File size: 77,136 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 |
from datetime import timedelta
from decimal import Decimal
import re
from dateutil.tz import tzlocal
import numpy as np
import pytest
from pandas._config import using_pyarrow_string_dtype
from pandas.compat import (
IS64,
is_platform_windows,
)
from pandas.compat.numpy import np_version_gt2
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
Categorical,
CategoricalDtype,
DataFrame,
DatetimeIndex,
Index,
PeriodIndex,
RangeIndex,
Series,
Timestamp,
date_range,
isna,
notna,
to_datetime,
to_timedelta,
)
import pandas._testing as tm
from pandas.core import (
algorithms,
nanops,
)
is_windows_np2_or_is32 = (is_platform_windows() and not np_version_gt2) or not IS64
is_windows_or_is32 = is_platform_windows() or not IS64
def make_skipna_wrapper(alternative, skipna_alternative=None):
"""
Create a function for calling on an array.
Parameters
----------
alternative : function
The function to be called on the array with no NaNs.
Only used when 'skipna_alternative' is None.
skipna_alternative : function
The function to be called on the original array
Returns
-------
function
"""
if skipna_alternative:
def skipna_wrapper(x):
return skipna_alternative(x.values)
else:
def skipna_wrapper(x):
nona = x.dropna()
if len(nona) == 0:
return np.nan
return alternative(nona)
return skipna_wrapper
def assert_stat_op_calc(
opname,
alternative,
frame,
has_skipna=True,
check_dtype=True,
check_dates=False,
rtol=1e-5,
atol=1e-8,
skipna_alternative=None,
):
"""
Check that operator opname works as advertised on frame
Parameters
----------
opname : str
Name of the operator to test on frame
alternative : function
Function that opname is tested against; i.e. "frame.opname()" should
equal "alternative(frame)".
frame : DataFrame
The object that the tests are executed on
has_skipna : bool, default True
Whether the method "opname" has the kwarg "skip_na"
check_dtype : bool, default True
Whether the dtypes of the result of "frame.opname()" and
"alternative(frame)" should be checked.
check_dates : bool, default false
Whether opname should be tested on a Datetime Series
rtol : float, default 1e-5
Relative tolerance.
atol : float, default 1e-8
Absolute tolerance.
skipna_alternative : function, default None
NaN-safe version of alternative
"""
f = getattr(frame, opname)
if check_dates:
df = DataFrame({"b": date_range("1/1/2001", periods=2)})
with tm.assert_produces_warning(None):
result = getattr(df, opname)()
assert isinstance(result, Series)
df["a"] = range(len(df))
with tm.assert_produces_warning(None):
result = getattr(df, opname)()
assert isinstance(result, Series)
assert len(result)
if has_skipna:
def wrapper(x):
return alternative(x.values)
skipna_wrapper = make_skipna_wrapper(alternative, skipna_alternative)
result0 = f(axis=0, skipna=False)
result1 = f(axis=1, skipna=False)
tm.assert_series_equal(
result0, frame.apply(wrapper), check_dtype=check_dtype, rtol=rtol, atol=atol
)
tm.assert_series_equal(
result1,
frame.apply(wrapper, axis=1),
rtol=rtol,
atol=atol,
)
else:
skipna_wrapper = alternative
result0 = f(axis=0)
result1 = f(axis=1)
tm.assert_series_equal(
result0,
frame.apply(skipna_wrapper),
check_dtype=check_dtype,
rtol=rtol,
atol=atol,
)
if opname in ["sum", "prod"]:
expected = frame.apply(skipna_wrapper, axis=1)
tm.assert_series_equal(
result1, expected, check_dtype=False, rtol=rtol, atol=atol
)
# check dtypes
if check_dtype:
lcd_dtype = frame.values.dtype
assert lcd_dtype == result0.dtype
assert lcd_dtype == result1.dtype
# bad axis
with pytest.raises(ValueError, match="No axis named 2"):
f(axis=2)
# all NA case
if has_skipna:
all_na = frame * np.nan
r0 = getattr(all_na, opname)(axis=0)
r1 = getattr(all_na, opname)(axis=1)
if opname in ["sum", "prod"]:
unit = 1 if opname == "prod" else 0 # result for empty sum/prod
expected = Series(unit, index=r0.index, dtype=r0.dtype)
tm.assert_series_equal(r0, expected)
expected = Series(unit, index=r1.index, dtype=r1.dtype)
tm.assert_series_equal(r1, expected)
@pytest.fixture
def bool_frame_with_na():
"""
Fixture for DataFrame of booleans with index of unique strings
Columns are ['A', 'B', 'C', 'D']; some entries are missing
"""
df = DataFrame(
np.concatenate(
[np.ones((15, 4), dtype=bool), np.zeros((15, 4), dtype=bool)], axis=0
),
index=Index([f"foo_{i}" for i in range(30)], dtype=object),
columns=Index(list("ABCD"), dtype=object),
dtype=object,
)
# set some NAs
df.iloc[5:10] = np.nan
df.iloc[15:20, -2:] = np.nan
return df
@pytest.fixture
def float_frame_with_na():
"""
Fixture for DataFrame of floats with index of unique strings
Columns are ['A', 'B', 'C', 'D']; some entries are missing
"""
df = DataFrame(
np.random.default_rng(2).standard_normal((30, 4)),
index=Index([f"foo_{i}" for i in range(30)], dtype=object),
columns=Index(list("ABCD"), dtype=object),
)
# set some NAs
df.iloc[5:10] = np.nan
df.iloc[15:20, -2:] = np.nan
return df
class TestDataFrameAnalytics:
# ---------------------------------------------------------------------
# Reductions
@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.parametrize(
"opname",
[
"count",
"sum",
"mean",
"product",
"median",
"min",
"max",
"nunique",
"var",
"std",
"sem",
pytest.param("skew", marks=td.skip_if_no("scipy")),
pytest.param("kurt", marks=td.skip_if_no("scipy")),
],
)
def test_stat_op_api_float_string_frame(
self, float_string_frame, axis, opname, using_infer_string
):
if (
(opname in ("sum", "min", "max") and axis == 0)
or opname
in (
"count",
"nunique",
)
) and not (using_infer_string and opname == "sum"):
getattr(float_string_frame, opname)(axis=axis)
else:
if opname in ["var", "std", "sem", "skew", "kurt"]:
msg = "could not convert string to float: 'bar'"
elif opname == "product":
if axis == 1:
msg = "can't multiply sequence by non-int of type 'float'"
else:
msg = "can't multiply sequence by non-int of type 'str'"
elif opname == "sum":
msg = r"unsupported operand type\(s\) for \+: 'float' and 'str'"
elif opname == "mean":
if axis == 0:
# different message on different builds
msg = "|".join(
[
r"Could not convert \['.*'\] to numeric",
"Could not convert string '(bar){30}' to numeric",
]
)
else:
msg = r"unsupported operand type\(s\) for \+: 'float' and 'str'"
elif opname in ["min", "max"]:
msg = "'[><]=' not supported between instances of 'float' and 'str'"
elif opname == "median":
msg = re.compile(
r"Cannot convert \[.*\] to numeric|does not support", flags=re.S
)
if not isinstance(msg, re.Pattern):
msg = msg + "|does not support"
with pytest.raises(TypeError, match=msg):
getattr(float_string_frame, opname)(axis=axis)
if opname != "nunique":
getattr(float_string_frame, opname)(axis=axis, numeric_only=True)
@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.parametrize(
"opname",
[
"count",
"sum",
"mean",
"product",
"median",
"min",
"max",
"var",
"std",
"sem",
pytest.param("skew", marks=td.skip_if_no("scipy")),
pytest.param("kurt", marks=td.skip_if_no("scipy")),
],
)
def test_stat_op_api_float_frame(self, float_frame, axis, opname):
getattr(float_frame, opname)(axis=axis, numeric_only=False)
def test_stat_op_calc(self, float_frame_with_na, mixed_float_frame):
def count(s):
return notna(s).sum()
def nunique(s):
return len(algorithms.unique1d(s.dropna()))
def var(x):
return np.var(x, ddof=1)
def std(x):
return np.std(x, ddof=1)
def sem(x):
return np.std(x, ddof=1) / np.sqrt(len(x))
assert_stat_op_calc(
"nunique",
nunique,
float_frame_with_na,
has_skipna=False,
check_dtype=False,
check_dates=True,
