File size: 16,942 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
from datetime import (
    datetime,
    timedelta,
)
from io import StringIO

import numpy as np
import pytest

from pandas._config import using_pyarrow_string_dtype

from pandas import (
    NA,
    Categorical,
    CategoricalIndex,
    DataFrame,
    IntervalIndex,
    MultiIndex,
    NaT,
    PeriodIndex,
    Series,
    Timestamp,
    date_range,
    option_context,
    period_range,
)
import pandas._testing as tm


class TestDataFrameRepr:
    def test_repr_should_return_str(self):
        # https://docs.python.org/3/reference/datamodel.html#object.__repr__
        # "...The return value must be a string object."

        # (str on py2.x, str (unicode) on py3)

        data = [8, 5, 3, 5]
        index1 = ["\u03c3", "\u03c4", "\u03c5", "\u03c6"]
        cols = ["\u03c8"]
        df = DataFrame(data, columns=cols, index=index1)
        assert type(df.__repr__()) is str  # noqa: E721

        ser = df[cols[0]]
        assert type(ser.__repr__()) is str  # noqa: E721

    def test_repr_bytes_61_lines(self):
        # GH#12857
        lets = list("ACDEFGHIJKLMNOP")
        words = np.random.default_rng(2).choice(lets, (1000, 50))
        df = DataFrame(words).astype("U1")
        assert (df.dtypes == object).all()

        # smoke tests; at one point this raised with 61 but not 60
        repr(df)
        repr(df.iloc[:60, :])
        repr(df.iloc[:61, :])

    def test_repr_unicode_level_names(self, frame_or_series):
        index = MultiIndex.from_tuples([(0, 0), (1, 1)], names=["\u0394", "i1"])

        obj = DataFrame(np.random.default_rng(2).standard_normal((2, 4)), index=index)
        obj = tm.get_obj(obj, frame_or_series)
        repr(obj)

    def test_assign_index_sequences(self):
        # GH#2200
        df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}).set_index(
            ["a", "b"]
        )
        index = list(df.index)
        index[0] = ("faz", "boo")
        df.index = index
        repr(df)

        # this travels an improper code path
        index[0] = ["faz", "boo"]
        df.index = index
        repr(df)

    def test_repr_with_mi_nat(self):
        df = DataFrame({"X": [1, 2]}, index=[[NaT, Timestamp("20130101")], ["a", "b"]])
        result = repr(df)
        expected = "              X\nNaT        a  1\n2013-01-01 b  2"
        assert result == expected

    def test_repr_with_different_nulls(self):
        # GH45263
        df = DataFrame([1, 2, 3, 4], [True, None, np.nan, NaT])
        result = repr(df)
        expected = """      0
True  1
None  2
NaN   3
NaT   4"""
        assert result == expected

    def test_repr_with_different_nulls_cols(self):
        # GH45263
        d = {np.nan: [1, 2], None: [3, 4], NaT: [6, 7], True: [8, 9]}
        df = DataFrame(data=d)
        result = repr(df)
        expected = """   NaN  None  NaT  True
0    1     3    6     8
1    2     4    7     9"""
        assert result == expected

    def test_multiindex_na_repr(self):
        # only an issue with long columns
        df3 = DataFrame(
            {
                "A" * 30: {("A", "A0006000", "nuit"): "A0006000"},
                "B" * 30: {("A", "A0006000", "nuit"): np.nan},
                "C" * 30: {("A", "A0006000", "nuit"): np.nan},
                "D" * 30: {("A", "A0006000", "nuit"): np.nan},
                "E" * 30: {("A", "A0006000", "nuit"): "A"},
                "F" * 30: {("A", "A0006000", "nuit"): np.nan},
            }
        )

        idf = df3.set_index(["A" * 30, "C" * 30])
        repr(idf)

    def test_repr_name_coincide(self):
        index = MultiIndex.from_tuples(
            [("a", 0, "foo"), ("b", 1, "bar")], names=["a", "b", "c"]
        )

        df = DataFrame({"value": [0, 1]}, index=index)

        lines = repr(df).split("\n")
        assert lines[2].startswith("a 0 foo")

    def test_repr_to_string(
        self,
        multiindex_year_month_day_dataframe_random_data,
        multiindex_dataframe_random_data,
    ):
        ymd = multiindex_year_month_day_dataframe_random_data
        frame = multiindex_dataframe_random_data

        repr(frame)
        repr(ymd)
        repr(frame.T)
        repr(ymd.T)

        buf = StringIO()
        frame.to_string(buf=buf)
        ymd.to_string(buf=buf)
        frame.T.to_string(buf=buf)
        ymd.T.to_string(buf=buf)

    def test_repr_empty(self):
        # empty
        repr(DataFrame())

