File size: 13,358 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
from __future__ import annotations

import random
from typing import TYPE_CHECKING

from matplotlib import patches
import matplotlib.lines as mlines
import numpy as np

from pandas.core.dtypes.missing import notna

from pandas.io.formats.printing import pprint_thing
from pandas.plotting._matplotlib.style import get_standard_colors
from pandas.plotting._matplotlib.tools import (
    create_subplots,
    do_adjust_figure,
    maybe_adjust_figure,
    set_ticks_props,
)

if TYPE_CHECKING:
    from collections.abc import Hashable

    from matplotlib.axes import Axes
    from matplotlib.figure import Figure

    from pandas import (
        DataFrame,
        Index,
        Series,
    )


def scatter_matrix(
    frame: DataFrame,
    alpha: float = 0.5,
    figsize: tuple[float, float] | None = None,
    ax=None,
    grid: bool = False,
    diagonal: str = "hist",
    marker: str = ".",
    density_kwds=None,
    hist_kwds=None,
    range_padding: float = 0.05,
    **kwds,
):
    df = frame._get_numeric_data()
    n = df.columns.size
    naxes = n * n
    fig, axes = create_subplots(naxes=naxes, figsize=figsize, ax=ax, squeeze=False)

    # no gaps between subplots
    maybe_adjust_figure(fig, wspace=0, hspace=0)

    mask = notna(df)

    marker = _get_marker_compat(marker)

    hist_kwds = hist_kwds or {}
    density_kwds = density_kwds or {}

    # GH 14855
    kwds.setdefault("edgecolors", "none")

    boundaries_list = []
    for a in df.columns:
        values = df[a].values[mask[a].values]
        rmin_, rmax_ = np.min(values), np.max(values)
        rdelta_ext = (rmax_ - rmin_) * range_padding / 2
        boundaries_list.append((rmin_ - rdelta_ext, rmax_ + rdelta_ext))

    for i, a in enumerate(df.columns):
        for j, b in enumerate(df.columns):
            ax = axes[i, j]

            if i == j:
                values = df[a].values[mask[a].values]

                # Deal with the diagonal by drawing a histogram there.
                if diagonal == "hist":
                    ax.hist(values, **hist_kwds)

                elif diagonal in ("kde", "density"):
                    from scipy.stats import gaussian_kde

                    y = values
                    gkde = gaussian_kde(y)
                    ind = np.linspace(y.min(), y.max(), 1000)
                    ax.plot(ind, gkde.evaluate(ind), **density_kwds)

                ax.set_xlim(boundaries_list[i])

            else:
                common = (mask[a] & mask[b]).values

                ax.scatter(
                    df[b][common], df[a][common], marker=marker, alpha=alpha, **kwds
                )

                ax.set_xlim(boundaries_list[j])
                ax.set_ylim(boundaries_list[i])

            ax.set_xlabel(b)
            ax.set_ylabel(a)

            if j != 0:
                ax.yaxis.set_visible(False)
            if i != n - 1:
                ax.xaxis.set_visible(False)

    if len(df.columns) > 1:
        lim1 = boundaries_list[0]
        locs = axes[0][1].yaxis.get_majorticklocs()
        locs = locs[(lim1[0] <= locs) & (locs <= lim1[1])]
        adj = (locs - lim1[0]) / (lim1[1] - lim1[0])

        lim0 = axes[0][0].get_ylim()
        adj = adj * (lim0[1] - lim0[0]) + lim0[0]
        axes[0][0].yaxis.set_ticks(adj)

        if np.all(locs == locs.astype(int)):
            # if all ticks are int
            locs = locs.astype(int)
        axes[0][0].yaxis.set_ticklabels(locs)

    set_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)

    return axes


def _get_marker_compat(marker):
    if marker not in mlines.lineMarkers:
        return "o"
    return marker


def radviz(
    frame: DataFrame,
    class_column,
    ax: Axes | None = None,
    color=None,
    colormap=None,
    **kwds,
) -> Axes:
    import matplotlib.pyplot as plt

    def normalize(series):
        a = min(series)
        b = max(series)
        return (series - a) / (b - a)

    n = len(frame)
    classes = frame[class_column].drop_duplicates()
    class_col = frame[class_column]
    df = frame.drop(class_column, axis=1).apply(normalize)

    if ax is None:
        ax = plt.gca()
        ax.set_xlim(-1, 1)
        ax.set_ylim(-1, 1)

    to_plot: dict[Hashable, list[list]] = {}
    colors = get_standard_colors(
        num_colors=len(classes), colormap=colormap, color_type="random", color=color
    )

    for kls in classes:
        to_plot[kls] = [[], []]

    m = len(frame.columns) - 1
    s = np.array(
        [(np.cos(t), np.sin(t)) for t in [2 * np.pi * (i / m) for i in range(m)]]
    )

