        self.attrs.levels = self.levels
        self.attrs.info = self.info

    def get_attrs(self) -> None:
        """retrieve our attributes"""
        self.non_index_axes = getattr(self.attrs, "non_index_axes", None) or []
        self.data_columns = getattr(self.attrs, "data_columns", None) or []
        self.info = getattr(self.attrs, "info", None) or {}
        self.nan_rep = getattr(self.attrs, "nan_rep", None)
        self.encoding = _ensure_encoding(getattr(self.attrs, "encoding", None))
        self.errors = _ensure_decoded(getattr(self.attrs, "errors", "strict"))
        self.levels: list[Hashable] = getattr(self.attrs, "levels", None) or []
        self.index_axes = [a for a in self.indexables if a.is_an_indexable]
        self.values_axes = [a for a in self.indexables if not a.is_an_indexable]

    def validate_version(self, where=None) -> None:
        """are we trying to operate on an old version?"""
        if where is not None:
            if self.is_old_version:
                ws = incompatibility_doc % ".".join([str(x) for x in self.version])
                warnings.warn(
                    ws,
                    IncompatibilityWarning,
                    stacklevel=find_stack_level(),
                )

    def validate_min_itemsize(self, min_itemsize) -> None:
        """
        validate the min_itemsize doesn't contain items that are not in the
        axes this needs data_columns to be defined
        """
        if min_itemsize is None:
            return
        if not isinstance(min_itemsize, dict):
            return

        q = self.queryables()
        for k in min_itemsize:
            # ok, apply generally
            if k == "values":
                continue
            if k not in q:
                raise ValueError(
                    f"min_itemsize has the key [{k}] which is not an axis or "
                    "data_column"
                )

    @cache_readonly
    def indexables(self):
        """create/cache the indexables if they don't exist"""
        _indexables = []

        desc = self.description
        table_attrs = self.table.attrs

        # Note: each of the `name` kwargs below are str, ensured
        #  by the definition in index_cols.
        # index columns
        for i, (axis, name) in enumerate(self.attrs.index_cols):
            atom = getattr(desc, name)
            md = self.read_metadata(name)
            meta = "category" if md is not None else None

            kind_attr = f"{name}_kind"
            kind = getattr(table_attrs, kind_attr, None)

            index_col = IndexCol(
                name=name,
                axis=axis,
                pos=i,
                kind=kind,
                typ=atom,
                table=self.table,
                meta=meta,
                metadata=md,
            )
            _indexables.append(index_col)

        # values columns
        dc = set(self.data_columns)
        base_pos = len(_indexables)

        def f(i, c):
            assert isinstance(c, str)
            klass = DataCol
            if c in dc:
                klass = DataIndexableCol

            atom = getattr(desc, c)
            adj_name = _maybe_adjust_name(c, self.version)

            # TODO: why kind_attr here?
            values = getattr(table_attrs, f"{adj_name}_kind", None)
            dtype = getattr(table_attrs, f"{adj_name}_dtype", None)
            # Argument 1 to "_dtype_to_kind" has incompatible type
            # "Optional[Any]"; expected "str"  [arg-type]
            kind = _dtype_to_kind(dtype)  # type: ignore[arg-type]

            md = self.read_metadata(c)
            # TODO: figure out why these two versions of `meta` dont always match.
            #  meta = "category" if md is not None else None
            meta = getattr(table_attrs, f"{adj_name}_meta", None)

            obj = klass(
                name=adj_name,
                cname=c,
                values=values,
                kind=kind,
                pos=base_pos + i,
                typ=atom,
                table=self.table,
                meta=meta,
                metadata=md,
                dtype=dtype,
            )
            return obj

        # Note: the definition of `values_cols` ensures that each
        #  `c` below is a str.
        _indexables.extend([f(i, c) for i, c in enumerate(self.attrs.values_cols)])

        return _indexables

    def create_index(
        self, columns=None, optlevel=None, kind: str | None = None
    ) -> None:
        """
        Create a pytables index on the specified columns.

        Parameters
        ----------
        columns : None, bool, or listlike[str]
            Indicate which columns to create an index on.

            * False : Do not create any indexes.
            * True : Create indexes on all columns.
            * None : Create indexes on all columns.
            * listlike : Create indexes on the given columns.

        optlevel : int or None, default None
            Optimization level, if None, pytables defaults to 6.
        kind : str or None, default None
            Kind of index, if None, pytables defaults to "medium".

        Raises
        ------
        TypeError if trying to create an index on a complex-type column.

        Notes
        -----
        Cannot index Time64Col or ComplexCol.
        Pytables must be >= 3.0.
        """
        if not self.infer_axes():
            return
        if columns is False:
            return

        # index all indexables and data_columns
        if columns is None or columns is True:
            columns = [a.cname for a in self.axes if a.is_data_indexable]
        if not isinstance(columns, (tuple, list)):
            columns = [columns]

        kw = {}
        if optlevel is not None:
            kw["optlevel"] = optlevel
        if kind is not None:
            kw["kind"] = kind

        table = self.table
        for c in columns:
            v = getattr(table.cols, c, None)
            if v is not None:
                # remove the index if the kind/optlevel have changed
                if v.is_indexed:
                    index = v.index
                    cur_optlevel = index.optlevel
                    cur_kind = index.kind

                    if kind is not None and cur_kind != kind:
                        v.remove_index()
                    else:
                        kw["kind"] = cur_kind

                    if optlevel is not None and cur_optlevel != optlevel:
                        v.remove_index()
                    else:
                        kw["optlevel"] = cur_optlevel

                # create the index
                if not v.is_indexed:
                    if v.type.startswith("complex"):
                        raise TypeError(
                            "Columns containing complex values can be stored but "
                            "cannot be indexed when using table format. Either use "
                            "fixed format, set index=False, or do not include "
                            "the columns containing complex values to "
                            "data_columns when initializing the table."
                        )
                    v.create_index(**kw)
            elif c in self.non_index_axes[0][1]:
                # GH 28156
                raise AttributeError(
                    f"column {c} is not a data_column.\n"
                    f"In order to read column {c} you must reload the dataframe \n"
                    f"into HDFStore and include {c} with the data_columns argument."
                )

    def _read_axes(
        self, where, start: int | None = None, stop: int | None = None
    ) -> list[tuple[np.ndarray, np.ndarray] | tuple[Index, Index]]:
        """
        Create the axes sniffed from the table.