)
# GH#32571: rol needed for flaky CI builds
# mixed types (with upcasting happening)
assert_stat_op_calc(
"sum",
np.sum,
mixed_float_frame.astype("float32"),
check_dtype=False,
rtol=1e-3,
)
assert_stat_op_calc(
"sum", np.sum, float_frame_with_na, skipna_alternative=np.nansum
)
assert_stat_op_calc("mean", np.mean, float_frame_with_na, check_dates=True)
assert_stat_op_calc(
"product", np.prod, float_frame_with_na, skipna_alternative=np.nanprod
)
assert_stat_op_calc("var", var, float_frame_with_na)
assert_stat_op_calc("std", std, float_frame_with_na)
assert_stat_op_calc("sem", sem, float_frame_with_na)
assert_stat_op_calc(
"count",
count,
float_frame_with_na,
has_skipna=False,
check_dtype=False,
check_dates=True,
)
def test_stat_op_calc_skew_kurtosis(self, float_frame_with_na):
sp_stats = pytest.importorskip("scipy.stats")
def skewness(x):
if len(x) < 3:
return np.nan
return sp_stats.skew(x, bias=False)
def kurt(x):
if len(x) < 4:
return np.nan
return sp_stats.kurtosis(x, bias=False)
assert_stat_op_calc("skew", skewness, float_frame_with_na)
assert_stat_op_calc("kurt", kurt, float_frame_with_na)
def test_median(self, float_frame_with_na, int_frame):
def wrapper(x):
if isna(x).any():
return np.nan
return np.median(x)
assert_stat_op_calc("median", wrapper, float_frame_with_na, check_dates=True)
assert_stat_op_calc(
"median", wrapper, int_frame, check_dtype=False, check_dates=True
)
@pytest.mark.parametrize(
"method", ["sum", "mean", "prod", "var", "std", "skew", "min", "max"]
)
@pytest.mark.parametrize(
"df",
[
DataFrame(
{
"a": [
-0.00049987540199591344,
-0.0016467257772919831,
0.00067695870775883013,
],
"b": [-0, -0, 0.0],
"c": [
0.00031111847529610595,
0.0014902627951905339,
-0.00094099200035979691,
],
},
index=["foo", "bar", "baz"],
dtype="O",
),
DataFrame({0: [np.nan, 2], 1: [np.nan, 3], 2: [np.nan, 4]}, dtype=object),
],
)
@pytest.mark.filterwarnings("ignore:Mismatched null-like values:FutureWarning")
def test_stat_operators_attempt_obj_array(self, method, df, axis):
# GH#676
assert df.values.dtype == np.object_
result = getattr(df, method)(axis=axis)
expected = getattr(df.astype("f8"), method)(axis=axis).astype(object)
if axis in [1, "columns"] and method in ["min", "max"]:
expected[expected.isna()] = None
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("op", ["mean", "std", "var", "skew", "kurt", "sem"])
def test_mixed_ops(self, op):
# GH#16116
df = DataFrame(
{
"int": [1, 2, 3, 4],
"float": [1.0, 2.0, 3.0, 4.0],
"str": ["a", "b", "c", "d"],
}
)
msg = "|".join(
[
"Could not convert",
"could not convert",
"can't multiply sequence by non-int",
"does not support",
]
)
with pytest.raises(TypeError, match=msg):
getattr(df, op)()
with pd.option_context("use_bottleneck", False):
msg = "|".join(
[
"Could not convert",
"could not convert",
"can't multiply sequence by non-int",
"does not support",
]
)
with pytest.raises(TypeError, match=msg):
getattr(df, op)()
@pytest.mark.xfail(
using_pyarrow_string_dtype(), reason="sum doesn't work for arrow strings"
)
def test_reduce_mixed_frame(self):
# GH 6806
df = DataFrame(
{
"bool_data": [True, True, False, False, False],
"int_data": [10, 20, 30, 40, 50],
"string_data": ["a", "b", "c", "d", "e"],
}
)
df.reindex(columns=["bool_data", "int_data", "string_data"])
test = df.sum(axis=0)
tm.assert_numpy_array_equal(
test.values, np.array([2, 150, "abcde"], dtype=object)
)
alt = df.T.sum(axis=1)
tm.assert_series_equal(test, alt)
def test_nunique(self):
df = DataFrame({"A": [1, 1, 1], "B": [1, 2, 3], "C": [1, np.nan, 3]})
tm.assert_series_equal(df.nunique(), Series({"A": 1, "B": 3, "C": 2}))
tm.assert_series_equal(
df.nunique(dropna=False), Series({"A": 1, "B": 3, "C": 3})
)
tm.assert_series_equal(df.nunique(axis=1), Series({0: 1, 1: 2, 2: 2}))
tm.assert_series_equal(
df.nunique(axis=1, dropna=False), Series({0: 1, 1: 3, 2: 2})
)
@pytest.mark.parametrize("tz", [None, "UTC"])
def test_mean_mixed_datetime_numeric(self, tz):
# https://github.com/pandas-dev/pandas/issues/24752
df = DataFrame({"A": [1, 1], "B": [Timestamp("2000", tz=tz)] * 2})
result = df.mean()
expected = Series([1.0, Timestamp("2000", tz=tz)], index=["A", "B"])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("tz", [None, "UTC"])
def test_mean_includes_datetimes(self, tz):
# https://github.com/pandas-dev/pandas/issues/24752
# Behavior in 0.24.0rc1 was buggy.
# As of 2.0 with numeric_only=None we do *not* drop datetime columns
df = DataFrame({"A": [Timestamp("2000", tz=tz)] * 2})
result = df.mean()
expected = Series([Timestamp("2000", tz=tz)], index=["A"])
tm.assert_series_equal(result, expected)
def test_mean_mixed_string_decimal(self):
# GH 11670
# possible bug when calculating mean of DataFrame?
d = [
{"A": 2, "B": None, "C": Decimal("628.00")},
{"A": 1, "B": None, "C": Decimal("383.00")},
{"A": 3, "B": None, "C": Decimal("651.00")},
{"A": 2, "B": None, "C": Decimal("575.00")},
{"A": 4, "B": None, "C": Decimal("1114.00")},
{"A": 1, "B": "TEST", "C": Decimal("241.00")},
{"A": 2, "B": None, "C": Decimal("572.00")},
{"A": 4, "B": None, "C": Decimal("609.00")},
{"A": 3, "B": None, "C": Decimal("820.00")},
{"A": 5, "B": None, "C": Decimal("1223.00")},
]
df = DataFrame(d)
with pytest.raises(
TypeError, match="unsupported operand type|does not support"
):
df.mean()
result = df[["A", "C"]].mean()
expected = Series([2.7, 681.6], index=["A", "C"], dtype=object)
tm.assert_series_equal(result, expected)
def test_var_std(self, datetime_frame):
result = datetime_frame.std(ddof=4)
expected = datetime_frame.apply(lambda x: x.std(ddof=4))
tm.assert_almost_equal(result, expected)
result = datetime_frame.var(ddof=4)
expected = datetime_frame.apply(lambda x: x.var(ddof=4))
tm.assert_almost_equal(result, expected)
arr = np.repeat(np.random.default_rng(2).random((1, 1000)), 1000, 0)
result = nanops.nanvar(arr, axis=0)
assert not (result < 0).any()
with pd.option_context("use_bottleneck", False):
result = nanops.nanvar(arr, axis=0)
assert not (result < 0).any()
@pytest.mark.parametrize("meth", ["sem", "var", "std"])
def test_numeric_only_flag(self, meth):
# GH 9201
df1 = DataFrame(
np.random.default_rng(2).standard_normal((5, 3)),
columns=["foo", "bar", "baz"],
)
# Cast to object to avoid implicit cast when setting entry to "100" below
df1 = df1.astype({"foo": object})
# set one entry to a number in str format
df1.loc[0, "foo"] = "100"
df2 = DataFrame(
np.random.default_rng(2).standard_normal((5, 3)),
columns=["foo", "bar", "baz"],
)
# Cast to object to avoid implicit cast when setting entry to "a" below
df2 = df2.astype({"foo": object})
# set one entry to a non-number str
df2.loc[0, "foo"] = "a"
result = getattr(df1, meth)(axis=1, numeric_only=True)
expected = getattr(df1[["bar", "baz"]], meth)(axis=1)
tm.assert_series_equal(expected, result)
result = getattr(df2, meth)(axis=1, numeric_only=True)
expected = getattr(df2[["bar", "baz"]], meth)(axis=1)
tm.assert_series_equal(expected, result)
# df1 has all numbers, df2 has a letter inside
msg = r"unsupported operand type\(s\) for -: 'float' and 'str'"
with pytest.raises(TypeError, match=msg):
getattr(df1, meth)(axis=1, numeric_only=False)
msg = "could not convert string to float: 'a'"
with pytest.raises(TypeError, match=msg):
getattr(df2, meth)(axis=1, numeric_only=False)
def test_sem(self, datetime_frame):
result = datetime_frame.sem(ddof=4)
expected = datetime_frame.apply(lambda x: x.std(ddof=4) / np.sqrt(len(x)))
tm.assert_almost_equal(result, expected)
arr = np.repeat(np.random.default_rng(2).random((1, 1000)), 1000, 0)