    for i in range(n):
        row = df.iloc[i].values
        row_ = np.repeat(np.expand_dims(row, axis=1), 2, axis=1)
        y = (s * row_).sum(axis=0) / row.sum()
        kls = class_col.iat[i]
        to_plot[kls][0].append(y[0])
        to_plot[kls][1].append(y[1])

    for i, kls in enumerate(classes):
        ax.scatter(
            to_plot[kls][0],
            to_plot[kls][1],
            color=colors[i],
            label=pprint_thing(kls),
            **kwds,
        )
    ax.legend()

    ax.add_patch(patches.Circle((0.0, 0.0), radius=1.0, facecolor="none"))

    for xy, name in zip(s, df.columns):
        ax.add_patch(patches.Circle(xy, radius=0.025, facecolor="gray"))

        if xy[0] < 0.0 and xy[1] < 0.0:
            ax.text(
                xy[0] - 0.025, xy[1] - 0.025, name, ha="right", va="top", size="small"
            )
        elif xy[0] < 0.0 <= xy[1]:
            ax.text(
                xy[0] - 0.025,
                xy[1] + 0.025,
                name,
                ha="right",
                va="bottom",
                size="small",
            )
        elif xy[1] < 0.0 <= xy[0]:
            ax.text(
                xy[0] + 0.025, xy[1] - 0.025, name, ha="left", va="top", size="small"
            )
        elif xy[0] >= 0.0 and xy[1] >= 0.0:
            ax.text(
                xy[0] + 0.025, xy[1] + 0.025, name, ha="left", va="bottom", size="small"
            )

    ax.axis("equal")
    return ax


def andrews_curves(
    frame: DataFrame,
    class_column,
    ax: Axes | None = None,
    samples: int = 200,
    color=None,
    colormap=None,
    **kwds,
) -> Axes:
    import matplotlib.pyplot as plt

    def function(amplitudes):
        def f(t):
            x1 = amplitudes[0]
            result = x1 / np.sqrt(2.0)

            # Take the rest of the coefficients and resize them
            # appropriately. Take a copy of amplitudes as otherwise numpy
            # deletes the element from amplitudes itself.
            coeffs = np.delete(np.copy(amplitudes), 0)
            coeffs = np.resize(coeffs, (int((coeffs.size + 1) / 2), 2))

            # Generate the harmonics and arguments for the sin and cos
            # functions.
            harmonics = np.arange(0, coeffs.shape[0]) + 1
            trig_args = np.outer(harmonics, t)

            result += np.sum(
                coeffs[:, 0, np.newaxis] * np.sin(trig_args)
                + coeffs[:, 1, np.newaxis] * np.cos(trig_args),
                axis=0,
            )
            return result

        return f

    n = len(frame)
    class_col = frame[class_column]
    classes = frame[class_column].drop_duplicates()
    df = frame.drop(class_column, axis=1)
    t = np.linspace(-np.pi, np.pi, samples)
    used_legends: set[str] = set()

    color_values = get_standard_colors(
        num_colors=len(classes), colormap=colormap, color_type="random", color=color
    )
    colors = dict(zip(classes, color_values))
    if ax is None:
        ax = plt.gca()
        ax.set_xlim(-np.pi, np.pi)
    for i in range(n):
        row = df.iloc[i].values
        f = function(row)
        y = f(t)
        kls = class_col.iat[i]
        label = pprint_thing(kls)
        if label not in used_legends:
            used_legends.add(label)
            ax.plot(t, y, color=colors[kls], label=label, **kwds)
        else:
            ax.plot(t, y, color=colors[kls], **kwds)

    ax.legend(loc="upper right")
    ax.grid()
    return ax


def bootstrap_plot(
    series: Series,
    fig: Figure | None = None,
    size: int = 50,
    samples: int = 500,
    **kwds,
) -> Figure:
    import matplotlib.pyplot as plt

    # TODO: is the failure mentioned below still relevant?
    # random.sample(ndarray, int) fails on python 3.3, sigh
    data = list(series.values)
    samplings = [random.sample(data, size) for _ in range(samples)]

    means = np.array([np.mean(sampling) for sampling in samplings])
    medians = np.array([np.median(sampling) for sampling in samplings])
    midranges = np.array(
        [(min(sampling) + max(sampling)) * 0.5 for sampling in samplings]
    )
    if fig is None:
        fig = plt.figure()
    x = list(range(samples))
    axes = []
    ax1 = fig.add_subplot(2, 3, 1)
    ax1.set_xlabel("Sample")
    axes.append(ax1)
    ax1.plot(x, means, **kwds)
    ax2 = fig.add_subplot(2, 3, 2)
    ax2.set_xlabel("Sample")
    axes.append(ax2)
    ax2.plot(x, medians, **kwds)
    ax3 = fig.add_subplot(2, 3, 3)
    ax3.set_xlabel("Sample")
    axes.append(ax3)
    ax3.plot(x, midranges, **kwds)
    ax4 = fig.add_subplot(2, 3, 4)
    ax4.set_xlabel("Mean")
    axes.append(ax4)
    ax4.hist(means, **kwds)
    ax5 = fig.add_subplot(2, 3, 5)
    ax5.set_xlabel("Median")
    axes.append(ax5)
    ax5.hist(medians, **kwds)
    ax6 = fig.add_subplot(2, 3, 6)
    ax6.set_xlabel("Midrange")
    axes.append(ax6)
    ax6.hist(midranges, **kwds)
    for axis in axes:
        plt.setp(axis.get_xticklabels(), fontsize=8)
        plt.setp(axis.get_yticklabels(), fontsize=8)
    if do_adjust_figure(fig):
        plt.tight_layout()
    return fig