        Parameters
        ----------
        where : ???
        start : int or None, default None
        stop : int or None, default None

        Returns
        -------
        List[Tuple[index_values, column_values]]
        """
        # create the selection
        selection = Selection(self, where=where, start=start, stop=stop)
        values = selection.select()

        results = []
        # convert the data
        for a in self.axes:
            a.set_info(self.info)
            res = a.convert(
                values,
                nan_rep=self.nan_rep,
                encoding=self.encoding,
                errors=self.errors,
            )
            results.append(res)

        return results

    @classmethod
    def get_object(cls, obj, transposed: bool):
        """return the data for this obj"""
        return obj

    def validate_data_columns(self, data_columns, min_itemsize, non_index_axes):
        """
        take the input data_columns and min_itemize and create a data
        columns spec
        """
        if not len(non_index_axes):
            return []

        axis, axis_labels = non_index_axes[0]
        info = self.info.get(axis, {})
        if info.get("type") == "MultiIndex" and data_columns:
            raise ValueError(
                f"cannot use a multi-index on axis [{axis}] with "
                f"data_columns {data_columns}"
            )

        # evaluate the passed data_columns, True == use all columns
        # take only valid axis labels
        if data_columns is True:
            data_columns = list(axis_labels)
        elif data_columns is None:
            data_columns = []

        # if min_itemsize is a dict, add the keys (exclude 'values')
        if isinstance(min_itemsize, dict):
            existing_data_columns = set(data_columns)
            data_columns = list(data_columns)  # ensure we do not modify
            data_columns.extend(
                [
                    k
                    for k in min_itemsize.keys()
                    if k != "values" and k not in existing_data_columns
                ]
            )

        # return valid columns in the order of our axis
        return [c for c in data_columns if c in axis_labels]

    def _create_axes(
        self,
        axes,
        obj: DataFrame,
        validate: bool = True,
        nan_rep=None,
        data_columns=None,
        min_itemsize=None,
    ):
        """
        Create and return the axes.

        Parameters
        ----------
        axes: list or None
            The names or numbers of the axes to create.
        obj : DataFrame
            The object to create axes on.
        validate: bool, default True
            Whether to validate the obj against an existing object already written.
        nan_rep :
            A value to use for string column nan_rep.
        data_columns : List[str], True, or None, default None
            Specify the columns that we want to create to allow indexing on.

            * True : Use all available columns.
            * None : Use no columns.
            * List[str] : Use the specified columns.

        min_itemsize: Dict[str, int] or None, default None
            The min itemsize for a column in bytes.
        """
        if not isinstance(obj, DataFrame):
            group = self.group._v_name
            raise TypeError(
                f"cannot properly create the storer for: [group->{group},"
                f"value->{type(obj)}]"
            )

        # set the default axes if needed
        if axes is None:
            axes = [0]

        # map axes to numbers
        axes = [obj._get_axis_number(a) for a in axes]

        # do we have an existing table (if so, use its axes & data_columns)
        if self.infer_axes():
            table_exists = True
            axes = [a.axis for a in self.index_axes]
            data_columns = list(self.data_columns)
            nan_rep = self.nan_rep
            # TODO: do we always have validate=True here?
        else:
            table_exists = False

        new_info = self.info

        assert self.ndim == 2  # with next check, we must have len(axes) == 1
        # currently support on ndim-1 axes
        if len(axes) != self.ndim - 1:
            raise ValueError(
                "currently only support ndim-1 indexers in an AppendableTable"
            )

        # create according to the new data
        new_non_index_axes: list = []

        # nan_representation
        if nan_rep is None:
            nan_rep = "nan"

        # We construct the non-index-axis first, since that alters new_info
        idx = next(x for x in [0, 1] if x not in axes)

        a = obj.axes[idx]
        # we might be able to change the axes on the appending data if necessary
        append_axis = list(a)
        if table_exists:
            indexer = len(new_non_index_axes)  # i.e. 0
            exist_axis = self.non_index_axes[indexer][1]
            if not array_equivalent(
                np.array(append_axis),
                np.array(exist_axis),
                strict_nan=True,
                dtype_equal=True,
            ):
                # ahah! -> reindex
                if array_equivalent(
                    np.array(sorted(append_axis)),
                    np.array(sorted(exist_axis)),
                    strict_nan=True,
                    dtype_equal=True,
                ):
                    append_axis = exist_axis

        # the non_index_axes info
        info = new_info.setdefault(idx, {})
        info["names"] = list(a.names)
        info["type"] = type(a).__name__

        new_non_index_axes.append((idx, append_axis))

        # Now we can construct our new index axis
        idx = axes[0]
        a = obj.axes[idx]
        axis_name = obj._get_axis_name(idx)
        new_index = _convert_index(axis_name, a, self.encoding, self.errors)
        new_index.axis = idx

        # Because we are always 2D, there is only one new_index, so
        #  we know it will have pos=0
        new_index.set_pos(0)
        new_index.update_info(new_info)
        new_index.maybe_set_size(min_itemsize)  # check for column conflicts

        new_index_axes = [new_index]
        j = len(new_index_axes)  # i.e. 1
        assert j == 1

        # reindex by our non_index_axes & compute data_columns
        assert len(new_non_index_axes) == 1
        for a in new_non_index_axes:
            obj = _reindex_axis(obj, a[0], a[1])

        transposed = new_index.axis == 1

        # figure out data_columns and get out blocks
        data_columns = self.validate_data_columns(
            data_columns, min_itemsize, new_non_index_axes
        )

        frame = self.get_object(obj, transposed)._consolidate()

        blocks, blk_items = self._get_blocks_and_items(
            frame, table_exists, new_non_index_axes, self.values_axes, data_columns
        )

        # add my values
        vaxes = []
        for i, (blk, b_items) in enumerate(zip(blocks, blk_items)):
            # shape of the data column are the indexable axes
            klass = DataCol
            name = None

            # we have a data_column
            if data_columns and len(b_items) == 1 and b_items[0] in data_columns:
                klass = DataIndexableCol
                name = b_items[0]
                if not (name is None or isinstance(name, str)):
                    # TODO: should the message here be more specifically non-str?
                    raise ValueError("cannot have non-object label DataIndexableCol")

