File size: 12,439 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
from copy import deepcopy
import inspect
import pydoc
import numpy as np
import pytest
from pandas._config import using_pyarrow_string_dtype
from pandas._config.config import option_context
import pandas as pd
from pandas import (
DataFrame,
Series,
date_range,
timedelta_range,
)
import pandas._testing as tm
class TestDataFrameMisc:
def test_getitem_pop_assign_name(self, float_frame):
s = float_frame["A"]
assert s.name == "A"
s = float_frame.pop("A")
assert s.name == "A"
s = float_frame.loc[:, "B"]
assert s.name == "B"
s2 = s.loc[:]
assert s2.name == "B"
def test_get_axis(self, float_frame):
f = float_frame
assert f._get_axis_number(0) == 0
assert f._get_axis_number(1) == 1
assert f._get_axis_number("index") == 0
assert f._get_axis_number("rows") == 0
assert f._get_axis_number("columns") == 1
assert f._get_axis_name(0) == "index"
assert f._get_axis_name(1) == "columns"
assert f._get_axis_name("index") == "index"
assert f._get_axis_name("rows") == "index"
assert f._get_axis_name("columns") == "columns"
assert f._get_axis(0) is f.index
assert f._get_axis(1) is f.columns
with pytest.raises(ValueError, match="No axis named"):
f._get_axis_number(2)
with pytest.raises(ValueError, match="No axis.*foo"):
f._get_axis_name("foo")
with pytest.raises(ValueError, match="No axis.*None"):
f._get_axis_name(None)
with pytest.raises(ValueError, match="No axis named"):
f._get_axis_number(None)
def test_column_contains_raises(self, float_frame):
with pytest.raises(TypeError, match="unhashable type: 'Index'"):
float_frame.columns in float_frame
def test_tab_completion(self):
# DataFrame whose columns are identifiers shall have them in __dir__.
df = DataFrame([list("abcd"), list("efgh")], columns=list("ABCD"))
for key in list("ABCD"):
assert key in dir(df)
assert isinstance(df.__getitem__("A"), Series)
# DataFrame whose first-level columns are identifiers shall have
# them in __dir__.
df = DataFrame(
[list("abcd"), list("efgh")],
columns=pd.MultiIndex.from_tuples(list(zip("ABCD", "EFGH"))),
)
for key in list("ABCD"):
assert key in dir(df)
for key in list("EFGH"):
assert key not in dir(df)
assert isinstance(df.__getitem__("A"), DataFrame)
def test_display_max_dir_items(self):
# display.max_dir_items increaes the number of columns that are in __dir__.
columns = ["a" + str(i) for i in range(420)]
values = [range(420), range(420)]
df = DataFrame(values, columns=columns)
# The default value for display.max_dir_items is 100
assert "a99" in dir(df)
assert "a100" not in dir(df)
with option_context("display.max_dir_items", 300):
df = DataFrame(values, columns=columns)
assert "a299" in dir(df)
assert "a300" not in dir(df)
with option_context("display.max_dir_items", None):
df = DataFrame(values, columns=columns)
assert "a419" in dir(df)
def test_not_hashable(self):
empty_frame = DataFrame()
df = DataFrame([1])
msg = "unhashable type: 'DataFrame'"
with pytest.raises(TypeError, match=msg):
hash(df)
with pytest.raises(TypeError, match=msg):
hash(empty_frame)
@pytest.mark.xfail(using_pyarrow_string_dtype(), reason="surrogates not allowed")
def test_column_name_contains_unicode_surrogate(self):
# GH 25509
colname = "\ud83d"
df = DataFrame({colname: []})
# this should not crash
assert colname not in dir(df)
