File size: 78,911 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
# Arithmetic tests for DataFrame/Series/Index/Array classes that should
# behave identically.
from datetime import (
    datetime,
    timedelta,
)

import numpy as np
import pytest

from pandas.errors import (
    OutOfBoundsDatetime,
    PerformanceWarning,
)

import pandas as pd
from pandas import (
    DataFrame,
    DatetimeIndex,
    Index,
    NaT,
    Series,
    Timedelta,
    TimedeltaIndex,
    Timestamp,
    offsets,
    timedelta_range,
)
import pandas._testing as tm
from pandas.core.arrays import NumpyExtensionArray
from pandas.tests.arithmetic.common import (
    assert_invalid_addsub_type,
    assert_invalid_comparison,
    get_upcast_box,
)


def assert_dtype(obj, expected_dtype):
    """
    Helper to check the dtype for a Series, Index, or single-column DataFrame.
    """
    dtype = tm.get_dtype(obj)

    assert dtype == expected_dtype


def get_expected_name(box, names):
    if box is DataFrame:
        # Since we are operating with a DataFrame and a non-DataFrame,
        # the non-DataFrame is cast to Series and its name ignored.
        exname = names[0]
    elif box in [tm.to_array, pd.array]:
        exname = names[1]
    else:
        exname = names[2]
    return exname


# ------------------------------------------------------------------
# Timedelta64[ns] dtype Comparisons


class TestTimedelta64ArrayLikeComparisons:
    # Comparison tests for timedelta64[ns] vectors fully parametrized over
    #  DataFrame/Series/TimedeltaIndex/TimedeltaArray.  Ideally all comparison
    #  tests will eventually end up here.

    def test_compare_timedelta64_zerodim(self, box_with_array):
        # GH#26689 should unbox when comparing with zerodim array
        box = box_with_array
        xbox = box_with_array if box_with_array not in [Index, pd.array] else np.ndarray

        tdi = timedelta_range("2h", periods=4)
        other = np.array(tdi.to_numpy()[0])

        tdi = tm.box_expected(tdi, box)
        res = tdi <= other
        expected = np.array([True, False, False, False])
        expected = tm.box_expected(expected, xbox)
        tm.assert_equal(res, expected)

    @pytest.mark.parametrize(
        "td_scalar",
        [
            timedelta(days=1),
            Timedelta(days=1),
            Timedelta(days=1).to_timedelta64(),
            offsets.Hour(24),
        ],
    )
    def test_compare_timedeltalike_scalar(self, box_with_array, td_scalar):
        # regression test for GH#5963
        box = box_with_array
        xbox = box if box not in [Index, pd.array] else np.ndarray

        ser = Series([timedelta(days=1), timedelta(days=2)])
        ser = tm.box_expected(ser, box)
        actual = ser > td_scalar
        expected = Series([False, True])
        expected = tm.box_expected(expected, xbox)
        tm.assert_equal(actual, expected)

    @pytest.mark.parametrize(
        "invalid",
        [
            345600000000000,
            "a",
            Timestamp("2021-01-01"),
            Timestamp("2021-01-01").now("UTC"),
            Timestamp("2021-01-01").now().to_datetime64(),
            Timestamp("2021-01-01").now().to_pydatetime(),
            Timestamp("2021-01-01").date(),
            np.array(4),  # zero-dim mismatched dtype
        ],
    )
    def test_td64_comparisons_invalid(self, box_with_array, invalid):
        # GH#13624 for str
        box = box_with_array

        rng = timedelta_range("1 days", periods=10)
        obj = tm.box_expected(rng, box)

        assert_invalid_comparison(obj, invalid, box)

    @pytest.mark.parametrize(
        "other",
        [
            list(range(10)),
            np.arange(10),
            np.arange(10).astype(np.float32),
            np.arange(10).astype(object),
            pd.date_range("1970-01-01", periods=10, tz="UTC").array,
            np.array(pd.date_range("1970-01-01", periods=10)),
            list(pd.date_range("1970-01-01", periods=10)),
            pd.date_range("1970-01-01", periods=10).astype(object),
            pd.period_range("1971-01-01", freq="D", periods=10).array,
            pd.period_range("1971-01-01", freq="D", periods=10).astype(object),
        ],
    )
    def test_td64arr_cmp_arraylike_invalid(self, other, box_with_array):
        # We don't parametrize this over box_with_array because listlike
        #  other plays poorly with assert_invalid_comparison reversed checks

        rng = timedelta_range("1 days", periods=10)._data
        rng = tm.box_expected(rng, box_with_array)
        assert_invalid_comparison(rng, other, box_with_array)

    def test_td64arr_cmp_mixed_invalid(self):
        rng = timedelta_range("1 days", periods=5)._data
        other = np.array([0, 1, 2, rng[3], Timestamp("2021-01-01")])

        result = rng == other
        expected = np.array([False, False, False, True, False])
        tm.assert_numpy_array_equal(result, expected)

        result = rng != other
        tm.assert_numpy_array_equal(result, ~expected)

        msg = "Invalid comparison between|Cannot compare type|not supported between"
        with pytest.raises(TypeError, match=msg):
            rng < other
        with pytest.raises(TypeError, match=msg):
            rng > other
        with pytest.raises(TypeError, match=msg):
            rng <= other
        with pytest.raises(TypeError, match=msg):
            rng >= other


class TestTimedelta64ArrayComparisons:
    # TODO: All of these need to be parametrized over box

    @pytest.mark.parametrize("dtype", [None, object])
    def test_comp_nat(self, dtype):
        left = TimedeltaIndex([Timedelta("1 days"), NaT, Timedelta("3 days")])
        right = TimedeltaIndex([NaT, NaT, Timedelta("3 days")])

        lhs, rhs = left, right
        if dtype is object:
            lhs, rhs = left.astype(object), right.astype(object)

        result = rhs == lhs
        expected = np.array([False, False, True])
        tm.assert_numpy_array_equal(result, expected)

        result = rhs != lhs
        expected = np.array([True, True, False])
        tm.assert_numpy_array_equal(result, expected)

        expected = np.array([False, False, False])
        tm.assert_numpy_array_equal(lhs == NaT, expected)
        tm.assert_numpy_array_equal(NaT == rhs, expected)

        expected = np.array([True, True, True])
        tm.assert_numpy_array_equal(lhs != NaT, expected)
        tm.assert_numpy_array_equal(NaT != lhs, expected)

        expected = np.array([False, False, False])
        tm.assert_numpy_array_equal(lhs < NaT, expected)
        tm.assert_numpy_array_equal(NaT > lhs, expected)

    @pytest.mark.parametrize(
        "idx2",
        [
            TimedeltaIndex(
                ["2 day", "2 day", NaT, NaT, "1 day 00:00:02", "5 days 00:00:03"]
            ),
            np.array(
                [
                    np.timedelta64(2, "D"),
                    np.timedelta64(2, "D"),
                    np.timedelta64("nat"),
                    np.timedelta64("nat"),
                    np.timedelta64(1, "D") + np.timedelta64(2, "s"),
                    np.timedelta64(5, "D") + np.timedelta64(3, "s"),
                ]
            ),
        ],
    )
    def test_comparisons_nat(self, idx2):
        idx1 = TimedeltaIndex(
            [
                "1 day",
                NaT,
                "1 day 00:00:01",
                NaT,
                "1 day 00:00:01",
                "5 day 00:00:03",
            ]
        )
        # Check pd.NaT is handles as the same as np.nan
        result = idx1 < idx2
        expected = np.array([True, False, False, False, True, False])
        tm.assert_numpy_array_equal(result, expected)

        result = idx2 > idx1
        expected = np.array([True, False, False, False, True, False])
        tm.assert_numpy_array_equal(result, expected)

        result = idx1 <= idx2
        expected = np.array([True, False, False, False, True, True])
        tm.assert_numpy_array_equal(result, expected)

        result = idx2 >= idx1
        expected = np.array([True, False, False, False, True, True])
        tm.assert_numpy_array_equal(result, expected)

        result = idx1 == idx2
        expected = np.array([False, False, False, False, False, True])
        tm.assert_numpy_array_equal(result, expected)

        result = idx1 != idx2
        expected = np.array([True, True, True, True, True, False])
        tm.assert_numpy_array_equal(result, expected)

    # TODO: better name
    def test_comparisons_coverage(self):
        rng = timedelta_range("1 days", periods=10)

        result = rng < rng[3]
        expected = np.array([True, True, True] + [False] * 7)
        tm.assert_numpy_array_equal(result, expected)

        result = rng == list(rng)
        exp = rng == rng
        tm.assert_numpy_array_equal(result, exp)