result = nanops.nansem(arr, axis=0)
assert not (result < 0).any()
with pd.option_context("use_bottleneck", False):
result = nanops.nansem(arr, axis=0)
assert not (result < 0).any()
@pytest.mark.parametrize(
"dropna, expected",
[
(
True,
{
"A": [12],
"B": [10.0],
"C": [1.0],
"D": ["a"],
"E": Categorical(["a"], categories=["a"]),
"F": DatetimeIndex(["2000-01-02"], dtype="M8[ns]"),
"G": to_timedelta(["1 days"]),
},
),
(
False,
{
"A": [12],
"B": [10.0],
"C": [np.nan],
"D": np.array([np.nan], dtype=object),
"E": Categorical([np.nan], categories=["a"]),
"F": DatetimeIndex([pd.NaT], dtype="M8[ns]"),
"G": to_timedelta([pd.NaT]),
},
),
(
True,
{
"H": [8, 9, np.nan, np.nan],
"I": [8, 9, np.nan, np.nan],
"J": [1, np.nan, np.nan, np.nan],
"K": Categorical(["a", np.nan, np.nan, np.nan], categories=["a"]),
"L": DatetimeIndex(
["2000-01-02", "NaT", "NaT", "NaT"], dtype="M8[ns]"
),
"M": to_timedelta(["1 days", "nan", "nan", "nan"]),
"N": [0, 1, 2, 3],
},
),
(
False,
{
"H": [8, 9, np.nan, np.nan],
"I": [8, 9, np.nan, np.nan],
"J": [1, np.nan, np.nan, np.nan],
"K": Categorical([np.nan, "a", np.nan, np.nan], categories=["a"]),
"L": DatetimeIndex(
["NaT", "2000-01-02", "NaT", "NaT"], dtype="M8[ns]"
),
"M": to_timedelta(["nan", "1 days", "nan", "nan"]),
"N": [0, 1, 2, 3],
},
),
],
)
def test_mode_dropna(self, dropna, expected):
df = DataFrame(
{
"A": [12, 12, 19, 11],
"B": [10, 10, np.nan, 3],
"C": [1, np.nan, np.nan, np.nan],
"D": Series([np.nan, np.nan, "a", np.nan], dtype=object),
"E": Categorical([np.nan, np.nan, "a", np.nan]),
"F": DatetimeIndex(["NaT", "2000-01-02", "NaT", "NaT"], dtype="M8[ns]"),
"G": to_timedelta(["1 days", "nan", "nan", "nan"]),
"H": [8, 8, 9, 9],
"I": [9, 9, 8, 8],
"J": [1, 1, np.nan, np.nan],
"K": Categorical(["a", np.nan, "a", np.nan]),
"L": DatetimeIndex(
["2000-01-02", "2000-01-02", "NaT", "NaT"], dtype="M8[ns]"
),
"M": to_timedelta(["1 days", "nan", "1 days", "nan"]),
"N": np.arange(4, dtype="int64"),
}
)
result = df[sorted(expected.keys())].mode(dropna=dropna)
expected = DataFrame(expected)
tm.assert_frame_equal(result, expected)
def test_mode_sortwarning(self, using_infer_string):
# Check for the warning that is raised when the mode
# results cannot be sorted
df = DataFrame({"A": [np.nan, np.nan, "a", "a"]})
expected = DataFrame({"A": ["a", np.nan]})
warning = None if using_infer_string else UserWarning
with tm.assert_produces_warning(warning):
result = df.mode(dropna=False)
result = result.sort_values(by="A").reset_index(drop=True)
tm.assert_frame_equal(result, expected)
def test_mode_empty_df(self):
df = DataFrame([], columns=["a", "b"])
result = df.mode()
expected = DataFrame([], columns=["a", "b"], index=Index([], dtype=np.int64))
tm.assert_frame_equal(result, expected)
def test_operators_timedelta64(self):
df = DataFrame(
{
"A": date_range("2012-1-1", periods=3, freq="D"),
"B": date_range("2012-1-2", periods=3, freq="D"),
"C": Timestamp("20120101") - timedelta(minutes=5, seconds=5),
}
)
diffs = DataFrame({"A": df["A"] - df["C"], "B": df["A"] - df["B"]})
# min
result = diffs.min()
assert result.iloc[0] == diffs.loc[0, "A"]
assert result.iloc[1] == diffs.loc[0, "B"]
result = diffs.min(axis=1)
assert (result == diffs.loc[0, "B"]).all()
# max
result = diffs.max()
assert result.iloc[0] == diffs.loc[2, "A"]
assert result.iloc[1] == diffs.loc[2, "B"]
result = diffs.max(axis=1)
assert (result == diffs["A"]).all()
# abs
result = diffs.abs()
result2 = abs(diffs)
expected = DataFrame({"A": df["A"] - df["C"], "B": df["B"] - df["A"]})
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(result2, expected)
# mixed frame
mixed = diffs.copy()
mixed["C"] = "foo"
mixed["D"] = 1
mixed["E"] = 1.0
mixed["F"] = Timestamp("20130101")
# results in an object array
result = mixed.min()
expected = Series(
[
pd.Timedelta(timedelta(seconds=5 * 60 + 5)),
pd.Timedelta(timedelta(days=-1)),
"foo",
1,
1.0,
Timestamp("20130101"),
],
index=mixed.columns,
)
tm.assert_series_equal(result, expected)
# excludes non-numeric
result = mixed.min(axis=1, numeric_only=True)
expected = Series([1, 1, 1.0], index=[0, 1, 2])
tm.assert_series_equal(result, expected)
# works when only those columns are selected
result = mixed[["A", "B"]].min(1)
expected = Series([timedelta(days=-1)] * 3)
tm.assert_series_equal(result, expected)
result = mixed[["A", "B"]].min()
expected = Series(
[timedelta(seconds=5 * 60 + 5), timedelta(days=-1)], index=["A", "B"]
)
tm.assert_series_equal(result, expected)
# GH 3106
df = DataFrame(
{
"time": date_range("20130102", periods=5),
"time2": date_range("20130105", periods=5),
}
)
df["off1"] = df["time2"] - df["time"]
assert df["off1"].dtype == "timedelta64[ns]"
df["off2"] = df["time"] - df["time2"]
df._consolidate_inplace()
assert df["off1"].dtype == "timedelta64[ns]"
assert df["off2"].dtype == "timedelta64[ns]"
def test_std_timedelta64_skipna_false(self):
# GH#37392
tdi = pd.timedelta_range("1 Day", periods=10)
df = DataFrame({"A": tdi, "B": tdi}, copy=True)
df.iloc[-2, -1] = pd.NaT
result = df.std(skipna=False)
expected = Series(
[df["A"].std(), pd.NaT], index=["A", "B"], dtype="timedelta64[ns]"
)
tm.assert_series_equal(result, expected)
result = df.std(axis=1, skipna=False)
expected = Series([pd.Timedelta(0)] * 8 + [pd.NaT, pd.Timedelta(0)])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"values", [["2022-01-01", "2022-01-02", pd.NaT, "2022-01-03"], 4 * [pd.NaT]]
)
def test_std_datetime64_with_nat(
self, values, skipna, using_array_manager, request, unit
):
# GH#51335
if using_array_manager and (
not skipna or all(value is pd.NaT for value in values)
):
mark = pytest.mark.xfail(
reason="GH#51446: Incorrect type inference on NaT in reduction result"
)
request.applymarker(mark)
dti = to_datetime(values).as_unit(unit)
df = DataFrame({"a": dti})
result = df.std(skipna=skipna)
if not skipna or all(value is pd.NaT for value in values):
expected = Series({"a": pd.NaT}, dtype=f"timedelta64[{unit}]")
else:
# 86400000000000ns == 1 day
expected = Series({"a": 86400000000000}, dtype=f"timedelta64[{unit}]")
tm.assert_series_equal(result, expected)
def test_sum_corner(self):
empty_frame = DataFrame()
axis0 = empty_frame.sum(0)
axis1 = empty_frame.sum(1)
assert isinstance(axis0, Series)
assert isinstance(axis1, Series)
assert len(axis0) == 0
assert len(axis1) == 0
@pytest.mark.parametrize(
"index",
[
RangeIndex(0),
DatetimeIndex([]),
Index([], dtype=np.int64),
Index([], dtype=np.float64),
DatetimeIndex([], freq="ME"),
PeriodIndex([], freq="D"),
],
)
def test_axis_1_empty(self, all_reductions, index):
df = DataFrame(columns=["a"], index=index)
result = getattr(df, all_reductions)(axis=1)
if all_reductions in ("any", "all"):
expected_dtype = "bool"
elif all_reductions == "count":
expected_dtype = "int64"
else:
expected_dtype = "object"
expected = Series([], index=index, dtype=expected_dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("method, unit", [("sum", 0), ("prod", 1)])
@pytest.mark.parametrize("numeric_only", [None, True, False])
def test_sum_prod_nanops(self, method, unit, numeric_only):
idx = ["a", "b", "c"]
df = DataFrame({"a": [unit, unit], "b": [unit, np.nan], "c": [np.nan, np.nan]})
# The default
result = getattr(df, method)(numeric_only=numeric_only)
expected = Series([unit, unit, unit], index=idx, dtype="float64")
tm.assert_series_equal(result, expected)
# min_count=1
result = getattr(df, method)(numeric_only=numeric_only, min_count=1)
expected = Series([unit, unit, np.nan], index=idx)