            # make sure that we match up the existing columns
            # if we have an existing table
            existing_col: DataCol | None

            if table_exists and validate:
                try:
                    existing_col = self.values_axes[i]
                except (IndexError, KeyError) as err:
                    raise ValueError(
                        f"Incompatible appended table [{blocks}]"
                        f"with existing table [{self.values_axes}]"
                    ) from err
            else:
                existing_col = None

            new_name = name or f"values_block_{i}"
            data_converted = _maybe_convert_for_string_atom(
                new_name,
                blk.values,
                existing_col=existing_col,
                min_itemsize=min_itemsize,
                nan_rep=nan_rep,
                encoding=self.encoding,
                errors=self.errors,
                columns=b_items,
            )
            adj_name = _maybe_adjust_name(new_name, self.version)

            typ = klass._get_atom(data_converted)
            kind = _dtype_to_kind(data_converted.dtype.name)
            tz = None
            if getattr(data_converted, "tz", None) is not None:
                tz = _get_tz(data_converted.tz)

            meta = metadata = ordered = None
            if isinstance(data_converted.dtype, CategoricalDtype):
                ordered = data_converted.ordered
                meta = "category"
                metadata = np.asarray(data_converted.categories).ravel()

            data, dtype_name = _get_data_and_dtype_name(data_converted)

            col = klass(
                name=adj_name,
                cname=new_name,
                values=list(b_items),
                typ=typ,
                pos=j,
                kind=kind,
                tz=tz,
                ordered=ordered,
                meta=meta,
                metadata=metadata,
                dtype=dtype_name,
                data=data,
            )
            col.update_info(new_info)

            vaxes.append(col)

            j += 1

        dcs = [col.name for col in vaxes if col.is_data_indexable]

        new_table = type(self)(
            parent=self.parent,
            group=self.group,
            encoding=self.encoding,
            errors=self.errors,
            index_axes=new_index_axes,
            non_index_axes=new_non_index_axes,
            values_axes=vaxes,
            data_columns=dcs,
            info=new_info,
            nan_rep=nan_rep,
        )
        if hasattr(self, "levels"):
            # TODO: get this into constructor, only for appropriate subclass
            new_table.levels = self.levels

        new_table.validate_min_itemsize(min_itemsize)

        if validate and table_exists:
            new_table.validate(self)

        return new_table

    @staticmethod
    def _get_blocks_and_items(
        frame: DataFrame,
        table_exists: bool,
        new_non_index_axes,
        values_axes,
        data_columns,
    ):
        # Helper to clarify non-state-altering parts of _create_axes

        # TODO(ArrayManager) HDFStore relies on accessing the blocks
        if isinstance(frame._mgr, ArrayManager):
            frame = frame._as_manager("block")

        def get_blk_items(mgr):
            return [mgr.items.take(blk.mgr_locs) for blk in mgr.blocks]

        mgr = frame._mgr
        mgr = cast(BlockManager, mgr)
        blocks: list[Block] = list(mgr.blocks)
        blk_items: list[Index] = get_blk_items(mgr)

        if len(data_columns):
            # TODO: prove that we only get here with axis == 1?
            #  It is the case in all extant tests, but NOT the case
            #  outside this `if len(data_columns)` check.

            axis, axis_labels = new_non_index_axes[0]
            new_labels = Index(axis_labels).difference(Index(data_columns))
            mgr = frame.reindex(new_labels, axis=axis)._mgr
            mgr = cast(BlockManager, mgr)

            blocks = list(mgr.blocks)
            blk_items = get_blk_items(mgr)
            for c in data_columns:
                # This reindex would raise ValueError if we had a duplicate
                #  index, so we can infer that (as long as axis==1) we
                #  get a single column back, so a single block.
                mgr = frame.reindex([c], axis=axis)._mgr
                mgr = cast(BlockManager, mgr)
                blocks.extend(mgr.blocks)
                blk_items.extend(get_blk_items(mgr))

        # reorder the blocks in the same order as the existing table if we can
        if table_exists:
            by_items = {
                tuple(b_items.tolist()): (b, b_items)
                for b, b_items in zip(blocks, blk_items)
            }
            new_blocks: list[Block] = []
            new_blk_items = []
            for ea in values_axes:
                items = tuple(ea.values)
                try:
                    b, b_items = by_items.pop(items)
                    new_blocks.append(b)
                    new_blk_items.append(b_items)
                except (IndexError, KeyError) as err:
                    jitems = ",".join([pprint_thing(item) for item in items])
                    raise ValueError(
                        f"cannot match existing table structure for [{jitems}] "
                        "on appending data"
                    ) from err
            blocks = new_blocks
            blk_items = new_blk_items

        return blocks, blk_items

    def process_axes(self, obj, selection: Selection, columns=None) -> DataFrame:
        """process axes filters"""
        # make a copy to avoid side effects
        if columns is not None:
            columns = list(columns)

        # make sure to include levels if we have them
        if columns is not None and self.is_multi_index:
            assert isinstance(self.levels, list)  # assured by is_multi_index
            for n in self.levels:
                if n not in columns:
                    columns.insert(0, n)

        # reorder by any non_index_axes & limit to the select columns
        for axis, labels in self.non_index_axes:
            obj = _reindex_axis(obj, axis, labels, columns)

            def process_filter(field, filt, op):
                for axis_name in obj._AXIS_ORDERS:
                    axis_number = obj._get_axis_number(axis_name)
                    axis_values = obj._get_axis(axis_name)
                    assert axis_number is not None

                    # see if the field is the name of an axis
                    if field == axis_name:
                        # if we have a multi-index, then need to include
                        # the levels
                        if self.is_multi_index:
                            filt = filt.union(Index(self.levels))

                        takers = op(axis_values, filt)
                        return obj.loc(axis=axis_number)[takers]

                    # this might be the name of a file IN an axis
                    elif field in axis_values:
                        # we need to filter on this dimension
                        values = ensure_index(getattr(obj, field).values)
                        filt = ensure_index(filt)

                        # hack until we support reversed dim flags
                        if isinstance(obj, DataFrame):
                            axis_number = 1 - axis_number

                        takers = op(values, filt)
                        return obj.loc(axis=axis_number)[takers]

                raise ValueError(f"cannot find the field [{field}] for filtering!")