# ------------------------------------------------------------------
# Timedelta64[ns] dtype Arithmetic Operations


class TestTimedelta64ArithmeticUnsorted:
    # Tests moved from type-specific test files but not
    #  yet sorted/parametrized/de-duplicated

    def test_ufunc_coercions(self):
        # normal ops are also tested in tseries/test_timedeltas.py
        idx = TimedeltaIndex(["2h", "4h", "6h", "8h", "10h"], freq="2h", name="x")

        for result in [idx * 2, np.multiply(idx, 2)]:
            assert isinstance(result, TimedeltaIndex)
            exp = TimedeltaIndex(["4h", "8h", "12h", "16h", "20h"], freq="4h", name="x")
            tm.assert_index_equal(result, exp)
            assert result.freq == "4h"

        for result in [idx / 2, np.divide(idx, 2)]:
            assert isinstance(result, TimedeltaIndex)
            exp = TimedeltaIndex(["1h", "2h", "3h", "4h", "5h"], freq="h", name="x")
            tm.assert_index_equal(result, exp)
            assert result.freq == "h"

        for result in [-idx, np.negative(idx)]:
            assert isinstance(result, TimedeltaIndex)
            exp = TimedeltaIndex(
                ["-2h", "-4h", "-6h", "-8h", "-10h"], freq="-2h", name="x"
            )
            tm.assert_index_equal(result, exp)
            assert result.freq == "-2h"

        idx = TimedeltaIndex(["-2h", "-1h", "0h", "1h", "2h"], freq="h", name="x")
        for result in [abs(idx), np.absolute(idx)]:
            assert isinstance(result, TimedeltaIndex)
            exp = TimedeltaIndex(["2h", "1h", "0h", "1h", "2h"], freq=None, name="x")
            tm.assert_index_equal(result, exp)
            assert result.freq is None

    def test_subtraction_ops(self):
        # with datetimes/timedelta and tdi/dti
        tdi = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo")
        dti = pd.date_range("20130101", periods=3, name="bar")
        td = Timedelta("1 days")
        dt = Timestamp("20130101")

        msg = "cannot subtract a datelike from a TimedeltaArray"
        with pytest.raises(TypeError, match=msg):
            tdi - dt
        with pytest.raises(TypeError, match=msg):
            tdi - dti

        msg = r"unsupported operand type\(s\) for -"
        with pytest.raises(TypeError, match=msg):
            td - dt

        msg = "(bad|unsupported) operand type for unary"
        with pytest.raises(TypeError, match=msg):
            td - dti

        result = dt - dti
        expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"], name="bar")
        tm.assert_index_equal(result, expected)

        result = dti - dt
        expected = TimedeltaIndex(["0 days", "1 days", "2 days"], name="bar")
        tm.assert_index_equal(result, expected)

        result = tdi - td
        expected = TimedeltaIndex(["0 days", NaT, "1 days"], name="foo")
        tm.assert_index_equal(result, expected)

        result = td - tdi
        expected = TimedeltaIndex(["0 days", NaT, "-1 days"], name="foo")
        tm.assert_index_equal(result, expected)

        result = dti - td
        expected = DatetimeIndex(
            ["20121231", "20130101", "20130102"], dtype="M8[ns]", freq="D", name="bar"
        )
        tm.assert_index_equal(result, expected)

        result = dt - tdi
        expected = DatetimeIndex(
            ["20121231", NaT, "20121230"], dtype="M8[ns]", name="foo"
        )
        tm.assert_index_equal(result, expected)

    def test_subtraction_ops_with_tz(self, box_with_array):
        # check that dt/dti subtraction ops with tz are validated
        dti = pd.date_range("20130101", periods=3)
        dti = tm.box_expected(dti, box_with_array)
        ts = Timestamp("20130101")
        dt = ts.to_pydatetime()
        dti_tz = pd.date_range("20130101", periods=3).tz_localize("US/Eastern")
        dti_tz = tm.box_expected(dti_tz, box_with_array)
        ts_tz = Timestamp("20130101").tz_localize("US/Eastern")
        ts_tz2 = Timestamp("20130101").tz_localize("CET")
        dt_tz = ts_tz.to_pydatetime()
        td = Timedelta("1 days")

        def _check(result, expected):
            assert result == expected
            assert isinstance(result, Timedelta)

        # scalars
        result = ts - ts
        expected = Timedelta("0 days")
        _check(result, expected)

        result = dt_tz - ts_tz
        expected = Timedelta("0 days")
        _check(result, expected)

        result = ts_tz - dt_tz
        expected = Timedelta("0 days")
        _check(result, expected)

        # tz mismatches
        msg = "Cannot subtract tz-naive and tz-aware datetime-like objects."
        with pytest.raises(TypeError, match=msg):
            dt_tz - ts
        msg = "can't subtract offset-naive and offset-aware datetimes"
        with pytest.raises(TypeError, match=msg):
            dt_tz - dt
        msg = "can't subtract offset-naive and offset-aware datetimes"
        with pytest.raises(TypeError, match=msg):
            dt - dt_tz
        msg = "Cannot subtract tz-naive and tz-aware datetime-like objects."
        with pytest.raises(TypeError, match=msg):
            ts - dt_tz
        with pytest.raises(TypeError, match=msg):
            ts_tz2 - ts
        with pytest.raises(TypeError, match=msg):
            ts_tz2 - dt

        msg = "Cannot subtract tz-naive and tz-aware"
        # with dti
        with pytest.raises(TypeError, match=msg):
            dti - ts_tz
        with pytest.raises(TypeError, match=msg):
            dti_tz - ts

        result = dti_tz - dt_tz
        expected = TimedeltaIndex(["0 days", "1 days", "2 days"])
        expected = tm.box_expected(expected, box_with_array)
        tm.assert_equal(result, expected)

        result = dt_tz - dti_tz
        expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"])
        expected = tm.box_expected(expected, box_with_array)
        tm.assert_equal(result, expected)

        result = dti_tz - ts_tz
        expected = TimedeltaIndex(["0 days", "1 days", "2 days"])
        expected = tm.box_expected(expected, box_with_array)
        tm.assert_equal(result, expected)

        result = ts_tz - dti_tz
        expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"])
        expected = tm.box_expected(expected, box_with_array)
        tm.assert_equal(result, expected)

        result = td - td
        expected = Timedelta("0 days")
        _check(result, expected)

        result = dti_tz - td
        expected = DatetimeIndex(
            ["20121231", "20130101", "20130102"], tz="US/Eastern"
        ).as_unit("ns")
        expected = tm.box_expected(expected, box_with_array)
        tm.assert_equal(result, expected)

    def test_dti_tdi_numeric_ops(self):
        # These are normally union/diff set-like ops
        tdi = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo")
        dti = pd.date_range("20130101", periods=3, name="bar")

        result = tdi - tdi
        expected = TimedeltaIndex(["0 days", NaT, "0 days"], name="foo")
        tm.assert_index_equal(result, expected)

        result = tdi + tdi
        expected = TimedeltaIndex(["2 days", NaT, "4 days"], name="foo")
        tm.assert_index_equal(result, expected)

        result = dti - tdi  # name will be reset
        expected = DatetimeIndex(["20121231", NaT, "20130101"], dtype="M8[ns]")
        tm.assert_index_equal(result, expected)

    def test_addition_ops(self):
        # with datetimes/timedelta and tdi/dti
        tdi = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo")
        dti = pd.date_range("20130101", periods=3, name="bar")
        td = Timedelta("1 days")
        dt = Timestamp("20130101")

        result = tdi + dt
        expected = DatetimeIndex(
            ["20130102", NaT, "20130103"], dtype="M8[ns]", name="foo"
        )
        tm.assert_index_equal(result, expected)

        result = dt + tdi
        expected = DatetimeIndex(
            ["20130102", NaT, "20130103"], dtype="M8[ns]", name="foo"
        )
        tm.assert_index_equal(result, expected)

        result = td + tdi
        expected = TimedeltaIndex(["2 days", NaT, "3 days"], name="foo")
        tm.assert_index_equal(result, expected)

        result = tdi + td
        expected = TimedeltaIndex(["2 days", NaT, "3 days"], name="foo")
        tm.assert_index_equal(result, expected)

        # unequal length
        msg = "cannot add indices of unequal length"
        with pytest.raises(ValueError, match=msg):
            tdi + dti[0:1]
        with pytest.raises(ValueError, match=msg):
            tdi[0:1] + dti

        # random indexes
        msg = "Addition/subtraction of integers and integer-arrays"
        with pytest.raises(TypeError, match=msg):
            tdi + Index([1, 2, 3], dtype=np.int64)

        # this is a union!
        # FIXME: don't leave commented-out
        # pytest.raises(TypeError, lambda : Index([1,2,3]) + tdi)

        result = tdi + dti  # name will be reset
        expected = DatetimeIndex(["20130102", NaT, "20130105"], dtype="M8[ns]")
        tm.assert_index_equal(result, expected)

        result = dti + tdi  # name will be reset
        expected = DatetimeIndex(["20130102", NaT, "20130105"], dtype="M8[ns]")
        tm.assert_index_equal(result, expected)

        result = dt + td
        expected = Timestamp("20130102")
        assert result == expected

        result = td + dt
        expected = Timestamp("20130102")
        assert result == expected

    # TODO: Needs more informative name, probably split up into
    # more targeted tests
    @pytest.mark.parametrize("freq", ["D", "B"])
    def test_timedelta(self, freq):
        index = pd.date_range("1/1/2000", periods=50, freq=freq)

        shifted = index + timedelta(1)
        back = shifted + timedelta(-1)
        back = back._with_freq("infer")
        tm.assert_index_equal(index, back)

        if freq == "D":
            expected = pd.tseries.offsets.Day(1)
            assert index.freq == expected
            assert shifted.freq == expected
            assert back.freq == expected
        else:  # freq == 'B'
            assert index.freq == pd.tseries.offsets.BusinessDay(1)
            assert shifted.freq is None
            assert back.freq == pd.tseries.offsets.BusinessDay(1)

        result = index - timedelta(1)
        expected = index + timedelta(-1)
        tm.assert_index_equal(result, expected)

    def test_timedelta_tick_arithmetic(self):
        # GH#4134, buggy with timedeltas
        rng = pd.date_range("2013", "2014")
        s = Series(rng)
        result1 = rng - offsets.Hour(1)
        result2 = DatetimeIndex(s - np.timedelta64(100000000))
        result3 = rng - np.timedelta64(100000000)
        result4 = DatetimeIndex(s - offsets.Hour(1))

        assert result1.freq == rng.freq
        result1 = result1._with_freq(None)
        tm.assert_index_equal(result1, result4)

        assert result3.freq == rng.freq
        result3 = result3._with_freq(None)
        tm.assert_index_equal(result2, result3)

    def test_tda_add_sub_index(self):
        # Check that TimedeltaArray defers to Index on arithmetic ops
        tdi = TimedeltaIndex(["1 days", NaT, "2 days"])
        tda = tdi.array

        dti = pd.date_range("1999-12-31", periods=3, freq="D")

        result = tda + dti
        expected = tdi + dti
        tm.assert_index_equal(result, expected)

        result = tda + tdi
        expected = tdi + tdi
        tm.assert_index_equal(result, expected)

        result = tda - tdi
        expected = tdi - tdi
        tm.assert_index_equal(result, expected)

    def test_tda_add_dt64_object_array(self, box_with_array, tz_naive_fixture):
        # Result should be cast back to DatetimeArray
        box = box_with_array

        dti = pd.date_range("2016-01-01", periods=3, tz=tz_naive_fixture)
        dti = dti._with_freq(None)
        tdi = dti - dti

        obj = tm.box_expected(tdi, box)
        other = tm.box_expected(dti, box)

        with tm.assert_produces_warning(PerformanceWarning):
            result = obj + other.astype(object)
        tm.assert_equal(result, other.astype(object))