tm.assert_series_equal(result, expected)
# min_count=0
result = getattr(df, method)(numeric_only=numeric_only, min_count=0)
expected = Series([unit, unit, unit], index=idx, dtype="float64")
tm.assert_series_equal(result, expected)
result = getattr(df.iloc[1:], method)(numeric_only=numeric_only, min_count=1)
expected = Series([unit, np.nan, np.nan], index=idx)
tm.assert_series_equal(result, expected)
# min_count > 1
df = DataFrame({"A": [unit] * 10, "B": [unit] * 5 + [np.nan] * 5})
result = getattr(df, method)(numeric_only=numeric_only, min_count=5)
expected = Series(result, index=["A", "B"])
tm.assert_series_equal(result, expected)
result = getattr(df, method)(numeric_only=numeric_only, min_count=6)
expected = Series(result, index=["A", "B"])
tm.assert_series_equal(result, expected)
def test_sum_nanops_timedelta(self):
# prod isn't defined on timedeltas
idx = ["a", "b", "c"]
df = DataFrame({"a": [0, 0], "b": [0, np.nan], "c": [np.nan, np.nan]})
df2 = df.apply(to_timedelta)
# 0 by default
result = df2.sum()
expected = Series([0, 0, 0], dtype="m8[ns]", index=idx)
tm.assert_series_equal(result, expected)
# min_count=0
result = df2.sum(min_count=0)
tm.assert_series_equal(result, expected)
# min_count=1
result = df2.sum(min_count=1)
expected = Series([0, 0, np.nan], dtype="m8[ns]", index=idx)
tm.assert_series_equal(result, expected)
def test_sum_nanops_min_count(self):
# https://github.com/pandas-dev/pandas/issues/39738
df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]})
result = df.sum(min_count=10)
expected = Series([np.nan, np.nan], index=["x", "y"])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("float_type", ["float16", "float32", "float64"])
@pytest.mark.parametrize(
"kwargs, expected_result",
[
({"axis": 1, "min_count": 2}, [3.2, 5.3, np.nan]),
({"axis": 1, "min_count": 3}, [np.nan, np.nan, np.nan]),
({"axis": 1, "skipna": False}, [3.2, 5.3, np.nan]),
],
)
def test_sum_nanops_dtype_min_count(self, float_type, kwargs, expected_result):
# GH#46947
df = DataFrame({"a": [1.0, 2.3, 4.4], "b": [2.2, 3, np.nan]}, dtype=float_type)
result = df.sum(**kwargs)
expected = Series(expected_result).astype(float_type)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("float_type", ["float16", "float32", "float64"])
@pytest.mark.parametrize(
"kwargs, expected_result",
[
({"axis": 1, "min_count": 2}, [2.0, 4.0, np.nan]),
({"axis": 1, "min_count": 3}, [np.nan, np.nan, np.nan]),
({"axis": 1, "skipna": False}, [2.0, 4.0, np.nan]),
],
)
def test_prod_nanops_dtype_min_count(self, float_type, kwargs, expected_result):
# GH#46947
df = DataFrame(
{"a": [1.0, 2.0, 4.4], "b": [2.0, 2.0, np.nan]}, dtype=float_type
)
result = df.prod(**kwargs)
expected = Series(expected_result).astype(float_type)
tm.assert_series_equal(result, expected)
def test_sum_object(self, float_frame):
values = float_frame.values.astype(int)
frame = DataFrame(values, index=float_frame.index, columns=float_frame.columns)
deltas = frame * timedelta(1)
deltas.sum()
def test_sum_bool(self, float_frame):
# ensure this works, bug report
bools = np.isnan(float_frame)
bools.sum(1)
bools.sum(0)
def test_sum_mixed_datetime(self):
# GH#30886
df = DataFrame({"A": date_range("2000", periods=4), "B": [1, 2, 3, 4]}).reindex(
[2, 3, 4]
)
with pytest.raises(TypeError, match="does not support reduction 'sum'"):
df.sum()
def test_mean_corner(self, float_frame, float_string_frame):
# unit test when have object data
msg = "Could not convert|does not support"
with pytest.raises(TypeError, match=msg):
float_string_frame.mean(axis=0)
# xs sum mixed type, just want to know it works...
with pytest.raises(TypeError, match="unsupported operand type"):
float_string_frame.mean(axis=1)
# take mean of boolean column
float_frame["bool"] = float_frame["A"] > 0
means = float_frame.mean(0)
assert means["bool"] == float_frame["bool"].values.mean()
def test_mean_datetimelike(self):
# GH#24757 check that datetimelike are excluded by default, handled
# correctly with numeric_only=True
# As of 2.0, datetimelike are *not* excluded with numeric_only=None
df = DataFrame(
{
"A": np.arange(3),
"B": date_range("2016-01-01", periods=3),
"C": pd.timedelta_range("1D", periods=3),
"D": pd.period_range("2016", periods=3, freq="Y"),
}
)
result = df.mean(numeric_only=True)
expected = Series({"A": 1.0})
tm.assert_series_equal(result, expected)
with pytest.raises(TypeError, match="mean is not implemented for PeriodArray"):
df.mean()
def test_mean_datetimelike_numeric_only_false(self):
df = DataFrame(
{
"A": np.arange(3),
"B": date_range("2016-01-01", periods=3),
"C": pd.timedelta_range("1D", periods=3),
}
)
# datetime(tz) and timedelta work
result = df.mean(numeric_only=False)
expected = Series({"A": 1, "B": df.loc[1, "B"], "C": df.loc[1, "C"]})
tm.assert_series_equal(result, expected)
# mean of period is not allowed
df["D"] = pd.period_range("2016", periods=3, freq="Y")
with pytest.raises(TypeError, match="mean is not implemented for Period"):
df.mean(numeric_only=False)
def test_mean_extensionarray_numeric_only_true(self):
# https://github.com/pandas-dev/pandas/issues/33256
arr = np.random.default_rng(2).integers(1000, size=(10, 5))
df = DataFrame(arr, dtype="Int64")
result = df.mean(numeric_only=True)
expected = DataFrame(arr).mean().astype("Float64")
tm.assert_series_equal(result, expected)
def test_stats_mixed_type(self, float_string_frame):
with pytest.raises(TypeError, match="could not convert"):
float_string_frame.std(1)
with pytest.raises(TypeError, match="could not convert"):
float_string_frame.var(1)
with pytest.raises(TypeError, match="unsupported operand type"):
float_string_frame.mean(1)
with pytest.raises(TypeError, match="could not convert"):
float_string_frame.skew(1)
def test_sum_bools(self):
df = DataFrame(index=range(1), columns=range(10))
bools = isna(df)
assert bools.sum(axis=1)[0] == 10
# ----------------------------------------------------------------------
# Index of max / min
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize("axis", [0, 1])
def test_idxmin(self, float_frame, int_frame, skipna, axis):
frame = float_frame
frame.iloc[5:10] = np.nan
frame.iloc[15:20, -2:] = np.nan
for df in [frame, int_frame]:
warn = None
if skipna is False or axis == 1:
warn = None if df is int_frame else FutureWarning
msg = "The behavior of DataFrame.idxmin with all-NA values"
with tm.assert_produces_warning(warn, match=msg):
result = df.idxmin(axis=axis, skipna=skipna)
msg2 = "The behavior of Series.idxmin"
with tm.assert_produces_warning(warn, match=msg2):
expected = df.apply(Series.idxmin, axis=axis, skipna=skipna)
expected = expected.astype(df.index.dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
def test_idxmin_empty(self, index, skipna, axis):
# GH53265
if axis == 0:
frame = DataFrame(index=index)
else:
frame = DataFrame(columns=index)
result = frame.idxmin(axis=axis, skipna=skipna)
expected = Series(dtype=index.dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("numeric_only", [True, False])
def test_idxmin_numeric_only(self, numeric_only):
df = DataFrame({"a": [2, 3, 1], "b": [2, 1, 1], "c": list("xyx")})
result = df.idxmin(numeric_only=numeric_only)
if numeric_only:
expected = Series([2, 1], index=["a", "b"])
else:
expected = Series([2, 1, 0], index=["a", "b", "c"])
tm.assert_series_equal(result, expected)
def test_idxmin_axis_2(self, float_frame):
frame = float_frame
msg = "No axis named 2 for object type DataFrame"
with pytest.raises(ValueError, match=msg):
frame.idxmin(axis=2)