        # apply the selection filters (but keep in the same order)
        if selection.filter is not None:
            for field, op, filt in selection.filter.format():
                obj = process_filter(field, filt, op)

        return obj

    def create_description(
        self,
        complib,
        complevel: int | None,
        fletcher32: bool,
        expectedrows: int | None,
    ) -> dict[str, Any]:
        """create the description of the table from the axes & values"""
        # provided expected rows if its passed
        if expectedrows is None:
            expectedrows = max(self.nrows_expected, 10000)

        d = {"name": "table", "expectedrows": expectedrows}

        # description from the axes & values
        d["description"] = {a.cname: a.typ for a in self.axes}

        if complib:
            if complevel is None:
                complevel = self._complevel or 9
            filters = _tables().Filters(
                complevel=complevel,
                complib=complib,
                fletcher32=fletcher32 or self._fletcher32,
            )
            d["filters"] = filters
        elif self._filters is not None:
            d["filters"] = self._filters

        return d

    def read_coordinates(
        self, where=None, start: int | None = None, stop: int | None = None
    ):
        """
        select coordinates (row numbers) from a table; return the
        coordinates object
        """
        # validate the version
        self.validate_version(where)

        # infer the data kind
        if not self.infer_axes():
            return False

        # create the selection
        selection = Selection(self, where=where, start=start, stop=stop)
        coords = selection.select_coords()
        if selection.filter is not None:
            for field, op, filt in selection.filter.format():
                data = self.read_column(
                    field, start=coords.min(), stop=coords.max() + 1
                )
                coords = coords[op(data.iloc[coords - coords.min()], filt).values]

        return Index(coords)

    def read_column(
        self,
        column: str,
        where=None,
        start: int | None = None,
        stop: int | None = None,
    ):
        """
        return a single column from the table, generally only indexables
        are interesting
        """
        # validate the version
        self.validate_version()

        # infer the data kind
        if not self.infer_axes():
            return False

        if where is not None:
            raise TypeError("read_column does not currently accept a where clause")

        # find the axes
        for a in self.axes:
            if column == a.name:
                if not a.is_data_indexable:
                    raise ValueError(
                        f"column [{column}] can not be extracted individually; "
                        "it is not data indexable"
                    )

                # column must be an indexable or a data column
                c = getattr(self.table.cols, column)
                a.set_info(self.info)
                col_values = a.convert(
                    c[start:stop],
                    nan_rep=self.nan_rep,
                    encoding=self.encoding,
                    errors=self.errors,
                )
                return Series(_set_tz(col_values[1], a.tz), name=column, copy=False)

        raise KeyError(f"column [{column}] not found in the table")


class WORMTable(Table):
    """
    a write-once read-many table: this format DOES NOT ALLOW appending to a
    table. writing is a one-time operation the data are stored in a format
    that allows for searching the data on disk
    """

    table_type = "worm"

    def read(
        self,
        where=None,
        columns=None,
        start: int | None = None,
        stop: int | None = None,
    ):
        """
        read the indices and the indexing array, calculate offset rows and return
        """
        raise NotImplementedError("WORMTable needs to implement read")

    def write(self, obj, **kwargs) -> None:
        """
        write in a format that we can search later on (but cannot append
        to): write out the indices and the values using _write_array
        (e.g. a CArray) create an indexing table so that we can search
        """
        raise NotImplementedError("WORMTable needs to implement write")


class AppendableTable(Table):
    """support the new appendable table formats"""

    table_type = "appendable"

    # error: Signature of "write" incompatible with supertype "Fixed"
    def write(  # type: ignore[override]
        self,
        obj,
        axes=None,
        append: bool = False,
        complib=None,
        complevel=None,
        fletcher32=None,
        min_itemsize=None,
        chunksize: int | None = None,
        expectedrows=None,
        dropna: bool = False,
        nan_rep=None,
        data_columns=None,
        track_times: bool = True,
    ) -> None:
        if not append and self.is_exists:
            self._handle.remove_node(self.group, "table")

        # create the axes
        table = self._create_axes(
            axes=axes,
            obj=obj,
            validate=append,
            min_itemsize=min_itemsize,
            nan_rep=nan_rep,
            data_columns=data_columns,
        )

        for a in table.axes:
            a.validate_names()

        if not table.is_exists:
            # create the table
            options = table.create_description(
                complib=complib,
                complevel=complevel,
                fletcher32=fletcher32,
                expectedrows=expectedrows,
            )

            # set the table attributes
            table.set_attrs()

            options["track_times"] = track_times

            # create the table
            table._handle.create_table(table.group, **options)

        # update my info
        table.attrs.info = table.info

        # validate the axes and set the kinds
        for a in table.axes:
            a.validate_and_set(table, append)

        # add the rows
        table.write_data(chunksize, dropna=dropna)

    def write_data(self, chunksize: int | None, dropna: bool = False) -> None:
        """
        we form the data into a 2-d including indexes,values,mask write chunk-by-chunk
        """
        names = self.dtype.names
        nrows = self.nrows_expected

        # if dropna==True, then drop ALL nan rows
        masks = []
        if dropna:
            for a in self.values_axes:
                # figure the mask: only do if we can successfully process this
                # column, otherwise ignore the mask
                mask = isna(a.data).all(axis=0)
                if isinstance(mask, np.ndarray):
                    masks.append(mask.astype("u1", copy=False))

        # consolidate masks
        if len(masks):
            mask = masks[0]
            for m in masks[1:]:
                mask = mask & m
            mask = mask.ravel()
        else:
            mask = None

        # broadcast the indexes if needed
        indexes = [a.cvalues for a in self.index_axes]
        nindexes = len(indexes)
        assert nindexes == 1, nindexes  # ensures we dont need to broadcast

        # transpose the values so first dimension is last
        # reshape the values if needed
        values = [a.take_data() for a in self.values_axes]
        values = [v.transpose(np.roll(np.arange(v.ndim), v.ndim - 1)) for v in values]
        bvalues = []
        for i, v in enumerate(values):
            new_shape = (nrows,) + self.dtype[names[nindexes + i]].shape
            bvalues.append(v.reshape(new_shape))

        # write the chunks
        if chunksize is None:
            chunksize = 100000

        rows = np.empty(min(chunksize, nrows), dtype=self.dtype)
        chunks = nrows // chunksize + 1
        for i in range(chunks):
            start_i = i * chunksize
            end_i = min((i + 1) * chunksize, nrows)
            if start_i >= end_i:
                break

            self.write_data_chunk(
                rows,
                indexes=[a[start_i:end_i] for a in indexes],
                mask=mask[start_i:end_i] if mask is not None else None,
                values=[v[start_i:end_i] for v in bvalues],
            )

    def write_data_chunk(
        self,
        rows: np.ndarray,
        indexes: list[np.ndarray],
        mask: npt.NDArray[np.bool_] | None,
        values: list[np.ndarray],
    ) -> None:
        """
        Parameters
        ----------
        rows : an empty memory space where we are putting the chunk
        indexes : an array of the indexes
        mask : an array of the masks
        values : an array of the values
        """
        # 0 len
        for v in values:
            if not np.prod(v.shape):
                return

        nrows = indexes[0].shape[0]
        if nrows != len(rows):
            rows = np.empty(nrows, dtype=self.dtype)
        names = self.dtype.names
        nindexes = len(indexes)