    # -------------------------------------------------------------
    # Binary operations TimedeltaIndex and timedelta-like

    def test_tdi_iadd_timedeltalike(self, two_hours, box_with_array):
        # only test adding/sub offsets as + is now numeric
        rng = timedelta_range("1 days", "10 days")
        expected = timedelta_range("1 days 02:00:00", "10 days 02:00:00", freq="D")

        rng = tm.box_expected(rng, box_with_array)
        expected = tm.box_expected(expected, box_with_array)

        orig_rng = rng
        rng += two_hours
        tm.assert_equal(rng, expected)
        if box_with_array is not Index:
            # Check that operation is actually inplace
            tm.assert_equal(orig_rng, expected)

    def test_tdi_isub_timedeltalike(self, two_hours, box_with_array):
        # only test adding/sub offsets as - is now numeric
        rng = timedelta_range("1 days", "10 days")
        expected = timedelta_range("0 days 22:00:00", "9 days 22:00:00")

        rng = tm.box_expected(rng, box_with_array)
        expected = tm.box_expected(expected, box_with_array)

        orig_rng = rng
        rng -= two_hours
        tm.assert_equal(rng, expected)
        if box_with_array is not Index:
            # Check that operation is actually inplace
            tm.assert_equal(orig_rng, expected)

    # -------------------------------------------------------------

    def test_tdi_ops_attributes(self):
        rng = timedelta_range("2 days", periods=5, freq="2D", name="x")

        result = rng + 1 * rng.freq
        exp = timedelta_range("4 days", periods=5, freq="2D", name="x")
        tm.assert_index_equal(result, exp)
        assert result.freq == "2D"

        result = rng - 2 * rng.freq
        exp = timedelta_range("-2 days", periods=5, freq="2D", name="x")
        tm.assert_index_equal(result, exp)
        assert result.freq == "2D"

        result = rng * 2
        exp = timedelta_range("4 days", periods=5, freq="4D", name="x")
        tm.assert_index_equal(result, exp)
        assert result.freq == "4D"

        result = rng / 2
        exp = timedelta_range("1 days", periods=5, freq="D", name="x")
        tm.assert_index_equal(result, exp)
        assert result.freq == "D"

        result = -rng
        exp = timedelta_range("-2 days", periods=5, freq="-2D", name="x")
        tm.assert_index_equal(result, exp)
        assert result.freq == "-2D"

        rng = timedelta_range("-2 days", periods=5, freq="D", name="x")

        result = abs(rng)
        exp = TimedeltaIndex(
            ["2 days", "1 days", "0 days", "1 days", "2 days"], name="x"
        )
        tm.assert_index_equal(result, exp)
        assert result.freq is None


class TestAddSubNaTMasking:
    # TODO: parametrize over boxes

    @pytest.mark.parametrize("str_ts", ["1950-01-01", "1980-01-01"])
    def test_tdarr_add_timestamp_nat_masking(self, box_with_array, str_ts):
        # GH#17991 checking for overflow-masking with NaT
        tdinat = pd.to_timedelta(["24658 days 11:15:00", "NaT"])
        tdobj = tm.box_expected(tdinat, box_with_array)

        ts = Timestamp(str_ts)
        ts_variants = [
            ts,
            ts.to_pydatetime(),
            ts.to_datetime64().astype("datetime64[ns]"),
            ts.to_datetime64().astype("datetime64[D]"),
        ]

        for variant in ts_variants:
            res = tdobj + variant
            if box_with_array is DataFrame:
                assert res.iloc[1, 1] is NaT
            else:
                assert res[1] is NaT

    def test_tdi_add_overflow(self):
        # See GH#14068
        # preliminary test scalar analogue of vectorized tests below
        # TODO: Make raised error message more informative and test
        with pytest.raises(OutOfBoundsDatetime, match="10155196800000000000"):
            pd.to_timedelta(106580, "D") + Timestamp("2000")
        with pytest.raises(OutOfBoundsDatetime, match="10155196800000000000"):
            Timestamp("2000") + pd.to_timedelta(106580, "D")

        _NaT = NaT._value + 1
        msg = "Overflow in int64 addition"
        with pytest.raises(OverflowError, match=msg):
            pd.to_timedelta([106580], "D") + Timestamp("2000")
        with pytest.raises(OverflowError, match=msg):
            Timestamp("2000") + pd.to_timedelta([106580], "D")
        with pytest.raises(OverflowError, match=msg):
            pd.to_timedelta([_NaT]) - Timedelta("1 days")
        with pytest.raises(OverflowError, match=msg):
            pd.to_timedelta(["5 days", _NaT]) - Timedelta("1 days")
        with pytest.raises(OverflowError, match=msg):
            (
                pd.to_timedelta([_NaT, "5 days", "1 hours"])
                - pd.to_timedelta(["7 seconds", _NaT, "4 hours"])
            )

        # These should not overflow!
        exp = TimedeltaIndex([NaT])
        result = pd.to_timedelta([NaT]) - Timedelta("1 days")
        tm.assert_index_equal(result, exp)

        exp = TimedeltaIndex(["4 days", NaT])
        result = pd.to_timedelta(["5 days", NaT]) - Timedelta("1 days")
        tm.assert_index_equal(result, exp)

        exp = TimedeltaIndex([NaT, NaT, "5 hours"])
        result = pd.to_timedelta([NaT, "5 days", "1 hours"]) + pd.to_timedelta(
            ["7 seconds", NaT, "4 hours"]
        )
        tm.assert_index_equal(result, exp)


class TestTimedeltaArraylikeAddSubOps:
    # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__

    def test_sub_nat_retain_unit(self):
        ser = pd.to_timedelta(Series(["00:00:01"])).astype("m8[s]")

        result = ser - NaT
        expected = Series([NaT], dtype="m8[s]")
        tm.assert_series_equal(result, expected)

    # TODO: moved from tests.indexes.timedeltas.test_arithmetic; needs
    #  parametrization+de-duplication
    def test_timedelta_ops_with_missing_values(self):
        # setup
        s1 = pd.to_timedelta(Series(["00:00:01"]))
        s2 = pd.to_timedelta(Series(["00:00:02"]))

        sn = pd.to_timedelta(Series([NaT], dtype="m8[ns]"))

        df1 = DataFrame(["00:00:01"]).apply(pd.to_timedelta)
        df2 = DataFrame(["00:00:02"]).apply(pd.to_timedelta)

        dfn = DataFrame([NaT._value]).apply(pd.to_timedelta)

        scalar1 = pd.to_timedelta("00:00:01")
        scalar2 = pd.to_timedelta("00:00:02")
        timedelta_NaT = pd.to_timedelta("NaT")

        actual = scalar1 + scalar1
        assert actual == scalar2
        actual = scalar2 - scalar1
        assert actual == scalar1

        actual = s1 + s1
        tm.assert_series_equal(actual, s2)
        actual = s2 - s1
        tm.assert_series_equal(actual, s1)

        actual = s1 + scalar1
        tm.assert_series_equal(actual, s2)
        actual = scalar1 + s1
        tm.assert_series_equal(actual, s2)
        actual = s2 - scalar1
        tm.assert_series_equal(actual, s1)
        actual = -scalar1 + s2
        tm.assert_series_equal(actual, s1)

        actual = s1 + timedelta_NaT
        tm.assert_series_equal(actual, sn)
        actual = timedelta_NaT + s1
        tm.assert_series_equal(actual, sn)
        actual = s1 - timedelta_NaT
        tm.assert_series_equal(actual, sn)
        actual = -timedelta_NaT + s1
        tm.assert_series_equal(actual, sn)

        msg = "unsupported operand type"
        with pytest.raises(TypeError, match=msg):
            s1 + np.nan
        with pytest.raises(TypeError, match=msg):
            np.nan + s1
        with pytest.raises(TypeError, match=msg):
            s1 - np.nan
        with pytest.raises(TypeError, match=msg):
            -np.nan + s1

        actual = s1 + NaT
        tm.assert_series_equal(actual, sn)
        actual = s2 - NaT
        tm.assert_series_equal(actual, sn)

        actual = s1 + df1
        tm.assert_frame_equal(actual, df2)
        actual = s2 - df1
        tm.assert_frame_equal(actual, df1)
        actual = df1 + s1
        tm.assert_frame_equal(actual, df2)
        actual = df2 - s1
        tm.assert_frame_equal(actual, df1)

        actual = df1 + df1
        tm.assert_frame_equal(actual, df2)
        actual = df2 - df1
        tm.assert_frame_equal(actual, df1)

        actual = df1 + scalar1
        tm.assert_frame_equal(actual, df2)
        actual = df2 - scalar1
        tm.assert_frame_equal(actual, df1)

        actual = df1 + timedelta_NaT
        tm.assert_frame_equal(actual, dfn)
        actual = df1 - timedelta_NaT
        tm.assert_frame_equal(actual, dfn)

        msg = "cannot subtract a datelike from|unsupported operand type"
        with pytest.raises(TypeError, match=msg):
            df1 + np.nan
        with pytest.raises(TypeError, match=msg):
            df1 - np.nan

        actual = df1 + NaT  # NaT is datetime, not timedelta
        tm.assert_frame_equal(actual, dfn)
        actual = df1 - NaT
        tm.assert_frame_equal(actual, dfn)