assert df.columns[0] == colname
def test_new_empty_index(self):
df1 = DataFrame(np.random.default_rng(2).standard_normal((0, 3)))
df2 = DataFrame(np.random.default_rng(2).standard_normal((0, 3)))
df1.index.name = "foo"
assert df2.index.name is None
def test_get_agg_axis(self, float_frame):
cols = float_frame._get_agg_axis(0)
assert cols is float_frame.columns
idx = float_frame._get_agg_axis(1)
assert idx is float_frame.index
msg = r"Axis must be 0 or 1 \(got 2\)"
with pytest.raises(ValueError, match=msg):
float_frame._get_agg_axis(2)
def test_empty(self, float_frame, float_string_frame):
empty_frame = DataFrame()
assert empty_frame.empty
assert not float_frame.empty
assert not float_string_frame.empty
# corner case
df = DataFrame({"A": [1.0, 2.0, 3.0], "B": ["a", "b", "c"]}, index=np.arange(3))
del df["A"]
assert not df.empty
def test_len(self, float_frame):
assert len(float_frame) == len(float_frame.index)
# single block corner case
arr = float_frame[["A", "B"]].values
expected = float_frame.reindex(columns=["A", "B"]).values
tm.assert_almost_equal(arr, expected)
def test_axis_aliases(self, float_frame):
f = float_frame
# reg name
expected = f.sum(axis=0)
result = f.sum(axis="index")
tm.assert_series_equal(result, expected)
expected = f.sum(axis=1)
result = f.sum(axis="columns")
tm.assert_series_equal(result, expected)
def test_class_axis(self):
# GH 18147
# no exception and no empty docstring
assert pydoc.getdoc(DataFrame.index)
assert pydoc.getdoc(DataFrame.columns)
def test_series_put_names(self, float_string_frame):
series = float_string_frame._series
for k, v in series.items():
assert v.name == k
def test_empty_nonzero(self):
df = DataFrame([1, 2, 3])
assert not df.empty
df = DataFrame(index=[1], columns=[1])
assert not df.empty
df = DataFrame(index=["a", "b"], columns=["c", "d"]).dropna()
assert df.empty
assert df.T.empty
@pytest.mark.parametrize(
"df",
[
DataFrame(),
DataFrame(index=[1]),
DataFrame(columns=[1]),
DataFrame({1: []}),
],
)
def test_empty_like(self, df):
assert df.empty
assert df.T.empty
def test_with_datetimelikes(self):
df = DataFrame(
{
"A": date_range("20130101", periods=10),
"B": timedelta_range("1 day", periods=10),
}
)
t = df.T
result = t.dtypes.value_counts()
expected = Series({np.dtype("object"): 10}, name="count")
tm.assert_series_equal(result, expected)
def test_deepcopy(self, float_frame):
cp = deepcopy(float_frame)
cp.loc[0, "A"] = 10
assert not float_frame.equals(cp)
def test_inplace_return_self(self):
# GH 1893
data = DataFrame(
{"a": ["foo", "bar", "baz", "qux"], "b": [0, 0, 1, 1], "c": [1, 2, 3, 4]}
)
def _check_f(base, f):
result = f(base)
assert result is None
# -----DataFrame-----
# set_index
f = lambda x: x.set_index("a", inplace=True)
_check_f(data.copy(), f)
# reset_index
f = lambda x: x.reset_index(inplace=True)
_check_f(data.set_index("a"), f)
# drop_duplicates
f = lambda x: x.drop_duplicates(inplace=True)
_check_f(data.copy(), f)
# sort
f = lambda x: x.sort_values("b", inplace=True)
_check_f(data.copy(), f)
# sort_index
f = lambda x: x.sort_index(inplace=True)
_check_f(data.copy(), f)
# fillna
f = lambda x: x.fillna(0, inplace=True)
_check_f(data.copy(), f)
# replace
f = lambda x: x.replace(1, 0, inplace=True)
_check_f(data.copy(), f)
# rename
f = lambda x: x.rename({1: "foo"}, inplace=True)
_check_f(data.copy(), f)