        # indexes
        for i, idx in enumerate(indexes):
            rows[names[i]] = idx

        # values
        for i, v in enumerate(values):
            rows[names[i + nindexes]] = v

        # mask
        if mask is not None:
            m = ~mask.ravel().astype(bool, copy=False)
            if not m.all():
                rows = rows[m]

        if len(rows):
            self.table.append(rows)
            self.table.flush()

    def delete(self, where=None, start: int | None = None, stop: int | None = None):
        # delete all rows (and return the nrows)
        if where is None or not len(where):
            if start is None and stop is None:
                nrows = self.nrows
                self._handle.remove_node(self.group, recursive=True)
            else:
                # pytables<3.0 would remove a single row with stop=None
                if stop is None:
                    stop = self.nrows
                nrows = self.table.remove_rows(start=start, stop=stop)
                self.table.flush()
            return nrows

        # infer the data kind
        if not self.infer_axes():
            return None

        # create the selection
        table = self.table
        selection = Selection(self, where, start=start, stop=stop)
        values = selection.select_coords()

        # delete the rows in reverse order
        sorted_series = Series(values, copy=False).sort_values()
        ln = len(sorted_series)

        if ln:
            # construct groups of consecutive rows
            diff = sorted_series.diff()
            groups = list(diff[diff > 1].index)

            # 1 group
            if not len(groups):
                groups = [0]

            # final element
            if groups[-1] != ln:
                groups.append(ln)

            # initial element
            if groups[0] != 0:
                groups.insert(0, 0)

            # we must remove in reverse order!
            pg = groups.pop()
            for g in reversed(groups):
                rows = sorted_series.take(range(g, pg))
                table.remove_rows(
                    start=rows[rows.index[0]], stop=rows[rows.index[-1]] + 1
                )
                pg = g

            self.table.flush()

        # return the number of rows removed
        return ln


class AppendableFrameTable(AppendableTable):
    """support the new appendable table formats"""

    pandas_kind = "frame_table"
    table_type = "appendable_frame"
    ndim = 2
    obj_type: type[DataFrame | Series] = DataFrame

    @property
    def is_transposed(self) -> bool:
        return self.index_axes[0].axis == 1

    @classmethod
    def get_object(cls, obj, transposed: bool):
        """these are written transposed"""
        if transposed:
            obj = obj.T
        return obj

    def read(
        self,
        where=None,
        columns=None,
        start: int | None = None,
        stop: int | None = None,
    ):
        # validate the version
        self.validate_version(where)

        # infer the data kind
        if not self.infer_axes():
            return None

        result = self._read_axes(where=where, start=start, stop=stop)

        info = (
            self.info.get(self.non_index_axes[0][0], {})
            if len(self.non_index_axes)
            else {}
        )

        inds = [i for i, ax in enumerate(self.axes) if ax is self.index_axes[0]]
        assert len(inds) == 1
        ind = inds[0]

        index = result[ind][0]

        frames = []
        for i, a in enumerate(self.axes):
            if a not in self.values_axes:
                continue
            index_vals, cvalues = result[i]

            # we could have a multi-index constructor here
            # ensure_index doesn't recognized our list-of-tuples here
            if info.get("type") != "MultiIndex":
                cols = Index(index_vals)
            else:
                cols = MultiIndex.from_tuples(index_vals)

            names = info.get("names")
            if names is not None:
                cols.set_names(names, inplace=True)

            if self.is_transposed:
                values = cvalues
                index_ = cols
                cols_ = Index(index, name=getattr(index, "name", None))
            else:
                values = cvalues.T
                index_ = Index(index, name=getattr(index, "name", None))
                cols_ = cols

            # if we have a DataIndexableCol, its shape will only be 1 dim
            if values.ndim == 1 and isinstance(values, np.ndarray):
                values = values.reshape((1, values.shape[0]))

            if isinstance(values, np.ndarray):
                df = DataFrame(values.T, columns=cols_, index=index_, copy=False)
            elif isinstance(values, Index):
                df = DataFrame(values, columns=cols_, index=index_)
            else:
                # Categorical
                df = DataFrame._from_arrays([values], columns=cols_, index=index_)
            if not (using_pyarrow_string_dtype() and values.dtype.kind == "O"):
                assert (df.dtypes == values.dtype).all(), (df.dtypes, values.dtype)
            if using_pyarrow_string_dtype() and is_string_array(
                values,  # type: ignore[arg-type]
                skipna=True,
            ):
                df = df.astype("string[pyarrow_numpy]")
            frames.append(df)

        if len(frames) == 1:
            df = frames[0]
        else:
            df = concat(frames, axis=1)

        selection = Selection(self, where=where, start=start, stop=stop)
        # apply the selection filters & axis orderings
        df = self.process_axes(df, selection=selection, columns=columns)
        return df


class AppendableSeriesTable(AppendableFrameTable):
    """support the new appendable table formats"""

    pandas_kind = "series_table"
    table_type = "appendable_series"
    ndim = 2
    obj_type = Series

    @property
    def is_transposed(self) -> bool:
        return False

    @classmethod
    def get_object(cls, obj, transposed: bool):
        return obj

    # error: Signature of "write" incompatible with supertype "Fixed"
    def write(self, obj, data_columns=None, **kwargs) -> None:  # type: ignore[override]
        """we are going to write this as a frame table"""
        if not isinstance(obj, DataFrame):
            name = obj.name or "values"
            obj = obj.to_frame(name)
        super().write(obj=obj, data_columns=obj.columns.tolist(), **kwargs)

    def read(
        self,
        where=None,
        columns=None,
        start: int | None = None,
        stop: int | None = None,
    ) -> Series:
        is_multi_index = self.is_multi_index
        if columns is not None and is_multi_index:
            assert isinstance(self.levels, list)  # needed for mypy
            for n in self.levels:
                if n not in columns:
                    columns.insert(0, n)
        s = super().read(where=where, columns=columns, start=start, stop=stop)
        if is_multi_index:
            s.set_index(self.levels, inplace=True)

        s = s.iloc[:, 0]

        # remove the default name
        if s.name == "values":
            s.name = None
        return s


class AppendableMultiSeriesTable(AppendableSeriesTable):
    """support the new appendable table formats"""

    pandas_kind = "series_table"
    table_type = "appendable_multiseries"