    # TODO: moved from tests.series.test_operators, needs splitting, cleanup,
    # de-duplication, box-parametrization...
    def test_operators_timedelta64(self):
        # series ops
        v1 = pd.date_range("2012-1-1", periods=3, freq="D")
        v2 = pd.date_range("2012-1-2", periods=3, freq="D")
        rs = Series(v2) - Series(v1)
        xp = Series(1e9 * 3600 * 24, rs.index).astype("int64").astype("timedelta64[ns]")
        tm.assert_series_equal(rs, xp)
        assert rs.dtype == "timedelta64[ns]"

        df = DataFrame({"A": v1})
        td = Series([timedelta(days=i) for i in range(3)])
        assert td.dtype == "timedelta64[ns]"

        # series on the rhs
        result = df["A"] - df["A"].shift()
        assert result.dtype == "timedelta64[ns]"

        result = df["A"] + td
        assert result.dtype == "M8[ns]"

        # scalar Timestamp on rhs
        maxa = df["A"].max()
        assert isinstance(maxa, Timestamp)

        resultb = df["A"] - df["A"].max()
        assert resultb.dtype == "timedelta64[ns]"

        # timestamp on lhs
        result = resultb + df["A"]
        values = [Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103")]
        expected = Series(values, dtype="M8[ns]", name="A")
        tm.assert_series_equal(result, expected)

        # datetimes on rhs
        result = df["A"] - datetime(2001, 1, 1)
        expected = Series([timedelta(days=4017 + i) for i in range(3)], name="A")
        tm.assert_series_equal(result, expected)
        assert result.dtype == "m8[ns]"

        d = datetime(2001, 1, 1, 3, 4)
        resulta = df["A"] - d
        assert resulta.dtype == "m8[ns]"

        # roundtrip
        resultb = resulta + d
        tm.assert_series_equal(df["A"], resultb)

        # timedeltas on rhs
        td = timedelta(days=1)
        resulta = df["A"] + td
        resultb = resulta - td
        tm.assert_series_equal(resultb, df["A"])
        assert resultb.dtype == "M8[ns]"

        # roundtrip
        td = timedelta(minutes=5, seconds=3)
        resulta = df["A"] + td
        resultb = resulta - td
        tm.assert_series_equal(df["A"], resultb)
        assert resultb.dtype == "M8[ns]"

        # inplace
        value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1))
        rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1))
        assert rs[2] == value

    def test_timedelta64_ops_nat(self):
        # GH 11349
        timedelta_series = Series([NaT, Timedelta("1s")])
        nat_series_dtype_timedelta = Series([NaT, NaT], dtype="timedelta64[ns]")
        single_nat_dtype_timedelta = Series([NaT], dtype="timedelta64[ns]")

        # subtraction
        tm.assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta)
        tm.assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta)

        tm.assert_series_equal(
            timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta
        )
        tm.assert_series_equal(
            -single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta
        )

        # addition
        tm.assert_series_equal(
            nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta
        )
        tm.assert_series_equal(
            NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta
        )

        tm.assert_series_equal(
            nat_series_dtype_timedelta + single_nat_dtype_timedelta,
            nat_series_dtype_timedelta,
        )
        tm.assert_series_equal(
            single_nat_dtype_timedelta + nat_series_dtype_timedelta,
            nat_series_dtype_timedelta,
        )

        tm.assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta)
        tm.assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta)

        tm.assert_series_equal(
            timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta
        )
        tm.assert_series_equal(
            single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta
        )

        tm.assert_series_equal(
            nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta
        )
        tm.assert_series_equal(
            NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta
        )

        tm.assert_series_equal(
            nat_series_dtype_timedelta + single_nat_dtype_timedelta,
            nat_series_dtype_timedelta,
        )
        tm.assert_series_equal(
            single_nat_dtype_timedelta + nat_series_dtype_timedelta,
            nat_series_dtype_timedelta,
        )

        # multiplication
        tm.assert_series_equal(
            nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta
        )
        tm.assert_series_equal(
            1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta
        )

        tm.assert_series_equal(timedelta_series * 1, timedelta_series)
        tm.assert_series_equal(1 * timedelta_series, timedelta_series)

        tm.assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta("1.5s")]))
        tm.assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta("1.5s")]))

        tm.assert_series_equal(timedelta_series * np.nan, nat_series_dtype_timedelta)
        tm.assert_series_equal(np.nan * timedelta_series, nat_series_dtype_timedelta)

        # division
        tm.assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta("0.5s")]))
        tm.assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta("0.5s")]))
        tm.assert_series_equal(timedelta_series / np.nan, nat_series_dtype_timedelta)

    # -------------------------------------------------------------
    # Binary operations td64 arraylike and datetime-like

    @pytest.mark.parametrize("cls", [Timestamp, datetime, np.datetime64])
    def test_td64arr_add_sub_datetimelike_scalar(
        self, cls, box_with_array, tz_naive_fixture
    ):
        # GH#11925, GH#29558, GH#23215
        tz = tz_naive_fixture

        dt_scalar = Timestamp("2012-01-01", tz=tz)
        if cls is datetime:
            ts = dt_scalar.to_pydatetime()
        elif cls is np.datetime64:
            if tz_naive_fixture is not None:
                pytest.skip(f"{cls} doesn support {tz_naive_fixture}")
            ts = dt_scalar.to_datetime64()
        else:
            ts = dt_scalar

        tdi = timedelta_range("1 day", periods=3)
        expected = pd.date_range("2012-01-02", periods=3, tz=tz)

        tdarr = tm.box_expected(tdi, box_with_array)
        expected = tm.box_expected(expected, box_with_array)

        tm.assert_equal(ts + tdarr, expected)
        tm.assert_equal(tdarr + ts, expected)

        expected2 = pd.date_range("2011-12-31", periods=3, freq="-1D", tz=tz)
        expected2 = tm.box_expected(expected2, box_with_array)

        tm.assert_equal(ts - tdarr, expected2)
        tm.assert_equal(ts + (-tdarr), expected2)

        msg = "cannot subtract a datelike"
        with pytest.raises(TypeError, match=msg):
            tdarr - ts

    def test_td64arr_add_datetime64_nat(self, box_with_array):
        # GH#23215
        other = np.datetime64("NaT")

        tdi = timedelta_range("1 day", periods=3)
        expected = DatetimeIndex(["NaT", "NaT", "NaT"], dtype="M8[ns]")

        tdser = tm.box_expected(tdi, box_with_array)
        expected = tm.box_expected(expected, box_with_array)

        tm.assert_equal(tdser + other, expected)
        tm.assert_equal(other + tdser, expected)

    def test_td64arr_sub_dt64_array(self, box_with_array):
        dti = pd.date_range("2016-01-01", periods=3)
        tdi = TimedeltaIndex(["-1 Day"] * 3)
        dtarr = dti.values
        expected = DatetimeIndex(dtarr) - tdi

        tdi = tm.box_expected(tdi, box_with_array)
        expected = tm.box_expected(expected, box_with_array)

        msg = "cannot subtract a datelike from"
        with pytest.raises(TypeError, match=msg):
            tdi - dtarr

        # TimedeltaIndex.__rsub__
        result = dtarr - tdi
        tm.assert_equal(result, expected)

    def test_td64arr_add_dt64_array(self, box_with_array):
        dti = pd.date_range("2016-01-01", periods=3)
        tdi = TimedeltaIndex(["-1 Day"] * 3)
        dtarr = dti.values
        expected = DatetimeIndex(dtarr) + tdi

        tdi = tm.box_expected(tdi, box_with_array)
        expected = tm.box_expected(expected, box_with_array)

        result = tdi + dtarr
        tm.assert_equal(result, expected)
        result = dtarr + tdi
        tm.assert_equal(result, expected)

    # ------------------------------------------------------------------
    # Invalid __add__/__sub__ operations

    @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "h"])
    @pytest.mark.parametrize("tdi_freq", [None, "h"])
    def test_td64arr_sub_periodlike(
        self, box_with_array, box_with_array2, tdi_freq, pi_freq
    ):
        # GH#20049 subtracting PeriodIndex should raise TypeError
        tdi = TimedeltaIndex(["1 hours", "2 hours"], freq=tdi_freq)
        dti = Timestamp("2018-03-07 17:16:40") + tdi
        pi = dti.to_period(pi_freq)
        per = pi[0]

        tdi = tm.box_expected(tdi, box_with_array)
        pi = tm.box_expected(pi, box_with_array2)
        msg = "cannot subtract|unsupported operand type"
        with pytest.raises(TypeError, match=msg):
            tdi - pi

        # GH#13078 subtraction of Period scalar not supported
        with pytest.raises(TypeError, match=msg):
            tdi - per