        # empty with index
        frame = DataFrame(index=np.arange(1000))
        repr(frame)

    def test_repr_mixed(self, float_string_frame):
        # mixed
        repr(float_string_frame)

    @pytest.mark.slow
    def test_repr_mixed_big(self):
        # big mixed
        biggie = DataFrame(
            {
                "A": np.random.default_rng(2).standard_normal(200),
                "B": [str(i) for i in range(200)],
            },
            index=range(200),
        )
        biggie.loc[:20, "A"] = np.nan
        biggie.loc[:20, "B"] = np.nan

        repr(biggie)

    @pytest.mark.xfail(using_pyarrow_string_dtype(), reason="/r in")
    def test_repr(self):
        # columns but no index
        no_index = DataFrame(columns=[0, 1, 3])
        repr(no_index)

        df = DataFrame(["a\n\r\tb"], columns=["a\n\r\td"], index=["a\n\r\tf"])
        assert "\t" not in repr(df)
        assert "\r" not in repr(df)
        assert "a\n" not in repr(df)

    def test_repr_dimensions(self):
        df = DataFrame([[1, 2], [3, 4]])
        with option_context("display.show_dimensions", True):
            assert "2 rows x 2 columns" in repr(df)

        with option_context("display.show_dimensions", False):
            assert "2 rows x 2 columns" not in repr(df)

        with option_context("display.show_dimensions", "truncate"):
            assert "2 rows x 2 columns" not in repr(df)

    @pytest.mark.slow
    def test_repr_big(self):
        # big one
        biggie = DataFrame(np.zeros((200, 4)), columns=range(4), index=range(200))
        repr(biggie)

    def test_repr_unsortable(self):
        # columns are not sortable

        unsortable = DataFrame(
            {
                "foo": [1] * 50,
                datetime.today(): [1] * 50,
                "bar": ["bar"] * 50,
                datetime.today() + timedelta(1): ["bar"] * 50,
            },
            index=np.arange(50),
        )
        repr(unsortable)

    def test_repr_float_frame_options(self, float_frame):
        repr(float_frame)

        with option_context("display.precision", 3):
            repr(float_frame)

        with option_context("display.max_rows", 10, "display.max_columns", 2):
            repr(float_frame)

        with option_context("display.max_rows", 1000, "display.max_columns", 1000):
            repr(float_frame)

    def test_repr_unicode(self):
        uval = "\u03c3\u03c3\u03c3\u03c3"

        df = DataFrame({"A": [uval, uval]})

        result = repr(df)
        ex_top = "      A"
        assert result.split("\n")[0].rstrip() == ex_top

        df = DataFrame({"A": [uval, uval]})
        result = repr(df)
        assert result.split("\n")[0].rstrip() == ex_top

    def test_unicode_string_with_unicode(self):
        df = DataFrame({"A": ["\u05d0"]})
        str(df)

    def test_repr_unicode_columns(self):
        df = DataFrame({"\u05d0": [1, 2, 3], "\u05d1": [4, 5, 6], "c": [7, 8, 9]})
        repr(df.columns)  # should not raise UnicodeDecodeError

    def test_str_to_bytes_raises(self):
        # GH 26447
        df = DataFrame({"A": ["abc"]})
        msg = "^'str' object cannot be interpreted as an integer$"
        with pytest.raises(TypeError, match=msg):
            bytes(df)

    def test_very_wide_repr(self):
        df = DataFrame(
            np.random.default_rng(2).standard_normal((10, 20)),
            columns=np.array(["a" * 10] * 20, dtype=object),
        )
        repr(df)

    def test_repr_column_name_unicode_truncation_bug(self):
        # #1906
        df = DataFrame(
            {
                "Id": [7117434],
                "StringCol": (
                    "Is it possible to modify drop plot code"
                    "so that the output graph is displayed "
                    "in iphone simulator, Is it possible to "
                    "modify drop plot code so that the "
                    "output graph is \xe2\x80\xa8displayed "
                    "in iphone simulator.Now we are adding "
                    "the CSV file externally. I want to Call "
                    "the File through the code.."
                ),
            }
        )

        with option_context("display.max_columns", 20):
            assert "StringCol" in repr(df)

    def test_latex_repr(self):
        pytest.importorskip("jinja2")
        expected = r"""\begin{tabular}{llll}
\toprule
 & 0 & 1 & 2 \\
\midrule
0 & $\alpha$ & b & c \\
1 & 1 & 2 & 3 \\
\bottomrule
\end{tabular}
"""
        with option_context(
            "styler.format.escape", None, "styler.render.repr", "latex"
        ):
            df = DataFrame([[r"$\alpha$", "b", "c"], [1, 2, 3]])
            result = df._repr_latex_()
            assert result == expected