    #  error: Signature of "write" incompatible with supertype "Fixed"
    def write(self, obj, **kwargs) -> None:  # type: ignore[override]
        """we are going to write this as a frame table"""
        name = obj.name or "values"
        newobj, self.levels = self.validate_multiindex(obj)
        assert isinstance(self.levels, list)  # for mypy
        cols = list(self.levels)
        cols.append(name)
        newobj.columns = Index(cols)
        super().write(obj=newobj, **kwargs)


class GenericTable(AppendableFrameTable):
    """a table that read/writes the generic pytables table format"""

    pandas_kind = "frame_table"
    table_type = "generic_table"
    ndim = 2
    obj_type = DataFrame
    levels: list[Hashable]

    @property
    def pandas_type(self) -> str:
        return self.pandas_kind

    @property
    def storable(self):
        return getattr(self.group, "table", None) or self.group

    def get_attrs(self) -> None:
        """retrieve our attributes"""
        self.non_index_axes = []
        self.nan_rep = None
        self.levels = []

        self.index_axes = [a for a in self.indexables if a.is_an_indexable]
        self.values_axes = [a for a in self.indexables if not a.is_an_indexable]
        self.data_columns = [a.name for a in self.values_axes]

    @cache_readonly
    def indexables(self):
        """create the indexables from the table description"""
        d = self.description

        # TODO: can we get a typ for this?  AFAICT it is the only place
        #  where we aren't passing one
        # the index columns is just a simple index
        md = self.read_metadata("index")
        meta = "category" if md is not None else None
        index_col = GenericIndexCol(
            name="index", axis=0, table=self.table, meta=meta, metadata=md
        )

        _indexables: list[GenericIndexCol | GenericDataIndexableCol] = [index_col]

        for i, n in enumerate(d._v_names):
            assert isinstance(n, str)

            atom = getattr(d, n)
            md = self.read_metadata(n)
            meta = "category" if md is not None else None
            dc = GenericDataIndexableCol(
                name=n,
                pos=i,
                values=[n],
                typ=atom,
                table=self.table,
                meta=meta,
                metadata=md,
            )
            _indexables.append(dc)

        return _indexables

    # error: Signature of "write" incompatible with supertype "AppendableTable"
    def write(self, **kwargs) -> None:  # type: ignore[override]
        raise NotImplementedError("cannot write on an generic table")


class AppendableMultiFrameTable(AppendableFrameTable):
    """a frame with a multi-index"""

    table_type = "appendable_multiframe"
    obj_type = DataFrame
    ndim = 2
    _re_levels = re.compile(r"^level_\d+$")

    @property
    def table_type_short(self) -> str:
        return "appendable_multi"

    # error: Signature of "write" incompatible with supertype "Fixed"
    def write(self, obj, data_columns=None, **kwargs) -> None:  # type: ignore[override]
        if data_columns is None:
            data_columns = []
        elif data_columns is True:
            data_columns = obj.columns.tolist()
        obj, self.levels = self.validate_multiindex(obj)
        assert isinstance(self.levels, list)  # for mypy
        for n in self.levels:
            if n not in data_columns:
                data_columns.insert(0, n)
        super().write(obj=obj, data_columns=data_columns, **kwargs)

    def read(
        self,
        where=None,
        columns=None,
        start: int | None = None,
        stop: int | None = None,
    ):
        df = super().read(where=where, columns=columns, start=start, stop=stop)
        df = df.set_index(self.levels)

        # remove names for 'level_%d'
        df.index = df.index.set_names(
            [None if self._re_levels.search(name) else name for name in df.index.names]
        )

        return df


def _reindex_axis(
    obj: DataFrame, axis: AxisInt, labels: Index, other=None
) -> DataFrame:
    ax = obj._get_axis(axis)
    labels = ensure_index(labels)

    # try not to reindex even if other is provided
    # if it equals our current index
    if other is not None:
        other = ensure_index(other)
    if (other is None or labels.equals(other)) and labels.equals(ax):
        return obj

    labels = ensure_index(labels.unique())
    if other is not None:
        labels = ensure_index(other.unique()).intersection(labels, sort=False)
    if not labels.equals(ax):
        slicer: list[slice | Index] = [slice(None, None)] * obj.ndim
        slicer[axis] = labels
        obj = obj.loc[tuple(slicer)]
    return obj


# tz to/from coercion


def _get_tz(tz: tzinfo) -> str | tzinfo:
    """for a tz-aware type, return an encoded zone"""
    zone = timezones.get_timezone(tz)
    return zone


@overload
def _set_tz(
    values: np.ndarray | Index, tz: str | tzinfo, coerce: bool = False
) -> DatetimeIndex:
    ...


@overload
def _set_tz(values: np.ndarray | Index, tz: None, coerce: bool = False) -> np.ndarray:
    ...


def _set_tz(
    values: np.ndarray | Index, tz: str | tzinfo | None, coerce: bool = False
) -> np.ndarray | DatetimeIndex:
    """
    coerce the values to a DatetimeIndex if tz is set
    preserve the input shape if possible

    Parameters
    ----------
    values : ndarray or Index
    tz : str or tzinfo
    coerce : if we do not have a passed timezone, coerce to M8[ns] ndarray
    """
    if isinstance(values, DatetimeIndex):
        # If values is tzaware, the tz gets dropped in the values.ravel()
        #  call below (which returns an ndarray).  So we are only non-lossy
        #  if `tz` matches `values.tz`.
        assert values.tz is None or values.tz == tz
        if values.tz is not None:
            return values

    if tz is not None:
        if isinstance(values, DatetimeIndex):
            name = values.name
        else:
            name = None
            values = values.ravel()

        tz = _ensure_decoded(tz)
        values = DatetimeIndex(values, name=name)
        values = values.tz_localize("UTC").tz_convert(tz)
    elif coerce:
        values = np.asarray(values, dtype="M8[ns]")