    @pytest.mark.parametrize(
        "other",
        [
            # GH#12624 for str case
            "a",
            # GH#19123
            1,
            1.5,
            np.array(2),
        ],
    )
    def test_td64arr_addsub_numeric_scalar_invalid(self, box_with_array, other):
        # vector-like others are tested in test_td64arr_add_sub_numeric_arr_invalid
        tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
        tdarr = tm.box_expected(tdser, box_with_array)

        assert_invalid_addsub_type(tdarr, other)

    @pytest.mark.parametrize(
        "vec",
        [
            np.array([1, 2, 3]),
            Index([1, 2, 3]),
            Series([1, 2, 3]),
            DataFrame([[1, 2, 3]]),
        ],
        ids=lambda x: type(x).__name__,
    )
    def test_td64arr_addsub_numeric_arr_invalid(
        self, box_with_array, vec, any_real_numpy_dtype
    ):
        tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
        tdarr = tm.box_expected(tdser, box_with_array)

        vector = vec.astype(any_real_numpy_dtype)
        assert_invalid_addsub_type(tdarr, vector)

    def test_td64arr_add_sub_int(self, box_with_array, one):
        # Variants of `one` for #19012, deprecated GH#22535
        rng = timedelta_range("1 days 09:00:00", freq="h", periods=10)
        tdarr = tm.box_expected(rng, box_with_array)

        msg = "Addition/subtraction of integers"
        assert_invalid_addsub_type(tdarr, one, msg)

        # TODO: get inplace ops into assert_invalid_addsub_type
        with pytest.raises(TypeError, match=msg):
            tdarr += one
        with pytest.raises(TypeError, match=msg):
            tdarr -= one

    def test_td64arr_add_sub_integer_array(self, box_with_array):
        # GH#19959, deprecated GH#22535
        # GH#22696 for DataFrame case, check that we don't dispatch to numpy
        #  implementation, which treats int64 as m8[ns]
        box = box_with_array
        xbox = np.ndarray if box is pd.array else box

        rng = timedelta_range("1 days 09:00:00", freq="h", periods=3)
        tdarr = tm.box_expected(rng, box)
        other = tm.box_expected([4, 3, 2], xbox)

        msg = "Addition/subtraction of integers and integer-arrays"
        assert_invalid_addsub_type(tdarr, other, msg)

    def test_td64arr_addsub_integer_array_no_freq(self, box_with_array):
        # GH#19959
        box = box_with_array
        xbox = np.ndarray if box is pd.array else box

        tdi = TimedeltaIndex(["1 Day", "NaT", "3 Hours"])
        tdarr = tm.box_expected(tdi, box)
        other = tm.box_expected([14, -1, 16], xbox)

        msg = "Addition/subtraction of integers"
        assert_invalid_addsub_type(tdarr, other, msg)

    # ------------------------------------------------------------------
    # Operations with timedelta-like others

    def test_td64arr_add_sub_td64_array(self, box_with_array):
        box = box_with_array
        dti = pd.date_range("2016-01-01", periods=3)
        tdi = dti - dti.shift(1)
        tdarr = tdi.values

        expected = 2 * tdi
        tdi = tm.box_expected(tdi, box)
        expected = tm.box_expected(expected, box)

        result = tdi + tdarr
        tm.assert_equal(result, expected)
        result = tdarr + tdi
        tm.assert_equal(result, expected)

        expected_sub = 0 * tdi
        result = tdi - tdarr
        tm.assert_equal(result, expected_sub)
        result = tdarr - tdi
        tm.assert_equal(result, expected_sub)

    def test_td64arr_add_sub_tdi(self, box_with_array, names):
        # GH#17250 make sure result dtype is correct
        # GH#19043 make sure names are propagated correctly
        box = box_with_array
        exname = get_expected_name(box, names)

        tdi = TimedeltaIndex(["0 days", "1 day"], name=names[1])
        tdi = np.array(tdi) if box in [tm.to_array, pd.array] else tdi
        ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[0])
        expected = Series([Timedelta(hours=3), Timedelta(days=1, hours=4)], name=exname)

        ser = tm.box_expected(ser, box)
        expected = tm.box_expected(expected, box)

        result = tdi + ser
        tm.assert_equal(result, expected)
        assert_dtype(result, "timedelta64[ns]")

        result = ser + tdi
        tm.assert_equal(result, expected)
        assert_dtype(result, "timedelta64[ns]")

        expected = Series(
            [Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=exname
        )
        expected = tm.box_expected(expected, box)

        result = tdi - ser
        tm.assert_equal(result, expected)
        assert_dtype(result, "timedelta64[ns]")

        result = ser - tdi
        tm.assert_equal(result, -expected)
        assert_dtype(result, "timedelta64[ns]")

    @pytest.mark.parametrize("tdnat", [np.timedelta64("NaT"), NaT])
    def test_td64arr_add_sub_td64_nat(self, box_with_array, tdnat):
        # GH#18808, GH#23320 special handling for timedelta64("NaT")
        box = box_with_array
        tdi = TimedeltaIndex([NaT, Timedelta("1s")])
        expected = TimedeltaIndex(["NaT"] * 2)

        obj = tm.box_expected(tdi, box)
        expected = tm.box_expected(expected, box)

        result = obj + tdnat
        tm.assert_equal(result, expected)
        result = tdnat + obj
        tm.assert_equal(result, expected)
        result = obj - tdnat
        tm.assert_equal(result, expected)
        result = tdnat - obj
        tm.assert_equal(result, expected)

    def test_td64arr_add_timedeltalike(self, two_hours, box_with_array):
        # only test adding/sub offsets as + is now numeric
        # GH#10699 for Tick cases
        box = box_with_array
        rng = timedelta_range("1 days", "10 days")
        expected = timedelta_range("1 days 02:00:00", "10 days 02:00:00", freq="D")
        rng = tm.box_expected(rng, box)
        expected = tm.box_expected(expected, box)

        result = rng + two_hours
        tm.assert_equal(result, expected)

        result = two_hours + rng
        tm.assert_equal(result, expected)

    def test_td64arr_sub_timedeltalike(self, two_hours, box_with_array):
        # only test adding/sub offsets as - is now numeric
        # GH#10699 for Tick cases
        box = box_with_array
        rng = timedelta_range("1 days", "10 days")
        expected = timedelta_range("0 days 22:00:00", "9 days 22:00:00")

        rng = tm.box_expected(rng, box)
        expected = tm.box_expected(expected, box)

        result = rng - two_hours
        tm.assert_equal(result, expected)

        result = two_hours - rng
        tm.assert_equal(result, -expected)

    # ------------------------------------------------------------------
    # __add__/__sub__ with DateOffsets and arrays of DateOffsets

    def test_td64arr_add_sub_offset_index(self, names, box_with_array):
        # GH#18849, GH#19744
        box = box_with_array
        exname = get_expected_name(box, names)

        tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"], name=names[0])
        other = Index([offsets.Hour(n=1), offsets.Minute(n=-2)], name=names[1])
        other = np.array(other) if box in [tm.to_array, pd.array] else other

        expected = TimedeltaIndex(
            [tdi[n] + other[n] for n in range(len(tdi))], freq="infer", name=exname
        )
        expected_sub = TimedeltaIndex(
            [tdi[n] - other[n] for n in range(len(tdi))], freq="infer", name=exname
        )

        tdi = tm.box_expected(tdi, box)
        expected = tm.box_expected(expected, box).astype(object, copy=False)
        expected_sub = tm.box_expected(expected_sub, box).astype(object, copy=False)

        with tm.assert_produces_warning(PerformanceWarning):
            res = tdi + other
        tm.assert_equal(res, expected)

        with tm.assert_produces_warning(PerformanceWarning):
            res2 = other + tdi
        tm.assert_equal(res2, expected)

        with tm.assert_produces_warning(PerformanceWarning):
            res_sub = tdi - other
        tm.assert_equal(res_sub, expected_sub)

    def test_td64arr_add_sub_offset_array(self, box_with_array):
        # GH#18849, GH#18824
        box = box_with_array
        tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"])
        other = np.array([offsets.Hour(n=1), offsets.Minute(n=-2)])

        expected = TimedeltaIndex(
            [tdi[n] + other[n] for n in range(len(tdi))], freq="infer"
        )
        expected_sub = TimedeltaIndex(
            [tdi[n] - other[n] for n in range(len(tdi))], freq="infer"
        )

        tdi = tm.box_expected(tdi, box)
        expected = tm.box_expected(expected, box).astype(object)

        with tm.assert_produces_warning(PerformanceWarning):
            res = tdi + other
        tm.assert_equal(res, expected)

        with tm.assert_produces_warning(PerformanceWarning):
            res2 = other + tdi
        tm.assert_equal(res2, expected)

        expected_sub = tm.box_expected(expected_sub, box_with_array).astype(object)
        with tm.assert_produces_warning(PerformanceWarning):
            res_sub = tdi - other
        tm.assert_equal(res_sub, expected_sub)

    def test_td64arr_with_offset_series(self, names, box_with_array):
        # GH#18849
        box = box_with_array
        box2 = Series if box in [Index, tm.to_array, pd.array] else box
        exname = get_expected_name(box, names)

        tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"], name=names[0])
        other = Series([offsets.Hour(n=1), offsets.Minute(n=-2)], name=names[1])

        expected_add = Series(
            [tdi[n] + other[n] for n in range(len(tdi))], name=exname, dtype=object
        )
        obj = tm.box_expected(tdi, box)
        expected_add = tm.box_expected(expected_add, box2).astype(object)

        with tm.assert_produces_warning(PerformanceWarning):
            res = obj + other
        tm.assert_equal(res, expected_add)

        with tm.assert_produces_warning(PerformanceWarning):
            res2 = other + obj
        tm.assert_equal(res2, expected_add)

        expected_sub = Series(
            [tdi[n] - other[n] for n in range(len(tdi))], name=exname, dtype=object
        )
        expected_sub = tm.box_expected(expected_sub, box2).astype(object)

        with tm.assert_produces_warning(PerformanceWarning):
            res3 = obj - other
        tm.assert_equal(res3, expected_sub)