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize("axis", [0, 1])
def test_idxmax(self, float_frame, int_frame, skipna, axis):
frame = float_frame
frame.iloc[5:10] = np.nan
frame.iloc[15:20, -2:] = np.nan
for df in [frame, int_frame]:
warn = None
if skipna is False or axis == 1:
warn = None if df is int_frame else FutureWarning
msg = "The behavior of DataFrame.idxmax with all-NA values"
with tm.assert_produces_warning(warn, match=msg):
result = df.idxmax(axis=axis, skipna=skipna)
msg2 = "The behavior of Series.idxmax"
with tm.assert_produces_warning(warn, match=msg2):
expected = df.apply(Series.idxmax, axis=axis, skipna=skipna)
expected = expected.astype(df.index.dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
def test_idxmax_empty(self, index, skipna, axis):
# GH53265
if axis == 0:
frame = DataFrame(index=index)
else:
frame = DataFrame(columns=index)
result = frame.idxmax(axis=axis, skipna=skipna)
expected = Series(dtype=index.dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("numeric_only", [True, False])
def test_idxmax_numeric_only(self, numeric_only):
df = DataFrame({"a": [2, 3, 1], "b": [2, 1, 1], "c": list("xyx")})
result = df.idxmax(numeric_only=numeric_only)
if numeric_only:
expected = Series([1, 0], index=["a", "b"])
else:
expected = Series([1, 0, 1], index=["a", "b", "c"])
tm.assert_series_equal(result, expected)
def test_idxmax_arrow_types(self):
# GH#55368
pytest.importorskip("pyarrow")
df = DataFrame({"a": [2, 3, 1], "b": [2, 1, 1]}, dtype="int64[pyarrow]")
result = df.idxmax()
expected = Series([1, 0], index=["a", "b"])
tm.assert_series_equal(result, expected)
result = df.idxmin()
expected = Series([2, 1], index=["a", "b"])
tm.assert_series_equal(result, expected)
df = DataFrame({"a": ["b", "c", "a"]}, dtype="string[pyarrow]")
result = df.idxmax(numeric_only=False)
expected = Series([1], index=["a"])
tm.assert_series_equal(result, expected)
result = df.idxmin(numeric_only=False)
expected = Series([2], index=["a"])
tm.assert_series_equal(result, expected)
def test_idxmax_axis_2(self, float_frame):
frame = float_frame
msg = "No axis named 2 for object type DataFrame"
with pytest.raises(ValueError, match=msg):
frame.idxmax(axis=2)
def test_idxmax_mixed_dtype(self):
# don't cast to object, which would raise in nanops
dti = date_range("2016-01-01", periods=3)
# Copying dti is needed for ArrayManager otherwise when we set
# df.loc[0, 3] = pd.NaT below it edits dti
df = DataFrame({1: [0, 2, 1], 2: range(3)[::-1], 3: dti.copy(deep=True)})
result = df.idxmax()
expected = Series([1, 0, 2], index=[1, 2, 3])
tm.assert_series_equal(result, expected)
result = df.idxmin()
expected = Series([0, 2, 0], index=[1, 2, 3])
tm.assert_series_equal(result, expected)
# with NaTs
df.loc[0, 3] = pd.NaT
result = df.idxmax()
expected = Series([1, 0, 2], index=[1, 2, 3])
tm.assert_series_equal(result, expected)
result = df.idxmin()
expected = Series([0, 2, 1], index=[1, 2, 3])
tm.assert_series_equal(result, expected)
# with multi-column dt64 block
df[4] = dti[::-1]
df._consolidate_inplace()
result = df.idxmax()
expected = Series([1, 0, 2, 0], index=[1, 2, 3, 4])
tm.assert_series_equal(result, expected)
result = df.idxmin()
expected = Series([0, 2, 1, 2], index=[1, 2, 3, 4])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"op, expected_value",
[("idxmax", [0, 4]), ("idxmin", [0, 5])],
)
def test_idxmax_idxmin_convert_dtypes(self, op, expected_value):
# GH 40346
df = DataFrame(
{
"ID": [100, 100, 100, 200, 200, 200],
"value": [0, 0, 0, 1, 2, 0],
},
dtype="Int64",
)
df = df.groupby("ID")
result = getattr(df, op)()
expected = DataFrame(
{"value": expected_value},
index=Index([100, 200], name="ID", dtype="Int64"),
)
tm.assert_frame_equal(result, expected)
def test_idxmax_dt64_multicolumn_axis1(self):
dti = date_range("2016-01-01", periods=3)
df = DataFrame({3: dti, 4: dti[::-1]}, copy=True)
df.iloc[0, 0] = pd.NaT
df._consolidate_inplace()
result = df.idxmax(axis=1)
expected = Series([4, 3, 3])
tm.assert_series_equal(result, expected)
result = df.idxmin(axis=1)
expected = Series([4, 3, 4])
tm.assert_series_equal(result, expected)
# ----------------------------------------------------------------------
# Logical reductions
@pytest.mark.parametrize("opname", ["any", "all"])
@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.parametrize("bool_only", [False, True])
def test_any_all_mixed_float(self, opname, axis, bool_only, float_string_frame):
# make sure op works on mixed-type frame
mixed = float_string_frame
mixed["_bool_"] = np.random.default_rng(2).standard_normal(len(mixed)) > 0.5
getattr(mixed, opname)(axis=axis, bool_only=bool_only)
@pytest.mark.parametrize("opname", ["any", "all"])
@pytest.mark.parametrize("axis", [0, 1])
def test_any_all_bool_with_na(self, opname, axis, bool_frame_with_na):
getattr(bool_frame_with_na, opname)(axis=axis, bool_only=False)
@pytest.mark.filterwarnings("ignore:Downcasting object dtype arrays:FutureWarning")
@pytest.mark.parametrize("opname", ["any", "all"])
def test_any_all_bool_frame(self, opname, bool_frame_with_na):
# GH#12863: numpy gives back non-boolean data for object type
# so fill NaNs to compare with pandas behavior
frame = bool_frame_with_na.fillna(True)
alternative = getattr(np, opname)
f = getattr(frame, opname)
def skipna_wrapper(x):
nona = x.dropna().values
return alternative(nona)
def wrapper(x):
return alternative(x.values)
result0 = f(axis=0, skipna=False)
result1 = f(axis=1, skipna=False)
tm.assert_series_equal(result0, frame.apply(wrapper))
tm.assert_series_equal(result1, frame.apply(wrapper, axis=1))
result0 = f(axis=0)
result1 = f(axis=1)
tm.assert_series_equal(result0, frame.apply(skipna_wrapper))
tm.assert_series_equal(
result1, frame.apply(skipna_wrapper, axis=1), check_dtype=False
)
# bad axis
with pytest.raises(ValueError, match="No axis named 2"):
f(axis=2)
# all NA case
all_na = frame * np.nan
r0 = getattr(all_na, opname)(axis=0)
r1 = getattr(all_na, opname)(axis=1)
if opname == "any":
assert not r0.any()
assert not r1.any()
else:
assert r0.all()
assert r1.all()
def test_any_all_extra(self):
df = DataFrame(
{
"A": [True, False, False],
"B": [True, True, False],
"C": [True, True, True],
},
index=["a", "b", "c"],
)
result = df[["A", "B"]].any(axis=1)
expected = Series([True, True, False], index=["a", "b", "c"])
tm.assert_series_equal(result, expected)
result = df[["A", "B"]].any(axis=1, bool_only=True)
tm.assert_series_equal(result, expected)
result = df.all(1)
expected = Series([True, False, False], index=["a", "b", "c"])
tm.assert_series_equal(result, expected)
result = df.all(1, bool_only=True)
tm.assert_series_equal(result, expected)
# Axis is None
result = df.all(axis=None).item()
assert result is False
result = df.any(axis=None).item()
assert result is True
result = df[["C"]].all(axis=None).item()
assert result is True
@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
@pytest.mark.parametrize("skipna", [True, False])
def test_any_all_object_dtype(
self, axis, bool_agg_func, skipna, using_infer_string
):
# GH#35450
df = DataFrame(
data=[
[1, np.nan, np.nan, True],
[np.nan, 2, np.nan, True],
[np.nan, np.nan, np.nan, True],
[np.nan, np.nan, "5", np.nan],
]
)
if using_infer_string:
# na in object is True while in string pyarrow numpy it's false
val = not axis == 0 and not skipna and bool_agg_func == "all"
else:
val = True
result = getattr(df, bool_agg_func)(axis=axis, skipna=skipna)
expected = Series([True, True, val, True])
tm.assert_series_equal(result, expected)