    # error: Incompatible return value type (got "Union[ndarray, Index]",
    # expected "Union[ndarray, DatetimeIndex]")
    return values  # type: ignore[return-value]


def _convert_index(name: str, index: Index, encoding: str, errors: str) -> IndexCol:
    assert isinstance(name, str)

    index_name = index.name
    # error: Argument 1 to "_get_data_and_dtype_name" has incompatible type "Index";
    # expected "Union[ExtensionArray, ndarray]"
    converted, dtype_name = _get_data_and_dtype_name(index)  # type: ignore[arg-type]
    kind = _dtype_to_kind(dtype_name)
    atom = DataIndexableCol._get_atom(converted)

    if (
        lib.is_np_dtype(index.dtype, "iu")
        or needs_i8_conversion(index.dtype)
        or is_bool_dtype(index.dtype)
    ):
        # Includes Index, RangeIndex, DatetimeIndex, TimedeltaIndex, PeriodIndex,
        #  in which case "kind" is "integer", "integer", "datetime64",
        #  "timedelta64", and "integer", respectively.
        return IndexCol(
            name,
            values=converted,
            kind=kind,
            typ=atom,
            freq=getattr(index, "freq", None),
            tz=getattr(index, "tz", None),
            index_name=index_name,
        )

    if isinstance(index, MultiIndex):
        raise TypeError("MultiIndex not supported here!")

    inferred_type = lib.infer_dtype(index, skipna=False)
    # we won't get inferred_type of "datetime64" or "timedelta64" as these
    #  would go through the DatetimeIndex/TimedeltaIndex paths above

    values = np.asarray(index)

    if inferred_type == "date":
        converted = np.asarray([v.toordinal() for v in values], dtype=np.int32)
        return IndexCol(
            name, converted, "date", _tables().Time32Col(), index_name=index_name
        )
    elif inferred_type == "string":
        converted = _convert_string_array(values, encoding, errors)
        itemsize = converted.dtype.itemsize
        return IndexCol(
            name,
            converted,
            "string",
            _tables().StringCol(itemsize),
            index_name=index_name,
        )

    elif inferred_type in ["integer", "floating"]:
        return IndexCol(
            name, values=converted, kind=kind, typ=atom, index_name=index_name
        )
    else:
        assert isinstance(converted, np.ndarray) and converted.dtype == object
        assert kind == "object", kind
        atom = _tables().ObjectAtom()
        return IndexCol(name, converted, kind, atom, index_name=index_name)


def _unconvert_index(data, kind: str, encoding: str, errors: str) -> np.ndarray | Index:
    index: Index | np.ndarray

    if kind.startswith("datetime64"):
        if kind == "datetime64":
            # created before we stored resolution information
            index = DatetimeIndex(data)
        else:
            index = DatetimeIndex(data.view(kind))
    elif kind == "timedelta64":
        index = TimedeltaIndex(data)
    elif kind == "date":
        try:
            index = np.asarray([date.fromordinal(v) for v in data], dtype=object)
        except ValueError:
            index = np.asarray([date.fromtimestamp(v) for v in data], dtype=object)
    elif kind in ("integer", "float", "bool"):
        index = np.asarray(data)
    elif kind in ("string"):
        index = _unconvert_string_array(
            data, nan_rep=None, encoding=encoding, errors=errors
        )
    elif kind == "object":
        index = np.asarray(data[0])
    else:  # pragma: no cover
        raise ValueError(f"unrecognized index type {kind}")
    return index


def _maybe_convert_for_string_atom(
    name: str,
    bvalues: ArrayLike,
    existing_col,
    min_itemsize,
    nan_rep,
    encoding,
    errors,
    columns: list[str],
):
    if bvalues.dtype != object:
        return bvalues

    bvalues = cast(np.ndarray, bvalues)

    dtype_name = bvalues.dtype.name
    inferred_type = lib.infer_dtype(bvalues, skipna=False)

    if inferred_type == "date":
        raise TypeError("[date] is not implemented as a table column")
    if inferred_type == "datetime":
        # after GH#8260
        # this only would be hit for a multi-timezone dtype which is an error
        raise TypeError(
            "too many timezones in this block, create separate data columns"
        )

    if not (inferred_type == "string" or dtype_name == "object"):
        return bvalues

    mask = isna(bvalues)
    data = bvalues.copy()
    data[mask] = nan_rep

    # see if we have a valid string type
    inferred_type = lib.infer_dtype(data, skipna=False)
    if inferred_type != "string":
        # we cannot serialize this data, so report an exception on a column
        # by column basis

        # expected behaviour:
        # search block for a non-string object column by column
        for i in range(data.shape[0]):
            col = data[i]
            inferred_type = lib.infer_dtype(col, skipna=False)
            if inferred_type != "string":
                error_column_label = columns[i] if len(columns) > i else f"No.{i}"
                raise TypeError(
                    f"Cannot serialize the column [{error_column_label}]\n"
                    f"because its data contents are not [string] but "
                    f"[{inferred_type}] object dtype"
                )

    # itemsize is the maximum length of a string (along any dimension)

    data_converted = _convert_string_array(data, encoding, errors).reshape(data.shape)
    itemsize = data_converted.itemsize

    # specified min_itemsize?
    if isinstance(min_itemsize, dict):
        min_itemsize = int(min_itemsize.get(name) or min_itemsize.get("values") or 0)
    itemsize = max(min_itemsize or 0, itemsize)

    # check for column in the values conflicts
    if existing_col is not None:
        eci = existing_col.validate_col(itemsize)
        if eci is not None and eci > itemsize:
            itemsize = eci

    data_converted = data_converted.astype(f"|S{itemsize}", copy=False)
    return data_converted


def _convert_string_array(data: np.ndarray, encoding: str, errors: str) -> np.ndarray:
    """
    Take a string-like that is object dtype and coerce to a fixed size string type.

    Parameters
    ----------
    data : np.ndarray[object]
    encoding : str
    errors : str
        Handler for encoding errors.

    Returns
    -------
    np.ndarray[fixed-length-string]
    """
    # encode if needed
    if len(data):
        data = (
            Series(data.ravel(), copy=False)
            .str.encode(encoding, errors)
            ._values.reshape(data.shape)
        )

    # create the sized dtype
    ensured = ensure_object(data.ravel())
    itemsize = max(1, libwriters.max_len_string_array(ensured))

    data = np.asarray(data, dtype=f"S{itemsize}")
    return data


def _unconvert_string_array(
    data: np.ndarray, nan_rep, encoding: str, errors: str
) -> np.ndarray:
    """
    Inverse of _convert_string_array.

    Parameters
    ----------
    data : np.ndarray[fixed-length-string]
    nan_rep : the storage repr of NaN
    encoding : str
    errors : str
        Handler for encoding errors.