# -----Series-----
d = data.copy()["c"]
# reset_index
f = lambda x: x.reset_index(inplace=True, drop=True)
_check_f(data.set_index("a")["c"], f)
# fillna
f = lambda x: x.fillna(0, inplace=True)
_check_f(d.copy(), f)
# replace
f = lambda x: x.replace(1, 0, inplace=True)
_check_f(d.copy(), f)
# rename
f = lambda x: x.rename({1: "foo"}, inplace=True)
_check_f(d.copy(), f)
def test_tab_complete_warning(self, ip, frame_or_series):
# GH 16409
pytest.importorskip("IPython", minversion="6.0.0")
from IPython.core.completer import provisionalcompleter
if frame_or_series is DataFrame:
code = "from pandas import DataFrame; obj = DataFrame()"
else:
code = "from pandas import Series; obj = Series(dtype=object)"
ip.run_cell(code)
# GH 31324 newer jedi version raises Deprecation warning;
# appears resolved 2021-02-02
with tm.assert_produces_warning(None, raise_on_extra_warnings=False):
with provisionalcompleter("ignore"):
list(ip.Completer.completions("obj.", 1))
def test_attrs(self):
df = DataFrame({"A": [2, 3]})
assert df.attrs == {}
df.attrs["version"] = 1
result = df.rename(columns=str)
assert result.attrs == {"version": 1}
def test_attrs_deepcopy(self):
df = DataFrame({"A": [2, 3]})
assert df.attrs == {}
df.attrs["tags"] = {"spam", "ham"}
result = df.rename(columns=str)
assert result.attrs == df.attrs
assert result.attrs["tags"] is not df.attrs["tags"]
@pytest.mark.parametrize("allows_duplicate_labels", [True, False, None])
def test_set_flags(
self,
allows_duplicate_labels,
frame_or_series,
using_copy_on_write,
warn_copy_on_write,
):
obj = DataFrame({"A": [1, 2]})
key = (0, 0)
if frame_or_series is Series:
obj = obj["A"]
key = 0
result = obj.set_flags(allows_duplicate_labels=allows_duplicate_labels)
if allows_duplicate_labels is None:
# We don't update when it's not provided
assert result.flags.allows_duplicate_labels is True
else:
assert result.flags.allows_duplicate_labels is allows_duplicate_labels
# We made a copy
assert obj is not result
# We didn't mutate obj
assert obj.flags.allows_duplicate_labels is True
# But we didn't copy data
if frame_or_series is Series:
assert np.may_share_memory(obj.values, result.values)
else:
assert np.may_share_memory(obj["A"].values, result["A"].values)
with tm.assert_cow_warning(warn_copy_on_write):
result.iloc[key] = 0
if using_copy_on_write:
assert obj.iloc[key] == 1
else:
assert obj.iloc[key] == 0
# set back to 1 for test below
with tm.assert_cow_warning(warn_copy_on_write):
result.iloc[key] = 1
# Now we do copy.
result = obj.set_flags(
copy=True, allows_duplicate_labels=allows_duplicate_labels
)
result.iloc[key] = 10
assert obj.iloc[key] == 1
def test_constructor_expanddim(self):
# GH#33628 accessing _constructor_expanddim should not raise NotImplementedError
# GH38782 pandas has no container higher than DataFrame (two-dim), so
# DataFrame._constructor_expand_dim, doesn't make sense, so is removed.
df = DataFrame()
msg = "'DataFrame' object has no attribute '_constructor_expanddim'"
with pytest.raises(AttributeError, match=msg):
df._constructor_expanddim(np.arange(27).reshape(3, 3, 3))
def test_inspect_getmembers(self):
# GH38740
pytest.importorskip("jinja2")
df = DataFrame()
msg = "DataFrame._data is deprecated"
with tm.assert_produces_warning(
DeprecationWarning, match=msg, check_stacklevel=False
):
inspect.getmembers(df)
|