# GH#50947 deprecates this but it is not emitting a warning in some builds.
@pytest.mark.filterwarnings(
"ignore:'any' with datetime64 dtypes is deprecated.*:FutureWarning"
)
def test_any_datetime(self):
# GH 23070
float_data = [1, np.nan, 3, np.nan]
datetime_data = [
Timestamp("1960-02-15"),
Timestamp("1960-02-16"),
pd.NaT,
pd.NaT,
]
df = DataFrame({"A": float_data, "B": datetime_data})
result = df.any(axis=1)
expected = Series([True, True, True, False])
tm.assert_series_equal(result, expected)
def test_any_all_bool_only(self):
# GH 25101
df = DataFrame(
{"col1": [1, 2, 3], "col2": [4, 5, 6], "col3": [None, None, None]},
columns=Index(["col1", "col2", "col3"], dtype=object),
)
result = df.all(bool_only=True)
expected = Series(dtype=np.bool_, index=[])
tm.assert_series_equal(result, expected)
df = DataFrame(
{
"col1": [1, 2, 3],
"col2": [4, 5, 6],
"col3": [None, None, None],
"col4": [False, False, True],
}
)
result = df.all(bool_only=True)
expected = Series({"col4": False})
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"func, data, expected",
[
(np.any, {}, False),
(np.all, {}, True),
(np.any, {"A": []}, False),
(np.all, {"A": []}, True),
(np.any, {"A": [False, False]}, False),
(np.all, {"A": [False, False]}, False),
(np.any, {"A": [True, False]}, True),
(np.all, {"A": [True, False]}, False),
(np.any, {"A": [True, True]}, True),
(np.all, {"A": [True, True]}, True),
(np.any, {"A": [False], "B": [False]}, False),
(np.all, {"A": [False], "B": [False]}, False),
(np.any, {"A": [False, False], "B": [False, True]}, True),
(np.all, {"A": [False, False], "B": [False, True]}, False),
# other types
(np.all, {"A": Series([0.0, 1.0], dtype="float")}, False),
(np.any, {"A": Series([0.0, 1.0], dtype="float")}, True),
(np.all, {"A": Series([0, 1], dtype=int)}, False),
(np.any, {"A": Series([0, 1], dtype=int)}, True),
pytest.param(np.all, {"A": Series([0, 1], dtype="M8[ns]")}, False),
pytest.param(np.all, {"A": Series([0, 1], dtype="M8[ns, UTC]")}, False),
pytest.param(np.any, {"A": Series([0, 1], dtype="M8[ns]")}, True),
pytest.param(np.any, {"A": Series([0, 1], dtype="M8[ns, UTC]")}, True),
pytest.param(np.all, {"A": Series([1, 2], dtype="M8[ns]")}, True),
pytest.param(np.all, {"A": Series([1, 2], dtype="M8[ns, UTC]")}, True),
pytest.param(np.any, {"A": Series([1, 2], dtype="M8[ns]")}, True),
pytest.param(np.any, {"A": Series([1, 2], dtype="M8[ns, UTC]")}, True),
pytest.param(np.all, {"A": Series([0, 1], dtype="m8[ns]")}, False),
pytest.param(np.any, {"A": Series([0, 1], dtype="m8[ns]")}, True),
pytest.param(np.all, {"A": Series([1, 2], dtype="m8[ns]")}, True),
pytest.param(np.any, {"A": Series([1, 2], dtype="m8[ns]")}, True),
# np.all on Categorical raises, so the reduction drops the
# column, so all is being done on an empty Series, so is True
(np.all, {"A": Series([0, 1], dtype="category")}, True),
(np.any, {"A": Series([0, 1], dtype="category")}, False),
(np.all, {"A": Series([1, 2], dtype="category")}, True),
(np.any, {"A": Series([1, 2], dtype="category")}, False),
# Mix GH#21484
pytest.param(
np.all,
{
"A": Series([10, 20], dtype="M8[ns]"),
"B": Series([10, 20], dtype="m8[ns]"),
},
True,
),
],
)
def test_any_all_np_func(self, func, data, expected):
# GH 19976
data = DataFrame(data)
if any(isinstance(x, CategoricalDtype) for x in data.dtypes):
with pytest.raises(
TypeError, match="dtype category does not support reduction"
):
func(data)
# method version
with pytest.raises(
TypeError, match="dtype category does not support reduction"
):
getattr(DataFrame(data), func.__name__)(axis=None)
else:
msg = "'(any|all)' with datetime64 dtypes is deprecated"
if data.dtypes.apply(lambda x: x.kind == "M").any():
warn = FutureWarning
else:
warn = None
with tm.assert_produces_warning(warn, match=msg, check_stacklevel=False):
# GH#34479
result = func(data)
assert isinstance(result, np.bool_)
assert result.item() is expected
# method version
with tm.assert_produces_warning(warn, match=msg):
# GH#34479
result = getattr(DataFrame(data), func.__name__)(axis=None)
assert isinstance(result, np.bool_)
assert result.item() is expected
def test_any_all_object(self):
# GH 19976
result = np.all(DataFrame(columns=["a", "b"])).item()
assert result is True
result = np.any(DataFrame(columns=["a", "b"])).item()
assert result is False
def test_any_all_object_bool_only(self):
df = DataFrame({"A": ["foo", 2], "B": [True, False]}).astype(object)
df._consolidate_inplace()
df["C"] = Series([True, True])
# Categorical of bools is _not_ considered booly
df["D"] = df["C"].astype("category")
# The underlying bug is in DataFrame._get_bool_data, so we check
# that while we're here
res = df._get_bool_data()
expected = df[["C"]]
tm.assert_frame_equal(res, expected)
res = df.all(bool_only=True, axis=0)
expected = Series([True], index=["C"])
tm.assert_series_equal(res, expected)
# operating on a subset of columns should not produce a _larger_ Series
res = df[["B", "C"]].all(bool_only=True, axis=0)
tm.assert_series_equal(res, expected)
assert df.all(bool_only=True, axis=None)
res = df.any(bool_only=True, axis=0)
expected = Series([True], index=["C"])
tm.assert_series_equal(res, expected)
# operating on a subset of columns should not produce a _larger_ Series
res = df[["C"]].any(bool_only=True, axis=0)
tm.assert_series_equal(res, expected)
assert df.any(bool_only=True, axis=None)
# ---------------------------------------------------------------------
# Unsorted
def test_series_broadcasting(self):
# smoke test for numpy warnings
# GH 16378, GH 16306
df = DataFrame([1.0, 1.0, 1.0])
df_nan = DataFrame({"A": [np.nan, 2.0, np.nan]})
s = Series([1, 1, 1])
s_nan = Series([np.nan, np.nan, 1])
with tm.assert_produces_warning(None):
df_nan.clip(lower=s, axis=0)
for op in ["lt", "le", "gt", "ge", "eq", "ne"]:
getattr(df, op)(s_nan, axis=0)
class TestDataFrameReductions:
def test_min_max_dt64_with_NaT(self):
# Both NaT and Timestamp are in DataFrame.
df = DataFrame({"foo": [pd.NaT, pd.NaT, Timestamp("2012-05-01")]})
res = df.min()
exp = Series([Timestamp("2012-05-01")], index=["foo"])
tm.assert_series_equal(res, exp)
res = df.max()
exp = Series([Timestamp("2012-05-01")], index=["foo"])
tm.assert_series_equal(res, exp)
# GH12941, only NaTs are in DataFrame.
df = DataFrame({"foo": [pd.NaT, pd.NaT]})
res = df.min()
exp = Series([pd.NaT], index=["foo"])
tm.assert_series_equal(res, exp)
res = df.max()
exp = Series([pd.NaT], index=["foo"])
tm.assert_series_equal(res, exp)
def test_min_max_dt64_with_NaT_skipna_false(self, request, tz_naive_fixture):
# GH#36907
tz = tz_naive_fixture
if isinstance(tz, tzlocal) and is_platform_windows():
pytest.skip(
"GH#37659 OSError raised within tzlocal bc Windows "
"chokes in times before 1970-01-01"
)
df = DataFrame(
{
"a": [
Timestamp("2020-01-01 08:00:00", tz=tz),
Timestamp("1920-02-01 09:00:00", tz=tz),
],
"b": [Timestamp("2020-02-01 08:00:00", tz=tz), pd.NaT],
}
)
res = df.min(axis=1, skipna=False)
expected = Series([df.loc[0, "a"], pd.NaT])
assert expected.dtype == df["a"].dtype
tm.assert_series_equal(res, expected)
res = df.max(axis=1, skipna=False)
expected = Series([df.loc[0, "b"], pd.NaT])
assert expected.dtype == df["a"].dtype
tm.assert_series_equal(res, expected)
def test_min_max_dt64_api_consistency_with_NaT(self):
# Calling the following sum functions returned an error for dataframes but
# returned NaT for series. These tests check that the API is consistent in
# min/max calls on empty Series/DataFrames. See GH:33704 for more
# information
df = DataFrame({"x": to_datetime([])})
expected_dt_series = Series(to_datetime([]))
# check axis 0
assert (df.min(axis=0).x is pd.NaT) == (expected_dt_series.min() is pd.NaT)
assert (df.max(axis=0).x is pd.NaT) == (expected_dt_series.max() is pd.NaT)
# check axis 1
tm.assert_series_equal(df.min(axis=1), expected_dt_series)
tm.assert_series_equal(df.max(axis=1), expected_dt_series)
def test_min_max_dt64_api_consistency_empty_df(self):
