File size: 11,531 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
# TODO: Use the fact that axis can have units to simplify the process

from __future__ import annotations

import functools
from typing import (
    TYPE_CHECKING,
    Any,
    cast,
)
import warnings

import numpy as np

from pandas._libs.tslibs import (
    BaseOffset,
    Period,
    to_offset,
)
from pandas._libs.tslibs.dtypes import (
    OFFSET_TO_PERIOD_FREQSTR,
    FreqGroup,
)

from pandas.core.dtypes.generic import (
    ABCDatetimeIndex,
    ABCPeriodIndex,
    ABCTimedeltaIndex,
)

from pandas.io.formats.printing import pprint_thing
from pandas.plotting._matplotlib.converter import (
    TimeSeries_DateFormatter,
    TimeSeries_DateLocator,
    TimeSeries_TimedeltaFormatter,
)
from pandas.tseries.frequencies import (
    get_period_alias,
    is_subperiod,
    is_superperiod,
)

if TYPE_CHECKING:
    from datetime import timedelta

    from matplotlib.axes import Axes

    from pandas._typing import NDFrameT

    from pandas import (
        DataFrame,
        DatetimeIndex,
        Index,
        PeriodIndex,
        Series,
    )

# ---------------------------------------------------------------------
# Plotting functions and monkey patches


def maybe_resample(series: Series, ax: Axes, kwargs: dict[str, Any]):
    # resample against axes freq if necessary

    if "how" in kwargs:
        raise ValueError(
            "'how' is not a valid keyword for plotting functions. If plotting "
            "multiple objects on shared axes, resample manually first."
        )

    freq, ax_freq = _get_freq(ax, series)

    if freq is None:  # pragma: no cover
        raise ValueError("Cannot use dynamic axis without frequency info")

    # Convert DatetimeIndex to PeriodIndex
    if isinstance(series.index, ABCDatetimeIndex):
        series = series.to_period(freq=freq)

    if ax_freq is not None and freq != ax_freq:
        if is_superperiod(freq, ax_freq):  # upsample input
            series = series.copy()
            # error: "Index" has no attribute "asfreq"
            series.index = series.index.asfreq(  # type: ignore[attr-defined]
                ax_freq, how="s"
            )
            freq = ax_freq
        elif _is_sup(freq, ax_freq):  # one is weekly
            # Resampling with PeriodDtype is deprecated, so we convert to
            #  DatetimeIndex, resample, then convert back.
            ser_ts = series.to_timestamp()
            ser_d = ser_ts.resample("D").last().dropna()
            ser_freq = ser_d.resample(ax_freq).last().dropna()
            series = ser_freq.to_period(ax_freq)
            freq = ax_freq
        elif is_subperiod(freq, ax_freq) or _is_sub(freq, ax_freq):
            _upsample_others(ax, freq, kwargs)
        else:  # pragma: no cover
            raise ValueError("Incompatible frequency conversion")
    return freq, series


def _is_sub(f1: str, f2: str) -> bool:
    return (f1.startswith("W") and is_subperiod("D", f2)) or (
        f2.startswith("W") and is_subperiod(f1, "D")
    )


def _is_sup(f1: str, f2: str) -> bool:
    return (f1.startswith("W") and is_superperiod("D", f2)) or (
        f2.startswith("W") and is_superperiod(f1, "D")
    )


def _upsample_others(ax: Axes, freq: BaseOffset, kwargs: dict[str, Any]) -> None:
    legend = ax.get_legend()
    lines, labels = _replot_ax(ax, freq)
    _replot_ax(ax, freq)

    other_ax = None
    if hasattr(ax, "left_ax"):
        other_ax = ax.left_ax
    if hasattr(ax, "right_ax"):
        other_ax = ax.right_ax

    if other_ax is not None:
        rlines, rlabels = _replot_ax(other_ax, freq)
        lines.extend(rlines)
        labels.extend(rlabels)

    if legend is not None and kwargs.get("legend", True) and len(lines) > 0:
        title: str | None = legend.get_title().get_text()
        if title == "None":
            title = None
        ax.legend(lines, labels, loc="best", title=title)


def _replot_ax(ax: Axes, freq: BaseOffset):
    data = getattr(ax, "_plot_data", None)