def parallel_coordinates(
    frame: DataFrame,
    class_column,
    cols=None,
    ax: Axes | None = None,
    color=None,
    use_columns: bool = False,
    xticks=None,
    colormap=None,
    axvlines: bool = True,
    axvlines_kwds=None,
    sort_labels: bool = False,
    **kwds,
) -> Axes:
    import matplotlib.pyplot as plt

    if axvlines_kwds is None:
        axvlines_kwds = {"linewidth": 1, "color": "black"}

    n = len(frame)
    classes = frame[class_column].drop_duplicates()
    class_col = frame[class_column]

    if cols is None:
        df = frame.drop(class_column, axis=1)
    else:
        df = frame[cols]

    used_legends: set[str] = set()

    ncols = len(df.columns)

    # determine values to use for xticks
    x: list[int] | Index
    if use_columns is True:
        if not np.all(np.isreal(list(df.columns))):
            raise ValueError("Columns must be numeric to be used as xticks")
        x = df.columns
    elif xticks is not None:
        if not np.all(np.isreal(xticks)):
            raise ValueError("xticks specified must be numeric")
        if len(xticks) != ncols:
            raise ValueError("Length of xticks must match number of columns")
        x = xticks
    else:
        x = list(range(ncols))

    if ax is None:
        ax = plt.gca()

    color_values = get_standard_colors(
        num_colors=len(classes), colormap=colormap, color_type="random", color=color
    )

    if sort_labels:
        classes = sorted(classes)
        color_values = sorted(color_values)
    colors = dict(zip(classes, color_values))

    for i in range(n):
        y = df.iloc[i].values
        kls = class_col.iat[i]
        label = pprint_thing(kls)
        if label not in used_legends:
            used_legends.add(label)
            ax.plot(x, y, color=colors[kls], label=label, **kwds)
        else:
            ax.plot(x, y, color=colors[kls], **kwds)

    if axvlines:
        for i in x:
            ax.axvline(i, **axvlines_kwds)

    ax.set_xticks(x)
    ax.set_xticklabels(df.columns)
    ax.set_xlim(x[0], x[-1])
    ax.legend(loc="upper right")
    ax.grid()
    return ax


def lag_plot(series: Series, lag: int = 1, ax: Axes | None = None, **kwds) -> Axes:
    # workaround because `c='b'` is hardcoded in matplotlib's scatter method
    import matplotlib.pyplot as plt

    kwds.setdefault("c", plt.rcParams["patch.facecolor"])

    data = series.values
    y1 = data[:-lag]
    y2 = data[lag:]
    if ax is None:
        ax = plt.gca()
    ax.set_xlabel("y(t)")
    ax.set_ylabel(f"y(t + {lag})")
    ax.scatter(y1, y2, **kwds)
    return ax


def autocorrelation_plot(series: Series, ax: Axes | None = None, **kwds) -> Axes:
    import matplotlib.pyplot as plt

    n = len(series)
    data = np.asarray(series)
    if ax is None:
        ax = plt.gca()
        ax.set_xlim(1, n)
        ax.set_ylim(-1.0, 1.0)
    mean = np.mean(data)
    c0 = np.sum((data - mean) ** 2) / n

    def r(h):
        return ((data[: n - h] - mean) * (data[h:] - mean)).sum() / n / c0

    x = np.arange(n) + 1
    y = [r(loc) for loc in x]
    z95 = 1.959963984540054
    z99 = 2.5758293035489004
    ax.axhline(y=z99 / np.sqrt(n), linestyle="--", color="grey")
    ax.axhline(y=z95 / np.sqrt(n), color="grey")
    ax.axhline(y=0.0, color="black")
    ax.axhline(y=-z95 / np.sqrt(n), color="grey")
    ax.axhline(y=-z99 / np.sqrt(n), linestyle="--", color="grey")
    ax.set_xlabel("Lag")
    ax.set_ylabel("Autocorrelation")
    ax.plot(x, y, **kwds)
    if "label" in kwds:
        ax.legend()
    ax.grid()
    return ax


def unpack_single_str_list(keys):
    # GH 42795
    if isinstance(keys, list) and len(keys) == 1:
        keys = keys[0]
    return keys