    Returns
    -------
    np.ndarray[object]
        Decoded data.
    """
    shape = data.shape
    data = np.asarray(data.ravel(), dtype=object)

    if len(data):
        itemsize = libwriters.max_len_string_array(ensure_object(data))
        dtype = f"U{itemsize}"

        if isinstance(data[0], bytes):
            data = Series(data, copy=False).str.decode(encoding, errors=errors)._values
        else:
            data = data.astype(dtype, copy=False).astype(object, copy=False)

    if nan_rep is None:
        nan_rep = "nan"

    libwriters.string_array_replace_from_nan_rep(data, nan_rep)
    return data.reshape(shape)


def _maybe_convert(values: np.ndarray, val_kind: str, encoding: str, errors: str):
    assert isinstance(val_kind, str), type(val_kind)
    if _need_convert(val_kind):
        conv = _get_converter(val_kind, encoding, errors)
        values = conv(values)
    return values


def _get_converter(kind: str, encoding: str, errors: str):
    if kind == "datetime64":
        return lambda x: np.asarray(x, dtype="M8[ns]")
    elif "datetime64" in kind:
        return lambda x: np.asarray(x, dtype=kind)
    elif kind == "string":
        return lambda x: _unconvert_string_array(
            x, nan_rep=None, encoding=encoding, errors=errors
        )
    else:  # pragma: no cover
        raise ValueError(f"invalid kind {kind}")


def _need_convert(kind: str) -> bool:
    if kind in ("datetime64", "string") or "datetime64" in kind:
        return True
    return False


def _maybe_adjust_name(name: str, version: Sequence[int]) -> str:
    """
    Prior to 0.10.1, we named values blocks like: values_block_0 an the
    name values_0, adjust the given name if necessary.

    Parameters
    ----------
    name : str
    version : Tuple[int, int, int]

    Returns
    -------
    str
    """
    if isinstance(version, str) or len(version) < 3:
        raise ValueError("Version is incorrect, expected sequence of 3 integers.")

    if version[0] == 0 and version[1] <= 10 and version[2] == 0:
        m = re.search(r"values_block_(\d+)", name)
        if m:
            grp = m.groups()[0]
            name = f"values_{grp}"
    return name


def _dtype_to_kind(dtype_str: str) -> str:
    """
    Find the "kind" string describing the given dtype name.
    """
    dtype_str = _ensure_decoded(dtype_str)

    if dtype_str.startswith(("string", "bytes")):
        kind = "string"
    elif dtype_str.startswith("float"):
        kind = "float"
    elif dtype_str.startswith("complex"):
        kind = "complex"
    elif dtype_str.startswith(("int", "uint")):
        kind = "integer"
    elif dtype_str.startswith("datetime64"):
        kind = dtype_str
    elif dtype_str.startswith("timedelta"):
        kind = "timedelta64"
    elif dtype_str.startswith("bool"):
        kind = "bool"
    elif dtype_str.startswith("category"):
        kind = "category"
    elif dtype_str.startswith("period"):
        # We store the `freq` attr so we can restore from integers
        kind = "integer"
    elif dtype_str == "object":
        kind = "object"
    else:
        raise ValueError(f"cannot interpret dtype of [{dtype_str}]")

    return kind


def _get_data_and_dtype_name(data: ArrayLike):
    """
    Convert the passed data into a storable form and a dtype string.
    """
    if isinstance(data, Categorical):
        data = data.codes

    if isinstance(data.dtype, DatetimeTZDtype):
        # For datetime64tz we need to drop the TZ in tests TODO: why?
        dtype_name = f"datetime64[{data.dtype.unit}]"
    else:
        dtype_name = data.dtype.name

    if data.dtype.kind in "mM":
        data = np.asarray(data.view("i8"))
        # TODO: we used to reshape for the dt64tz case, but no longer
        #  doing that doesn't seem to break anything.  why?

    elif isinstance(data, PeriodIndex):
        data = data.asi8

    data = np.asarray(data)
    return data, dtype_name


class Selection:
    """
    Carries out a selection operation on a tables.Table object.

    Parameters
    ----------
    table : a Table object
    where : list of Terms (or convertible to)
    start, stop: indices to start and/or stop selection

    """

    def __init__(
        self,
        table: Table,
        where=None,
        start: int | None = None,
        stop: int | None = None,
    ) -> None:
        self.table = table
        self.where = where
        self.start = start
        self.stop = stop
        self.condition = None
        self.filter = None
        self.terms = None
        self.coordinates = None

        if is_list_like(where):
            # see if we have a passed coordinate like
            with suppress(ValueError):
                inferred = lib.infer_dtype(where, skipna=False)
                if inferred in ("integer", "boolean"):
                    where = np.asarray(where)
                    if where.dtype == np.bool_:
                        start, stop = self.start, self.stop
                        if start is None:
                            start = 0
                        if stop is None:
                            stop = self.table.nrows
                        self.coordinates = np.arange(start, stop)[where]
                    elif issubclass(where.dtype.type, np.integer):
                        if (self.start is not None and (where < self.start).any()) or (
                            self.stop is not None and (where >= self.stop).any()
                        ):
                            raise ValueError(
                                "where must have index locations >= start and < stop"
                            )
                        self.coordinates = where

        if self.coordinates is None:
            self.terms = self.generate(where)

            # create the numexpr & the filter
            if self.terms is not None:
                self.condition, self.filter = self.terms.evaluate()

    def generate(self, where):
        """where can be a : dict,list,tuple,string"""
        if where is None:
            return None

        q = self.table.queryables()
        try:
            return PyTablesExpr(where, queryables=q, encoding=self.table.encoding)
        except NameError as err:
            # raise a nice message, suggesting that the user should use
            # data_columns
            qkeys = ",".join(q.keys())
            msg = dedent(
                f"""\
                The passed where expression: {where}
                            contains an invalid variable reference
                            all of the variable references must be a reference to
                            an axis (e.g. 'index' or 'columns'), or a data_column
                            The currently defined references are: {qkeys}
                """
            )
            raise ValueError(msg) from err

    def select(self):
        """
        generate the selection
        """
        if self.condition is not None:
            return self.table.table.read_where(
                self.condition.format(), start=self.start, stop=self.stop
            )
        elif self.coordinates is not None:
            return self.table.table.read_coordinates(self.coordinates)
        return self.table.table.read(start=self.start, stop=self.stop)

    def select_coords(self):
        """
        generate the selection
        """
        start, stop = self.start, self.stop
        nrows = self.table.nrows
        if start is None:
            start = 0
        elif start < 0:
            start += nrows
        if stop is None:
            stop = nrows
        elif stop < 0:
            stop += nrows

        if self.condition is not None:
            return self.table.table.get_where_list(
                self.condition.format(), start=start, stop=stop, sort=True
            )
        elif self.coordinates is not None:
            return self.coordinates

        return np.arange(start, stop)