    # clear current axes and data
    # TODO #54485
    ax._plot_data = []  # type: ignore[attr-defined]
    ax.clear()

    decorate_axes(ax, freq)

    lines = []
    labels = []
    if data is not None:
        for series, plotf, kwds in data:
            series = series.copy()
            idx = series.index.asfreq(freq, how="S")
            series.index = idx
            # TODO #54485
            ax._plot_data.append((series, plotf, kwds))  # type: ignore[attr-defined]

            # for tsplot
            if isinstance(plotf, str):
                from pandas.plotting._matplotlib import PLOT_CLASSES

                plotf = PLOT_CLASSES[plotf]._plot

            lines.append(plotf(ax, series.index._mpl_repr(), series.values, **kwds)[0])
            labels.append(pprint_thing(series.name))

    return lines, labels


def decorate_axes(ax: Axes, freq: BaseOffset) -> None:
    """Initialize axes for time-series plotting"""
    if not hasattr(ax, "_plot_data"):
        # TODO #54485
        ax._plot_data = []  # type: ignore[attr-defined]

    # TODO #54485
    ax.freq = freq  # type: ignore[attr-defined]
    xaxis = ax.get_xaxis()
    # TODO #54485
    xaxis.freq = freq  # type: ignore[attr-defined]


def _get_ax_freq(ax: Axes):
    """
    Get the freq attribute of the ax object if set.
    Also checks shared axes (eg when using secondary yaxis, sharex=True
    or twinx)
    """
    ax_freq = getattr(ax, "freq", None)
    if ax_freq is None:
        # check for left/right ax in case of secondary yaxis
        if hasattr(ax, "left_ax"):
            ax_freq = getattr(ax.left_ax, "freq", None)
        elif hasattr(ax, "right_ax"):
            ax_freq = getattr(ax.right_ax, "freq", None)
    if ax_freq is None:
        # check if a shared ax (sharex/twinx) has already freq set
        shared_axes = ax.get_shared_x_axes().get_siblings(ax)
        if len(shared_axes) > 1:
            for shared_ax in shared_axes:
                ax_freq = getattr(shared_ax, "freq", None)
                if ax_freq is not None:
                    break
    return ax_freq


def _get_period_alias(freq: timedelta | BaseOffset | str) -> str | None:
    if isinstance(freq, BaseOffset):
        freqstr = freq.name
    else:
        freqstr = to_offset(freq, is_period=True).rule_code

    return get_period_alias(freqstr)


def _get_freq(ax: Axes, series: Series):
    # get frequency from data
    freq = getattr(series.index, "freq", None)
    if freq is None:
        freq = getattr(series.index, "inferred_freq", None)
        freq = to_offset(freq, is_period=True)

    ax_freq = _get_ax_freq(ax)

    # use axes freq if no data freq
    if freq is None:
        freq = ax_freq

    # get the period frequency
    freq = _get_period_alias(freq)
    return freq, ax_freq


def use_dynamic_x(ax: Axes, data: DataFrame | Series) -> bool:
    freq = _get_index_freq(data.index)
    ax_freq = _get_ax_freq(ax)

    if freq is None:  # convert irregular if axes has freq info
        freq = ax_freq
    # do not use tsplot if irregular was plotted first
    elif (ax_freq is None) and (len(ax.get_lines()) > 0):
        return False

    if freq is None:
        return False

    freq_str = _get_period_alias(freq)