    @pytest.mark.parametrize("obox", [np.array, Index, Series])
    def test_td64arr_addsub_anchored_offset_arraylike(self, obox, box_with_array):
        # GH#18824
        tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"])
        tdi = tm.box_expected(tdi, box_with_array)

        anchored = obox([offsets.MonthEnd(), offsets.Day(n=2)])

        # addition/subtraction ops with anchored offsets should issue
        # a PerformanceWarning and _then_ raise a TypeError.
        msg = "has incorrect type|cannot add the type MonthEnd"
        with pytest.raises(TypeError, match=msg):
            with tm.assert_produces_warning(PerformanceWarning):
                tdi + anchored
        with pytest.raises(TypeError, match=msg):
            with tm.assert_produces_warning(PerformanceWarning):
                anchored + tdi
        with pytest.raises(TypeError, match=msg):
            with tm.assert_produces_warning(PerformanceWarning):
                tdi - anchored
        with pytest.raises(TypeError, match=msg):
            with tm.assert_produces_warning(PerformanceWarning):
                anchored - tdi

    # ------------------------------------------------------------------
    # Unsorted

    def test_td64arr_add_sub_object_array(self, box_with_array):
        box = box_with_array
        xbox = np.ndarray if box is pd.array else box

        tdi = timedelta_range("1 day", periods=3, freq="D")
        tdarr = tm.box_expected(tdi, box)

        other = np.array([Timedelta(days=1), offsets.Day(2), Timestamp("2000-01-04")])

        with tm.assert_produces_warning(PerformanceWarning):
            result = tdarr + other

        expected = Index(
            [Timedelta(days=2), Timedelta(days=4), Timestamp("2000-01-07")]
        )
        expected = tm.box_expected(expected, xbox).astype(object)
        tm.assert_equal(result, expected)

        msg = "unsupported operand type|cannot subtract a datelike"
        with pytest.raises(TypeError, match=msg):
            with tm.assert_produces_warning(PerformanceWarning):
                tdarr - other

        with tm.assert_produces_warning(PerformanceWarning):
            result = other - tdarr

        expected = Index([Timedelta(0), Timedelta(0), Timestamp("2000-01-01")])
        expected = tm.box_expected(expected, xbox).astype(object)
        tm.assert_equal(result, expected)


class TestTimedeltaArraylikeMulDivOps:
    # Tests for timedelta64[ns]
    # __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__

    # ------------------------------------------------------------------
    # Multiplication
    # organized with scalar others first, then array-like

    def test_td64arr_mul_int(self, box_with_array):
        idx = TimedeltaIndex(np.arange(5, dtype="int64"))
        idx = tm.box_expected(idx, box_with_array)

        result = idx * 1
        tm.assert_equal(result, idx)

        result = 1 * idx
        tm.assert_equal(result, idx)

    def test_td64arr_mul_tdlike_scalar_raises(self, two_hours, box_with_array):
        rng = timedelta_range("1 days", "10 days", name="foo")
        rng = tm.box_expected(rng, box_with_array)
        msg = "|".join(
            [
                "argument must be an integer",
                "cannot use operands with types dtype",
                "Cannot multiply with",
            ]
        )
        with pytest.raises(TypeError, match=msg):
            rng * two_hours

    def test_tdi_mul_int_array_zerodim(self, box_with_array):
        rng5 = np.arange(5, dtype="int64")
        idx = TimedeltaIndex(rng5)
        expected = TimedeltaIndex(rng5 * 5)

        idx = tm.box_expected(idx, box_with_array)
        expected = tm.box_expected(expected, box_with_array)

        result = idx * np.array(5, dtype="int64")
        tm.assert_equal(result, expected)

    def test_tdi_mul_int_array(self, box_with_array):
        rng5 = np.arange(5, dtype="int64")
        idx = TimedeltaIndex(rng5)
        expected = TimedeltaIndex(rng5**2)

        idx = tm.box_expected(idx, box_with_array)
        expected = tm.box_expected(expected, box_with_array)

        result = idx * rng5
        tm.assert_equal(result, expected)

    def test_tdi_mul_int_series(self, box_with_array):
        box = box_with_array
        xbox = Series if box in [Index, tm.to_array, pd.array] else box

        idx = TimedeltaIndex(np.arange(5, dtype="int64"))
        expected = TimedeltaIndex(np.arange(5, dtype="int64") ** 2)

        idx = tm.box_expected(idx, box)
        expected = tm.box_expected(expected, xbox)

        result = idx * Series(np.arange(5, dtype="int64"))
        tm.assert_equal(result, expected)

    def test_tdi_mul_float_series(self, box_with_array):
        box = box_with_array
        xbox = Series if box in [Index, tm.to_array, pd.array] else box

        idx = TimedeltaIndex(np.arange(5, dtype="int64"))
        idx = tm.box_expected(idx, box)

        rng5f = np.arange(5, dtype="float64")
        expected = TimedeltaIndex(rng5f * (rng5f + 1.0))
        expected = tm.box_expected(expected, xbox)

        result = idx * Series(rng5f + 1.0)
        tm.assert_equal(result, expected)

    # TODO: Put Series/DataFrame in others?
    @pytest.mark.parametrize(
        "other",
        [
            np.arange(1, 11),
            Index(np.arange(1, 11), np.int64),
            Index(range(1, 11), np.uint64),
            Index(range(1, 11), np.float64),
            pd.RangeIndex(1, 11),
        ],
        ids=lambda x: type(x).__name__,
    )
    def test_tdi_rmul_arraylike(self, other, box_with_array):
        box = box_with_array

        tdi = TimedeltaIndex(["1 Day"] * 10)
        expected = timedelta_range("1 days", "10 days")._with_freq(None)

        tdi = tm.box_expected(tdi, box)
        xbox = get_upcast_box(tdi, other)

        expected = tm.box_expected(expected, xbox)

        result = other * tdi
        tm.assert_equal(result, expected)
        commute = tdi * other
        tm.assert_equal(commute, expected)

    # ------------------------------------------------------------------
    # __div__, __rdiv__

    def test_td64arr_div_nat_invalid(self, box_with_array):
        # don't allow division by NaT (maybe could in the future)
        rng = timedelta_range("1 days", "10 days", name="foo")
        rng = tm.box_expected(rng, box_with_array)

        with pytest.raises(TypeError, match="unsupported operand type"):
            rng / NaT
        with pytest.raises(TypeError, match="Cannot divide NaTType by"):
            NaT / rng

        dt64nat = np.datetime64("NaT", "ns")
        msg = "|".join(
            [
                # 'divide' on npdev as of 2021-12-18
                "ufunc '(true_divide|divide)' cannot use operands",
                "cannot perform __r?truediv__",
                "Cannot divide datetime64 by TimedeltaArray",
            ]
        )
        with pytest.raises(TypeError, match=msg):
            rng / dt64nat
        with pytest.raises(TypeError, match=msg):
            dt64nat / rng

    def test_td64arr_div_td64nat(self, box_with_array):
        # GH#23829
        box = box_with_array
        xbox = np.ndarray if box is pd.array else box

        rng = timedelta_range("1 days", "10 days")
        rng = tm.box_expected(rng, box)

        other = np.timedelta64("NaT")

        expected = np.array([np.nan] * 10)
        expected = tm.box_expected(expected, xbox)

        result = rng / other
        tm.assert_equal(result, expected)

        result = other / rng
        tm.assert_equal(result, expected)

    def test_td64arr_div_int(self, box_with_array):
        idx = TimedeltaIndex(np.arange(5, dtype="int64"))
        idx = tm.box_expected(idx, box_with_array)

        result = idx / 1
        tm.assert_equal(result, idx)

        with pytest.raises(TypeError, match="Cannot divide"):
            # GH#23829
            1 / idx

    def test_td64arr_div_tdlike_scalar(self, two_hours, box_with_array):
        # GH#20088, GH#22163 ensure DataFrame returns correct dtype
        box = box_with_array
        xbox = np.ndarray if box is pd.array else box

        rng = timedelta_range("1 days", "10 days", name="foo")
        expected = Index((np.arange(10) + 1) * 12, dtype=np.float64, name="foo")

        rng = tm.box_expected(rng, box)
        expected = tm.box_expected(expected, xbox)

        result = rng / two_hours
        tm.assert_equal(result, expected)

        result = two_hours / rng
        expected = 1 / expected
        tm.assert_equal(result, expected)

    @pytest.mark.parametrize("m", [1, 3, 10])
    @pytest.mark.parametrize("unit", ["D", "h", "m", "s", "ms", "us", "ns"])
    def test_td64arr_div_td64_scalar(self, m, unit, box_with_array):
        box = box_with_array
        xbox = np.ndarray if box is pd.array else box

        ser = Series([Timedelta(days=59)] * 3)
        ser[2] = np.nan
        flat = ser
        ser = tm.box_expected(ser, box)

        # op
        expected = Series([x / np.timedelta64(m, unit) for x in flat])
        expected = tm.box_expected(expected, xbox)
        result = ser / np.timedelta64(m, unit)
        tm.assert_equal(result, expected)