        # GH 12182
        assert df._repr_latex_() is None

    def test_repr_with_datetimeindex(self):
        df = DataFrame({"A": [1, 2, 3]}, index=date_range("2000", periods=3))
        result = repr(df)
        expected = "            A\n2000-01-01  1\n2000-01-02  2\n2000-01-03  3"
        assert result == expected

    def test_repr_with_intervalindex(self):
        # https://github.com/pandas-dev/pandas/pull/24134/files
        df = DataFrame(
            {"A": [1, 2, 3, 4]}, index=IntervalIndex.from_breaks([0, 1, 2, 3, 4])
        )
        result = repr(df)
        expected = "        A\n(0, 1]  1\n(1, 2]  2\n(2, 3]  3\n(3, 4]  4"
        assert result == expected

    def test_repr_with_categorical_index(self):
        df = DataFrame({"A": [1, 2, 3]}, index=CategoricalIndex(["a", "b", "c"]))
        result = repr(df)
        expected = "   A\na  1\nb  2\nc  3"
        assert result == expected

    def test_repr_categorical_dates_periods(self):
        # normal DataFrame
        dt = date_range("2011-01-01 09:00", freq="h", periods=5, tz="US/Eastern")
        p = period_range("2011-01", freq="M", periods=5)
        df = DataFrame({"dt": dt, "p": p})
        exp = """                         dt        p
0 2011-01-01 09:00:00-05:00  2011-01
1 2011-01-01 10:00:00-05:00  2011-02
2 2011-01-01 11:00:00-05:00  2011-03
3 2011-01-01 12:00:00-05:00  2011-04
4 2011-01-01 13:00:00-05:00  2011-05"""

        assert repr(df) == exp

        df2 = DataFrame({"dt": Categorical(dt), "p": Categorical(p)})
        assert repr(df2) == exp

    @pytest.mark.parametrize("arg", [np.datetime64, np.timedelta64])
    @pytest.mark.parametrize(
        "box, expected",
        [[Series, "0    NaT\ndtype: object"], [DataFrame, "     0\n0  NaT"]],
    )
    def test_repr_np_nat_with_object(self, arg, box, expected):
        # GH 25445
        result = repr(box([arg("NaT")], dtype=object))
        assert result == expected

    def test_frame_datetime64_pre1900_repr(self):
        df = DataFrame({"year": date_range("1/1/1700", periods=50, freq="YE-DEC")})
        # it works!
        repr(df)

    def test_frame_to_string_with_periodindex(self):
        index = PeriodIndex(["2011-1", "2011-2", "2011-3"], freq="M")
        frame = DataFrame(np.random.default_rng(2).standard_normal((3, 4)), index=index)

        # it works!
        frame.to_string()

    def test_to_string_ea_na_in_multiindex(self):
        # GH#47986
        df = DataFrame(
            {"a": [1, 2]},
            index=MultiIndex.from_arrays([Series([NA, 1], dtype="Int64")]),
        )

        result = df.to_string()
        expected = """      a
<NA>  1
1     2"""
        assert result == expected

    def test_datetime64tz_slice_non_truncate(self):
        # GH 30263
        df = DataFrame({"x": date_range("2019", periods=10, tz="UTC")})
        expected = repr(df)
        df = df.iloc[:, :5]
        result = repr(df)
        assert result == expected

    def test_to_records_no_typeerror_in_repr(self):
        # GH 48526
        df = DataFrame([["a", "b"], ["c", "d"], ["e", "f"]], columns=["left", "right"])
        df["record"] = df[["left", "right"]].to_records()
        expected = """  left right     record
0    a     b  [0, a, b]
1    c     d  [1, c, d]
2    e     f  [2, e, f]"""
        result = repr(df)
        assert result == expected

    def test_to_records_with_na_record_value(self):
        # GH 48526
        df = DataFrame(
            [["a", np.nan], ["c", "d"], ["e", "f"]], columns=["left", "right"]
        )
        df["record"] = df[["left", "right"]].to_records()
        expected = """  left right       record
0    a   NaN  [0, a, nan]
1    c     d    [1, c, d]
2    e     f    [2, e, f]"""
        result = repr(df)
        assert result == expected