    if freq_str is None:
        return False

    # FIXME: hack this for 0.10.1, creating more technical debt...sigh
    if isinstance(data.index, ABCDatetimeIndex):
        # error: "BaseOffset" has no attribute "_period_dtype_code"
        freq_str = OFFSET_TO_PERIOD_FREQSTR.get(freq_str, freq_str)
        base = to_offset(
            freq_str, is_period=True
        )._period_dtype_code  # type: ignore[attr-defined]
        x = data.index
        if base <= FreqGroup.FR_DAY.value:
            return x[:1].is_normalized
        period = Period(x[0], freq_str)
        assert isinstance(period, Period)
        return period.to_timestamp().tz_localize(x.tz) == x[0]
    return True


def _get_index_freq(index: Index) -> BaseOffset | None:
    freq = getattr(index, "freq", None)
    if freq is None:
        freq = getattr(index, "inferred_freq", None)
        if freq == "B":
            # error: "Index" has no attribute "dayofweek"
            weekdays = np.unique(index.dayofweek)  # type: ignore[attr-defined]
            if (5 in weekdays) or (6 in weekdays):
                freq = None

    freq = to_offset(freq)
    return freq


def maybe_convert_index(ax: Axes, data: NDFrameT) -> NDFrameT:
    # tsplot converts automatically, but don't want to convert index
    # over and over for DataFrames
    if isinstance(data.index, (ABCDatetimeIndex, ABCPeriodIndex)):
        freq: str | BaseOffset | None = data.index.freq

        if freq is None:
            # We only get here for DatetimeIndex
            data.index = cast("DatetimeIndex", data.index)
            freq = data.index.inferred_freq
            freq = to_offset(freq)

        if freq is None:
            freq = _get_ax_freq(ax)

        if freq is None:
            raise ValueError("Could not get frequency alias for plotting")

        freq_str = _get_period_alias(freq)

        with warnings.catch_warnings():
            # suppress Period[B] deprecation warning
            # TODO: need to find an alternative to this before the deprecation
            #  is enforced!
            warnings.filterwarnings(
                "ignore",
                r"PeriodDtype\[B\] is deprecated",
                category=FutureWarning,
            )

            if isinstance(data.index, ABCDatetimeIndex):
                data = data.tz_localize(None).to_period(freq=freq_str)
            elif isinstance(data.index, ABCPeriodIndex):
                data.index = data.index.asfreq(freq=freq_str)
    return data


# Patch methods for subplot.


def _format_coord(freq, t, y) -> str:
    time_period = Period(ordinal=int(t), freq=freq)
    return f"t = {time_period}  y = {y:8f}"


def format_dateaxis(
    subplot, freq: BaseOffset, index: DatetimeIndex | PeriodIndex
) -> None:
    """
    Pretty-formats the date axis (x-axis).

    Major and minor ticks are automatically set for the frequency of the
    current underlying series.  As the dynamic mode is activated by
    default, changing the limits of the x axis will intelligently change
    the positions of the ticks.
    """
    from matplotlib import pylab

    # handle index specific formatting
    # Note: DatetimeIndex does not use this
    # interface. DatetimeIndex uses matplotlib.date directly
    if isinstance(index, ABCPeriodIndex):
        majlocator = TimeSeries_DateLocator(
            freq, dynamic_mode=True, minor_locator=False, plot_obj=subplot
        )
        minlocator = TimeSeries_DateLocator(
            freq, dynamic_mode=True, minor_locator=True, plot_obj=subplot
        )
        subplot.xaxis.set_major_locator(majlocator)
        subplot.xaxis.set_minor_locator(minlocator)

        majformatter = TimeSeries_DateFormatter(
            freq, dynamic_mode=True, minor_locator=False, plot_obj=subplot
        )
        minformatter = TimeSeries_DateFormatter(
            freq, dynamic_mode=True, minor_locator=True, plot_obj=subplot
        )
        subplot.xaxis.set_major_formatter(majformatter)
        subplot.xaxis.set_minor_formatter(minformatter)

        # x and y coord info
        subplot.format_coord = functools.partial(_format_coord, freq)

    elif isinstance(index, ABCTimedeltaIndex):
        subplot.xaxis.set_major_formatter(TimeSeries_TimedeltaFormatter())
    else:
        raise TypeError("index type not supported")

    pylab.draw_if_interactive()