        # reverse op
        expected = Series([Timedelta(np.timedelta64(m, unit)) / x for x in flat])
        expected = tm.box_expected(expected, xbox)
        result = np.timedelta64(m, unit) / ser
        tm.assert_equal(result, expected)

    def test_td64arr_div_tdlike_scalar_with_nat(self, two_hours, box_with_array):
        box = box_with_array
        xbox = np.ndarray if box is pd.array else box

        rng = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo")
        expected = Index([12, np.nan, 24], dtype=np.float64, name="foo")

        rng = tm.box_expected(rng, box)
        expected = tm.box_expected(expected, xbox)

        result = rng / two_hours
        tm.assert_equal(result, expected)

        result = two_hours / rng
        expected = 1 / expected
        tm.assert_equal(result, expected)

    def test_td64arr_div_td64_ndarray(self, box_with_array):
        # GH#22631
        box = box_with_array
        xbox = np.ndarray if box is pd.array else box

        rng = TimedeltaIndex(["1 days", NaT, "2 days"])
        expected = Index([12, np.nan, 24], dtype=np.float64)

        rng = tm.box_expected(rng, box)
        expected = tm.box_expected(expected, xbox)

        other = np.array([2, 4, 2], dtype="m8[h]")
        result = rng / other
        tm.assert_equal(result, expected)

        result = rng / tm.box_expected(other, box)
        tm.assert_equal(result, expected)

        result = rng / other.astype(object)
        tm.assert_equal(result, expected.astype(object))

        result = rng / list(other)
        tm.assert_equal(result, expected)

        # reversed op
        expected = 1 / expected
        result = other / rng
        tm.assert_equal(result, expected)

        result = tm.box_expected(other, box) / rng
        tm.assert_equal(result, expected)

        result = other.astype(object) / rng
        tm.assert_equal(result, expected)

        result = list(other) / rng
        tm.assert_equal(result, expected)

    def test_tdarr_div_length_mismatch(self, box_with_array):
        rng = TimedeltaIndex(["1 days", NaT, "2 days"])
        mismatched = [1, 2, 3, 4]

        rng = tm.box_expected(rng, box_with_array)
        msg = "Cannot divide vectors|Unable to coerce to Series"
        for obj in [mismatched, mismatched[:2]]:
            # one shorter, one longer
            for other in [obj, np.array(obj), Index(obj)]:
                with pytest.raises(ValueError, match=msg):
                    rng / other
                with pytest.raises(ValueError, match=msg):
                    other / rng

    def test_td64_div_object_mixed_result(self, box_with_array):
        # Case where we having a NaT in the result inseat of timedelta64("NaT")
        #  is misleading
        orig = timedelta_range("1 Day", periods=3).insert(1, NaT)
        tdi = tm.box_expected(orig, box_with_array, transpose=False)

        other = np.array([orig[0], 1.5, 2.0, orig[2]], dtype=object)
        other = tm.box_expected(other, box_with_array, transpose=False)

        res = tdi / other

        expected = Index([1.0, np.timedelta64("NaT", "ns"), orig[0], 1.5], dtype=object)
        expected = tm.box_expected(expected, box_with_array, transpose=False)
        if isinstance(expected, NumpyExtensionArray):
            expected = expected.to_numpy()
        tm.assert_equal(res, expected)
        if box_with_array is DataFrame:
            # We have a np.timedelta64(NaT), not pd.NaT
            assert isinstance(res.iloc[1, 0], np.timedelta64)

        res = tdi // other

        expected = Index([1, np.timedelta64("NaT", "ns"), orig[0], 1], dtype=object)
        expected = tm.box_expected(expected, box_with_array, transpose=False)
        if isinstance(expected, NumpyExtensionArray):
            expected = expected.to_numpy()
        tm.assert_equal(res, expected)
        if box_with_array is DataFrame:
            # We have a np.timedelta64(NaT), not pd.NaT
            assert isinstance(res.iloc[1, 0], np.timedelta64)

    # ------------------------------------------------------------------
    # __floordiv__, __rfloordiv__

    def test_td64arr_floordiv_td64arr_with_nat(
        self, box_with_array, using_array_manager
    ):
        # GH#35529
        box = box_with_array
        xbox = np.ndarray if box is pd.array else box

        left = Series([1000, 222330, 30], dtype="timedelta64[ns]")
        right = Series([1000, 222330, None], dtype="timedelta64[ns]")

        left = tm.box_expected(left, box)
        right = tm.box_expected(right, box)

        expected = np.array([1.0, 1.0, np.nan], dtype=np.float64)
        expected = tm.box_expected(expected, xbox)
        if box is DataFrame and using_array_manager:
            # INFO(ArrayManager) floordiv returns integer, and ArrayManager
            # performs ops column-wise and thus preserves int64 dtype for
            # columns without missing values
            expected[[0, 1]] = expected[[0, 1]].astype("int64")

        with tm.maybe_produces_warning(
            RuntimeWarning, box is pd.array, check_stacklevel=False
        ):
            result = left // right

        tm.assert_equal(result, expected)

        # case that goes through __rfloordiv__ with arraylike
        with tm.maybe_produces_warning(
            RuntimeWarning, box is pd.array, check_stacklevel=False
        ):
            result = np.asarray(left) // right
        tm.assert_equal(result, expected)

    @pytest.mark.filterwarnings("ignore:invalid value encountered:RuntimeWarning")
    def test_td64arr_floordiv_tdscalar(self, box_with_array, scalar_td):
        # GH#18831, GH#19125
        box = box_with_array
        xbox = np.ndarray if box is pd.array else box
        td = Timedelta("5m3s")  # i.e. (scalar_td - 1sec) / 2

        td1 = Series([td, td, NaT], dtype="m8[ns]")
        td1 = tm.box_expected(td1, box, transpose=False)

        expected = Series([0, 0, np.nan])
        expected = tm.box_expected(expected, xbox, transpose=False)

        result = td1 // scalar_td
        tm.assert_equal(result, expected)

        # Reversed op
        expected = Series([2, 2, np.nan])
        expected = tm.box_expected(expected, xbox, transpose=False)

        result = scalar_td // td1
        tm.assert_equal(result, expected)

        # same thing buts let's be explicit about calling __rfloordiv__
        result = td1.__rfloordiv__(scalar_td)
        tm.assert_equal(result, expected)

    def test_td64arr_floordiv_int(self, box_with_array):
        idx = TimedeltaIndex(np.arange(5, dtype="int64"))
        idx = tm.box_expected(idx, box_with_array)
        result = idx // 1
        tm.assert_equal(result, idx)

        pattern = "floor_divide cannot use operands|Cannot divide int by Timedelta*"
        with pytest.raises(TypeError, match=pattern):
            1 // idx

    # ------------------------------------------------------------------
    # mod, divmod
    # TODO: operations with timedelta-like arrays, numeric arrays,
    #  reversed ops

    def test_td64arr_mod_tdscalar(self, box_with_array, three_days):
        tdi = timedelta_range("1 Day", "9 days")
        tdarr = tm.box_expected(tdi, box_with_array)

        expected = TimedeltaIndex(["1 Day", "2 Days", "0 Days"] * 3)
        expected = tm.box_expected(expected, box_with_array)

        result = tdarr % three_days
        tm.assert_equal(result, expected)

        warn = None
        if box_with_array is DataFrame and isinstance(three_days, pd.DateOffset):
            warn = PerformanceWarning
            # TODO: making expected be object here a result of DataFrame.__divmod__
            #  being defined in a naive way that does not dispatch to the underlying
            #  array's __divmod__
            expected = expected.astype(object)

        with tm.assert_produces_warning(warn):
            result = divmod(tdarr, three_days)

        tm.assert_equal(result[1], expected)
        tm.assert_equal(result[0], tdarr // three_days)

    def test_td64arr_mod_int(self, box_with_array):
        tdi = timedelta_range("1 ns", "10 ns", periods=10)
        tdarr = tm.box_expected(tdi, box_with_array)

        expected = TimedeltaIndex(["1 ns", "0 ns"] * 5)
        expected = tm.box_expected(expected, box_with_array)

        result = tdarr % 2
        tm.assert_equal(result, expected)

        msg = "Cannot divide int by"
        with pytest.raises(TypeError, match=msg):
            2 % tdarr

        result = divmod(tdarr, 2)
        tm.assert_equal(result[1], expected)
        tm.assert_equal(result[0], tdarr // 2)

    def test_td64arr_rmod_tdscalar(self, box_with_array, three_days):
        tdi = timedelta_range("1 Day", "9 days")
        tdarr = tm.box_expected(tdi, box_with_array)

        expected = ["0 Days", "1 Day", "0 Days"] + ["3 Days"] * 6
        expected = TimedeltaIndex(expected)
        expected = tm.box_expected(expected, box_with_array)

        result = three_days % tdarr
        tm.assert_equal(result, expected)

        result = divmod(three_days, tdarr)
        tm.assert_equal(result[1], expected)
        tm.assert_equal(result[0], three_days // tdarr)

    # ------------------------------------------------------------------
    # Operations with invalid others

    def test_td64arr_mul_tdscalar_invalid(self, box_with_array, scalar_td):
        td1 = Series([timedelta(minutes=5, seconds=3)] * 3)
        td1.iloc[2] = np.nan

        td1 = tm.box_expected(td1, box_with_array)