    def test_to_records_with_na_record(self):
        # GH 48526
        df = DataFrame(
            [["a", "b"], [np.nan, np.nan], ["e", "f"]], columns=[np.nan, "right"]
        )
        df["record"] = df[[np.nan, "right"]].to_records()
        expected = """   NaN right         record
0    a     b      [0, a, b]
1  NaN   NaN  [1, nan, nan]
2    e     f      [2, e, f]"""
        result = repr(df)
        assert result == expected

    def test_to_records_with_inf_as_na_record(self):
        # GH 48526
        expected = """   NaN  inf         record
0  inf    b    [0, inf, b]
1  NaN  NaN  [1, nan, nan]
2    e    f      [2, e, f]"""
        msg = "use_inf_as_na option is deprecated"
        with tm.assert_produces_warning(FutureWarning, match=msg):
            with option_context("use_inf_as_na", True):
                df = DataFrame(
                    [[np.inf, "b"], [np.nan, np.nan], ["e", "f"]],
                    columns=[np.nan, np.inf],
                )
                df["record"] = df[[np.nan, np.inf]].to_records()
                result = repr(df)
        assert result == expected

    def test_to_records_with_inf_record(self):
        # GH 48526
        expected = """   NaN  inf         record
0  inf    b    [0, inf, b]
1  NaN  NaN  [1, nan, nan]
2    e    f      [2, e, f]"""
        msg = "use_inf_as_na option is deprecated"
        with tm.assert_produces_warning(FutureWarning, match=msg):
            with option_context("use_inf_as_na", False):
                df = DataFrame(
                    [[np.inf, "b"], [np.nan, np.nan], ["e", "f"]],
                    columns=[np.nan, np.inf],
                )
                df["record"] = df[[np.nan, np.inf]].to_records()
                result = repr(df)
        assert result == expected

    def test_masked_ea_with_formatter(self):
        # GH#39336
        df = DataFrame(
            {
                "a": Series([0.123456789, 1.123456789], dtype="Float64"),
                "b": Series([1, 2], dtype="Int64"),
            }
        )
        result = df.to_string(formatters=["{:.2f}".format, "{:.2f}".format])
        expected = """      a     b
0  0.12  1.00
1  1.12  2.00"""
        assert result == expected

    def test_repr_ea_columns(self, any_string_dtype):
        # GH#54797
        pytest.importorskip("pyarrow")
        df = DataFrame({"long_column_name": [1, 2, 3], "col2": [4, 5, 6]})
        df.columns = df.columns.astype(any_string_dtype)
        expected = """   long_column_name  col2
0                 1     4
1                 2     5
2                 3     6"""
        assert repr(df) == expected


@pytest.mark.parametrize(
    "data,output",
    [
        ([2, complex("nan"), 1], [" 2.0+0.0j", " NaN+0.0j", " 1.0+0.0j"]),
        ([2, complex("nan"), -1], [" 2.0+0.0j", " NaN+0.0j", "-1.0+0.0j"]),
        ([-2, complex("nan"), -1], ["-2.0+0.0j", " NaN+0.0j", "-1.0+0.0j"]),
        ([-1.23j, complex("nan"), -1], ["-0.00-1.23j", "  NaN+0.00j", "-1.00+0.00j"]),
        ([1.23j, complex("nan"), 1.23], [" 0.00+1.23j", "  NaN+0.00j", " 1.23+0.00j"]),
        (
            [-1.23j, complex(np.nan, np.nan), 1],
            ["-0.00-1.23j", "  NaN+ NaNj", " 1.00+0.00j"],
        ),
        (
            [-1.23j, complex(1.2, np.nan), 1],
            ["-0.00-1.23j", " 1.20+ NaNj", " 1.00+0.00j"],
        ),
        (
            [-1.23j, complex(np.nan, -1.2), 1],
            ["-0.00-1.23j", "  NaN-1.20j", " 1.00+0.00j"],
        ),
    ],
)
@pytest.mark.parametrize("as_frame", [True, False])
def test_repr_with_complex_nans(data, output, as_frame):
    # GH#53762, GH#53841
    obj = Series(np.array(data))
    if as_frame:
        obj = obj.to_frame(name="val")
        reprs = [f"{i} {val}" for i, val in enumerate(output)]
        expected = f"{'val': >{len(reprs[0])}}\n" + "\n".join(reprs)
    else:
        reprs = [f"{i}   {val}" for i, val in enumerate(output)]
        expected = "\n".join(reprs) + "\ndtype: complex128"
    assert str(obj) == expected, f"\n{str(obj)}\n\n{expected}"