# check DataFrame/Series api consistency when calling min/max on an empty
# DataFrame/Series.
df = DataFrame({"x": []})
expected_float_series = Series([], dtype=float)
# check axis 0
assert np.isnan(df.min(axis=0).x) == np.isnan(expected_float_series.min())
assert np.isnan(df.max(axis=0).x) == np.isnan(expected_float_series.max())
# check axis 1
tm.assert_series_equal(df.min(axis=1), expected_float_series)
tm.assert_series_equal(df.min(axis=1), expected_float_series)
@pytest.mark.parametrize(
"initial",
["2018-10-08 13:36:45+00:00", "2018-10-08 13:36:45+03:00"], # Non-UTC timezone
)
@pytest.mark.parametrize("method", ["min", "max"])
def test_preserve_timezone(self, initial: str, method):
# GH 28552
initial_dt = to_datetime(initial)
expected = Series([initial_dt])
df = DataFrame([expected])
result = getattr(df, method)(axis=1)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("method", ["min", "max"])
def test_minmax_tzaware_skipna_axis_1(self, method, skipna):
# GH#51242
val = to_datetime("1900-01-01", utc=True)
df = DataFrame(
{"a": Series([pd.NaT, pd.NaT, val]), "b": Series([pd.NaT, val, val])}
)
op = getattr(df, method)
result = op(axis=1, skipna=skipna)
if skipna:
expected = Series([pd.NaT, val, val])
else:
expected = Series([pd.NaT, pd.NaT, val])
tm.assert_series_equal(result, expected)
def test_frame_any_with_timedelta(self):
# GH#17667
df = DataFrame(
{
"a": Series([0, 0]),
"t": Series([to_timedelta(0, "s"), to_timedelta(1, "ms")]),
}
)
result = df.any(axis=0)
expected = Series(data=[False, True], index=["a", "t"])
tm.assert_series_equal(result, expected)
result = df.any(axis=1)
expected = Series(data=[False, True])
tm.assert_series_equal(result, expected)
def test_reductions_skipna_none_raises(
self, request, frame_or_series, all_reductions
):
if all_reductions == "count":
request.applymarker(
pytest.mark.xfail(reason="Count does not accept skipna")
)
obj = frame_or_series([1, 2, 3])
msg = 'For argument "skipna" expected type bool, received type NoneType.'
with pytest.raises(ValueError, match=msg):
getattr(obj, all_reductions)(skipna=None)
@td.skip_array_manager_invalid_test
def test_reduction_timestamp_smallest_unit(self):
# GH#52524
df = DataFrame(
{
"a": Series([Timestamp("2019-12-31")], dtype="datetime64[s]"),
"b": Series(
[Timestamp("2019-12-31 00:00:00.123")], dtype="datetime64[ms]"
),
}
)
result = df.max()
expected = Series(
[Timestamp("2019-12-31"), Timestamp("2019-12-31 00:00:00.123")],
dtype="datetime64[ms]",
index=["a", "b"],
)
tm.assert_series_equal(result, expected)
@td.skip_array_manager_not_yet_implemented
def test_reduction_timedelta_smallest_unit(self):
# GH#52524
df = DataFrame(
{
"a": Series([pd.Timedelta("1 days")], dtype="timedelta64[s]"),
"b": Series([pd.Timedelta("1 days")], dtype="timedelta64[ms]"),
}
)
result = df.max()
expected = Series(
[pd.Timedelta("1 days"), pd.Timedelta("1 days")],
dtype="timedelta64[ms]",
index=["a", "b"],
)
tm.assert_series_equal(result, expected)
class TestNuisanceColumns:
@pytest.mark.parametrize("method", ["any", "all"])
def test_any_all_categorical_dtype_nuisance_column(self, method):
# GH#36076 DataFrame should match Series behavior
ser = Series([0, 1], dtype="category", name="A")
df = ser.to_frame()
# Double-check the Series behavior is to raise
with pytest.raises(TypeError, match="does not support reduction"):
getattr(ser, method)()
with pytest.raises(TypeError, match="does not support reduction"):
getattr(np, method)(ser)
with pytest.raises(TypeError, match="does not support reduction"):
getattr(df, method)(bool_only=False)
with pytest.raises(TypeError, match="does not support reduction"):
getattr(df, method)(bool_only=None)
with pytest.raises(TypeError, match="does not support reduction"):
getattr(np, method)(df, axis=0)
def test_median_categorical_dtype_nuisance_column(self):
# GH#21020 DataFrame.median should match Series.median
df = DataFrame({"A": Categorical([1, 2, 2, 2, 3])})
ser = df["A"]
# Double-check the Series behavior is to raise
with pytest.raises(TypeError, match="does not support reduction"):
ser.median()
with pytest.raises(TypeError, match="does not support reduction"):
df.median(numeric_only=False)
with pytest.raises(TypeError, match="does not support reduction"):
df.median()
# same thing, but with an additional non-categorical column
df["B"] = df["A"].astype(int)
with pytest.raises(TypeError, match="does not support reduction"):
df.median(numeric_only=False)
with pytest.raises(TypeError, match="does not support reduction"):
df.median()
# TODO: np.median(df, axis=0) gives np.array([2.0, 2.0]) instead
# of expected.values
@pytest.mark.parametrize("method", ["min", "max"])
def test_min_max_categorical_dtype_non_ordered_nuisance_column(self, method):
# GH#28949 DataFrame.min should behave like Series.min
cat = Categorical(["a", "b", "c", "b"], ordered=False)
ser = Series(cat)
df = ser.to_frame("A")
# Double-check the Series behavior
with pytest.raises(TypeError, match="is not ordered for operation"):
getattr(ser, method)()
with pytest.raises(TypeError, match="is not ordered for operation"):
getattr(np, method)(ser)
with pytest.raises(TypeError, match="is not ordered for operation"):
getattr(df, method)(numeric_only=False)
with pytest.raises(TypeError, match="is not ordered for operation"):
getattr(df, method)()
with pytest.raises(TypeError, match="is not ordered for operation"):
getattr(np, method)(df, axis=0)
# same thing, but with an additional non-categorical column
df["B"] = df["A"].astype(object)
with pytest.raises(TypeError, match="is not ordered for operation"):
getattr(df, method)()
with pytest.raises(TypeError, match="is not ordered for operation"):
getattr(np, method)(df, axis=0)
class TestEmptyDataFrameReductions:
@pytest.mark.parametrize(
"opname, dtype, exp_value, exp_dtype",
[
("sum", np.int8, 0, np.int64),
("prod", np.int8, 1, np.int_),
("sum", np.int64, 0, np.int64),
("prod", np.int64, 1, np.int64),
("sum", np.uint8, 0, np.uint64),
("prod", np.uint8, 1, np.uint),
("sum", np.uint64, 0, np.uint64),
("prod", np.uint64, 1, np.uint64),
("sum", np.float32, 0, np.float32),
("prod", np.float32, 1, np.float32),
("sum", np.float64, 0, np.float64),
],
)
def test_df_empty_min_count_0(self, opname, dtype, exp_value, exp_dtype):
df = DataFrame({0: [], 1: []}, dtype=dtype)
result = getattr(df, opname)(min_count=0)
expected = Series([exp_value, exp_value], dtype=exp_dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"opname, dtype, exp_dtype",
[
("sum", np.int8, np.float64),
("prod", np.int8, np.float64),
("sum", np.int64, np.float64),
("prod", np.int64, np.float64),
("sum", np.uint8, np.float64),
("prod", np.uint8, np.float64),
("sum", np.uint64, np.float64),
("prod", np.uint64, np.float64),
("sum", np.float32, np.float32),
("prod", np.float32, np.float32),
("sum", np.float64, np.float64),
],
)
def test_df_empty_min_count_1(self, opname, dtype, exp_dtype):
df = DataFrame({0: [], 1: []}, dtype=dtype)
result = getattr(df, opname)(min_count=1)
expected = Series([np.nan, np.nan], dtype=exp_dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"opname, dtype, exp_value, exp_dtype",
[
("sum", "Int8", 0, ("Int32" if is_windows_np2_or_is32 else "Int64")),
("prod", "Int8", 1, ("Int32" if is_windows_np2_or_is32 else "Int64")),
("prod", "Int8", 1, ("Int32" if is_windows_np2_or_is32 else "Int64")),
("sum", "Int64", 0, "Int64"),
("prod", "Int64", 1, "Int64"),
("sum", "UInt8", 0, ("UInt32" if is_windows_np2_or_is32 else "UInt64")),
("prod", "UInt8", 1, ("UInt32" if is_windows_np2_or_is32 else "UInt64")),
("sum", "UInt64", 0, "UInt64"),
("prod", "UInt64", 1, "UInt64"),
("sum", "Float32", 0, "Float32"),
("prod", "Float32", 1, "Float32"),
("sum", "Float64", 0, "Float64"),
],
)
def test_df_empty_nullable_min_count_0(self, opname, dtype, exp_value, exp_dtype):
df = DataFrame({0: [], 1: []}, dtype=dtype)
result = getattr(df, opname)(min_count=0)
expected = Series([exp_value, exp_value], dtype=exp_dtype)
tm.assert_series_equal(result, expected)