        # check that we are getting a TypeError
        # with 'operate' (from core/ops.py) for the ops that are not
        # defined
        pattern = "operate|unsupported|cannot|not supported"
        with pytest.raises(TypeError, match=pattern):
            td1 * scalar_td
        with pytest.raises(TypeError, match=pattern):
            scalar_td * td1

    def test_td64arr_mul_too_short_raises(self, box_with_array):
        idx = TimedeltaIndex(np.arange(5, dtype="int64"))
        idx = tm.box_expected(idx, box_with_array)
        msg = "|".join(
            [
                "cannot use operands with types dtype",
                "Cannot multiply with unequal lengths",
                "Unable to coerce to Series",
            ]
        )
        with pytest.raises(TypeError, match=msg):
            # length check before dtype check
            idx * idx[:3]
        with pytest.raises(ValueError, match=msg):
            idx * np.array([1, 2])

    def test_td64arr_mul_td64arr_raises(self, box_with_array):
        idx = TimedeltaIndex(np.arange(5, dtype="int64"))
        idx = tm.box_expected(idx, box_with_array)
        msg = "cannot use operands with types dtype"
        with pytest.raises(TypeError, match=msg):
            idx * idx

    # ------------------------------------------------------------------
    # Operations with numeric others

    def test_td64arr_mul_numeric_scalar(self, box_with_array, one):
        # GH#4521
        # divide/multiply by integers
        tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
        expected = Series(["-59 Days", "-59 Days", "NaT"], dtype="timedelta64[ns]")

        tdser = tm.box_expected(tdser, box_with_array)
        expected = tm.box_expected(expected, box_with_array)

        result = tdser * (-one)
        tm.assert_equal(result, expected)
        result = (-one) * tdser
        tm.assert_equal(result, expected)

        expected = Series(["118 Days", "118 Days", "NaT"], dtype="timedelta64[ns]")
        expected = tm.box_expected(expected, box_with_array)

        result = tdser * (2 * one)
        tm.assert_equal(result, expected)
        result = (2 * one) * tdser
        tm.assert_equal(result, expected)

    @pytest.mark.parametrize("two", [2, 2.0, np.array(2), np.array(2.0)])
    def test_td64arr_div_numeric_scalar(self, box_with_array, two):
        # GH#4521
        # divide/multiply by integers
        tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
        expected = Series(["29.5D", "29.5D", "NaT"], dtype="timedelta64[ns]")

        tdser = tm.box_expected(tdser, box_with_array)
        expected = tm.box_expected(expected, box_with_array)

        result = tdser / two
        tm.assert_equal(result, expected)

        with pytest.raises(TypeError, match="Cannot divide"):
            two / tdser

    @pytest.mark.parametrize("two", [2, 2.0, np.array(2), np.array(2.0)])
    def test_td64arr_floordiv_numeric_scalar(self, box_with_array, two):
        tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
        expected = Series(["29.5D", "29.5D", "NaT"], dtype="timedelta64[ns]")

        tdser = tm.box_expected(tdser, box_with_array)
        expected = tm.box_expected(expected, box_with_array)

        result = tdser // two
        tm.assert_equal(result, expected)

        with pytest.raises(TypeError, match="Cannot divide"):
            two // tdser

    @pytest.mark.parametrize(
        "vector",
        [np.array([20, 30, 40]), Index([20, 30, 40]), Series([20, 30, 40])],
        ids=lambda x: type(x).__name__,
    )
    def test_td64arr_rmul_numeric_array(
        self,
        box_with_array,
        vector,
        any_real_numpy_dtype,
    ):
        # GH#4521
        # divide/multiply by integers

        tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
        vector = vector.astype(any_real_numpy_dtype)

        expected = Series(["1180 Days", "1770 Days", "NaT"], dtype="timedelta64[ns]")

        tdser = tm.box_expected(tdser, box_with_array)
        xbox = get_upcast_box(tdser, vector)

        expected = tm.box_expected(expected, xbox)

        result = tdser * vector
        tm.assert_equal(result, expected)

        result = vector * tdser
        tm.assert_equal(result, expected)

    @pytest.mark.parametrize(
        "vector",
        [np.array([20, 30, 40]), Index([20, 30, 40]), Series([20, 30, 40])],
        ids=lambda x: type(x).__name__,
    )
    def test_td64arr_div_numeric_array(
        self, box_with_array, vector, any_real_numpy_dtype
    ):
        # GH#4521
        # divide/multiply by integers

        tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
        vector = vector.astype(any_real_numpy_dtype)

        expected = Series(["2.95D", "1D 23h 12m", "NaT"], dtype="timedelta64[ns]")

        tdser = tm.box_expected(tdser, box_with_array)
        xbox = get_upcast_box(tdser, vector)
        expected = tm.box_expected(expected, xbox)

        result = tdser / vector
        tm.assert_equal(result, expected)

        pattern = "|".join(
            [
                "true_divide'? cannot use operands",
                "cannot perform __div__",
                "cannot perform __truediv__",
                "unsupported operand",
                "Cannot divide",
                "ufunc 'divide' cannot use operands with types",
            ]
        )
        with pytest.raises(TypeError, match=pattern):
            vector / tdser

        result = tdser / vector.astype(object)
        if box_with_array is DataFrame:
            expected = [tdser.iloc[0, n] / vector[n] for n in range(len(vector))]
            expected = tm.box_expected(expected, xbox).astype(object)
            # We specifically expect timedelta64("NaT") here, not pd.NA
            msg = "The 'downcast' keyword in fillna"
            with tm.assert_produces_warning(FutureWarning, match=msg):
                expected[2] = expected[2].fillna(
                    np.timedelta64("NaT", "ns"), downcast=False
                )
        else:
            expected = [tdser[n] / vector[n] for n in range(len(tdser))]
            expected = [
                x if x is not NaT else np.timedelta64("NaT", "ns") for x in expected
            ]
            if xbox is tm.to_array:
                expected = tm.to_array(expected).astype(object)
            else:
                expected = xbox(expected, dtype=object)

        tm.assert_equal(result, expected)

        with pytest.raises(TypeError, match=pattern):
            vector.astype(object) / tdser

    def test_td64arr_mul_int_series(self, box_with_array, names):
        # GH#19042 test for correct name attachment
        box = box_with_array
        exname = get_expected_name(box, names)

        tdi = TimedeltaIndex(
            ["0days", "1day", "2days", "3days", "4days"], name=names[0]
        )
        # TODO: Should we be parametrizing over types for `ser` too?
        ser = Series([0, 1, 2, 3, 4], dtype=np.int64, name=names[1])

        expected = Series(
            ["0days", "1day", "4days", "9days", "16days"],
            dtype="timedelta64[ns]",
            name=exname,
        )

        tdi = tm.box_expected(tdi, box)
        xbox = get_upcast_box(tdi, ser)

        expected = tm.box_expected(expected, xbox)

        result = ser * tdi
        tm.assert_equal(result, expected)

        result = tdi * ser
        tm.assert_equal(result, expected)

    # TODO: Should we be parametrizing over types for `ser` too?
    def test_float_series_rdiv_td64arr(self, box_with_array, names):
        # GH#19042 test for correct name attachment
        box = box_with_array
        tdi = TimedeltaIndex(
            ["0days", "1day", "2days", "3days", "4days"], name=names[0]
        )
        ser = Series([1.5, 3, 4.5, 6, 7.5], dtype=np.float64, name=names[1])

        xname = names[2] if box not in [tm.to_array, pd.array] else names[1]
        expected = Series(
            [tdi[n] / ser[n] for n in range(len(ser))],
            dtype="timedelta64[ns]",
            name=xname,
        )

        tdi = tm.box_expected(tdi, box)
        xbox = get_upcast_box(tdi, ser)
        expected = tm.box_expected(expected, xbox)

        result = ser.__rtruediv__(tdi)
        if box is DataFrame:
            assert result is NotImplemented
        else:
            tm.assert_equal(result, expected)

    def test_td64arr_all_nat_div_object_dtype_numeric(self, box_with_array):
        # GH#39750 make sure we infer the result as td64
        tdi = TimedeltaIndex([NaT, NaT])

        left = tm.box_expected(tdi, box_with_array)
        right = np.array([2, 2.0], dtype=object)

        tdnat = np.timedelta64("NaT", "ns")
        expected = Index([tdnat] * 2, dtype=object)
        if box_with_array is not Index:
            expected = tm.box_expected(expected, box_with_array).astype(object)
            if box_with_array in [Series, DataFrame]:
                msg = "The 'downcast' keyword in fillna is deprecated"
                with tm.assert_produces_warning(FutureWarning, match=msg):
                    expected = expected.fillna(tdnat, downcast=False)  # GH#18463

        result = left / right
        tm.assert_equal(result, expected)

        result = left // right
        tm.assert_equal(result, expected)


class TestTimedelta64ArrayLikeArithmetic:
    # Arithmetic tests for timedelta64[ns] vectors fully parametrized over
    #  DataFrame/Series/TimedeltaIndex/TimedeltaArray.  Ideally all arithmetic
    #  tests will eventually end up here.

    def test_td64arr_pow_invalid(self, scalar_td, box_with_array):
        td1 = Series([timedelta(minutes=5, seconds=3)] * 3)
        td1.iloc[2] = np.nan

        td1 = tm.box_expected(td1, box_with_array)

        # check that we are getting a TypeError
        # with 'operate' (from core/ops.py) for the ops that are not
        # defined
        pattern = "operate|unsupported|cannot|not supported"
        with pytest.raises(TypeError, match=pattern):
            scalar_td**td1

        with pytest.raises(TypeError, match=pattern):
            td1**scalar_td


def test_add_timestamp_to_timedelta():
    # GH: 35897
    timestamp = Timestamp("2021-01-01")
    result = timestamp + timedelta_range("0s", "1s", periods=31)
    expected = DatetimeIndex(
        [
            timestamp
            + (
                pd.to_timedelta("0.033333333s") * i
                + pd.to_timedelta("0.000000001s") * divmod(i, 3)[0]
            )
            for i in range(31)
        ]
    )
    tm.assert_index_equal(result, expected)