# TODO: why does min_count=1 impact the resulting Windows dtype
# differently than min_count=0?
@pytest.mark.parametrize(
"opname, dtype, exp_dtype",
[
("sum", "Int8", ("Int32" if is_windows_or_is32 else "Int64")),
("prod", "Int8", ("Int32" if is_windows_or_is32 else "Int64")),
("sum", "Int64", "Int64"),
("prod", "Int64", "Int64"),
("sum", "UInt8", ("UInt32" if is_windows_or_is32 else "UInt64")),
("prod", "UInt8", ("UInt32" if is_windows_or_is32 else "UInt64")),
("sum", "UInt64", "UInt64"),
("prod", "UInt64", "UInt64"),
("sum", "Float32", "Float32"),
("prod", "Float32", "Float32"),
("sum", "Float64", "Float64"),
],
)
def test_df_empty_nullable_min_count_1(self, opname, dtype, exp_dtype):
df = DataFrame({0: [], 1: []}, dtype=dtype)
result = getattr(df, opname)(min_count=1)
expected = Series([pd.NA, pd.NA], dtype=exp_dtype)
tm.assert_series_equal(result, expected)
def test_sum_timedelta64_skipna_false(using_array_manager, request):
# GH#17235
if using_array_manager:
mark = pytest.mark.xfail(
reason="Incorrect type inference on NaT in reduction result"
)
request.applymarker(mark)
arr = np.arange(8).astype(np.int64).view("m8[s]").reshape(4, 2)
arr[-1, -1] = "Nat"
df = DataFrame(arr)
assert (df.dtypes == arr.dtype).all()
result = df.sum(skipna=False)
expected = Series([pd.Timedelta(seconds=12), pd.NaT], dtype="m8[s]")
tm.assert_series_equal(result, expected)
result = df.sum(axis=0, skipna=False)
tm.assert_series_equal(result, expected)
result = df.sum(axis=1, skipna=False)
expected = Series(
[
pd.Timedelta(seconds=1),
pd.Timedelta(seconds=5),
pd.Timedelta(seconds=9),
pd.NaT,
],
dtype="m8[s]",
)
tm.assert_series_equal(result, expected)
@pytest.mark.xfail(
using_pyarrow_string_dtype(), reason="sum doesn't work with arrow strings"
)
def test_mixed_frame_with_integer_sum():
# https://github.com/pandas-dev/pandas/issues/34520
df = DataFrame([["a", 1]], columns=list("ab"))
df = df.astype({"b": "Int64"})
result = df.sum()
expected = Series(["a", 1], index=["a", "b"])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("numeric_only", [True, False, None])
@pytest.mark.parametrize("method", ["min", "max"])
def test_minmax_extensionarray(method, numeric_only):
# https://github.com/pandas-dev/pandas/issues/32651
int64_info = np.iinfo("int64")
ser = Series([int64_info.max, None, int64_info.min], dtype=pd.Int64Dtype())
df = DataFrame({"Int64": ser})
result = getattr(df, method)(numeric_only=numeric_only)
expected = Series(
[getattr(int64_info, method)],
dtype="Int64",
index=Index(["Int64"]),
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("ts_value", [Timestamp("2000-01-01"), pd.NaT])
def test_frame_mixed_numeric_object_with_timestamp(ts_value):
# GH 13912
df = DataFrame({"a": [1], "b": [1.1], "c": ["foo"], "d": [ts_value]})
with pytest.raises(TypeError, match="does not support reduction"):
df.sum()
def test_prod_sum_min_count_mixed_object():
# https://github.com/pandas-dev/pandas/issues/41074
df = DataFrame([1, "a", True])
result = df.prod(axis=0, min_count=1, numeric_only=False)
expected = Series(["a"], dtype=object)
tm.assert_series_equal(result, expected)
msg = re.escape("unsupported operand type(s) for +: 'int' and 'str'")
with pytest.raises(TypeError, match=msg):
df.sum(axis=0, min_count=1, numeric_only=False)
@pytest.mark.parametrize("method", ["min", "max", "mean", "median", "skew", "kurt"])
@pytest.mark.parametrize("numeric_only", [True, False])
@pytest.mark.parametrize("dtype", ["float64", "Float64"])
def test_reduction_axis_none_returns_scalar(method, numeric_only, dtype):
# GH#21597 As of 2.0, axis=None reduces over all axes.
df = DataFrame(np.random.default_rng(2).standard_normal((4, 4)), dtype=dtype)
result = getattr(df, method)(axis=None, numeric_only=numeric_only)
np_arr = df.to_numpy(dtype=np.float64)
if method in {"skew", "kurt"}:
comp_mod = pytest.importorskip("scipy.stats")
if method == "kurt":
method = "kurtosis"
expected = getattr(comp_mod, method)(np_arr, bias=False, axis=None)
tm.assert_almost_equal(result, expected)
else:
expected = getattr(np, method)(np_arr, axis=None)
assert result == expected
@pytest.mark.parametrize(
"kernel",
[
"corr",
"corrwith",
"cov",
"idxmax",
"idxmin",
"kurt",
"max",
"mean",
"median",
"min",
"prod",
"quantile",
"sem",
"skew",
"std",
"sum",
"var",
],
)
def test_fails_on_non_numeric(kernel):
# GH#46852
df = DataFrame({"a": [1, 2, 3], "b": object})
args = (df,) if kernel == "corrwith" else ()
msg = "|".join(
[
"not allowed for this dtype",
"argument must be a string or a number",
"not supported between instances of",
"unsupported operand type",
"argument must be a string or a real number",
]
)
if kernel == "median":
# slightly different message on different builds
msg1 = (
r"Cannot convert \[\[<class 'object'> <class 'object'> "
r"<class 'object'>\]\] to numeric"
)
msg2 = (
r"Cannot convert \[<class 'object'> <class 'object'> "
r"<class 'object'>\] to numeric"
)
msg = "|".join([msg1, msg2])
with pytest.raises(TypeError, match=msg):
getattr(df, kernel)(*args)
@pytest.mark.parametrize(
"method",
[
"all",
"any",
"count",
"idxmax",
"idxmin",
"kurt",
"kurtosis",
"max",
"mean",
"median",
"min",
"nunique",
"prod",
"product",
"sem",
"skew",
"std",
"sum",
"var",
],
)
@pytest.mark.parametrize("min_count", [0, 2])
def test_numeric_ea_axis_1(method, skipna, min_count, any_numeric_ea_dtype):
# GH 54341
df = DataFrame(
{
"a": Series([0, 1, 2, 3], dtype=any_numeric_ea_dtype),
"b": Series([0, 1, pd.NA, 3], dtype=any_numeric_ea_dtype),
},
)
expected_df = DataFrame(
{
"a": [0.0, 1.0, 2.0, 3.0],
"b": [0.0, 1.0, np.nan, 3.0],
},
)
if method in ("count", "nunique"):
expected_dtype = "int64"
elif method in ("all", "any"):
expected_dtype = "boolean"
elif method in (
"kurt",
"kurtosis",
"mean",
"median",
"sem",
"skew",
"std",
"var",
) and not any_numeric_ea_dtype.startswith("Float"):
expected_dtype = "Float64"
else:
expected_dtype = any_numeric_ea_dtype
kwargs = {}
if method not in ("count", "nunique", "quantile"):
kwargs["skipna"] = skipna
if method in ("prod", "product", "sum"):
kwargs["min_count"] = min_count
warn = None
msg = None
if not skipna and method in ("idxmax", "idxmin"):
warn = FutureWarning
msg = f"The behavior of DataFrame.{method} with all-NA values"
with tm.assert_produces_warning(warn, match=msg):
result = getattr(df, method)(axis=1, **kwargs)
with tm.assert_produces_warning(warn, match=msg):
expected = getattr(expected_df, method)(axis=1, **kwargs)
if method not in ("idxmax", "idxmin"):
expected = expected.astype(expected_dtype)
tm.assert_series_equal(result, expected)
|