File size: 45,862 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 |
"""
test where we are determining what we are grouping, or getting groups
"""
from datetime import (
date,
timedelta,
)
import numpy as np
import pytest
import pandas as pd
from pandas import (
CategoricalIndex,
DataFrame,
Grouper,
Index,
MultiIndex,
Series,
Timestamp,
date_range,
period_range,
)
import pandas._testing as tm
from pandas.core.groupby.grouper import Grouping
# selection
# --------------------------------
class TestSelection:
def test_select_bad_cols(self):
df = DataFrame([[1, 2]], columns=["A", "B"])
g = df.groupby("A")
with pytest.raises(KeyError, match="\"Columns not found: 'C'\""):
g[["C"]]
with pytest.raises(KeyError, match="^[^A]+$"):
# A should not be referenced as a bad column...
# will have to rethink regex if you change message!
g[["A", "C"]]
def test_groupby_duplicated_column_errormsg(self):
# GH7511
df = DataFrame(
columns=["A", "B", "A", "C"], data=[range(4), range(2, 6), range(0, 8, 2)]
)
msg = "Grouper for 'A' not 1-dimensional"
with pytest.raises(ValueError, match=msg):
df.groupby("A")
with pytest.raises(ValueError, match=msg):
df.groupby(["A", "B"])
grouped = df.groupby("B")
c = grouped.count()
assert c.columns.nlevels == 1
assert c.columns.size == 3
def test_column_select_via_attr(self, df):
result = df.groupby("A").C.sum()
expected = df.groupby("A")["C"].sum()
tm.assert_series_equal(result, expected)
df["mean"] = 1.5
result = df.groupby("A").mean(numeric_only=True)
expected = df.groupby("A")[["C", "D", "mean"]].agg("mean")
tm.assert_frame_equal(result, expected)
def test_getitem_list_of_columns(self):
df = DataFrame(
{
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
"C": np.random.default_rng(2).standard_normal(8),
"D": np.random.default_rng(2).standard_normal(8),
"E": np.random.default_rng(2).standard_normal(8),
}
)
result = df.groupby("A")[["C", "D"]].mean()
result2 = df.groupby("A")[df.columns[2:4]].mean()
expected = df.loc[:, ["A", "C", "D"]].groupby("A").mean()
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(result2, expected)
def test_getitem_numeric_column_names(self):
# GH #13731
df = DataFrame(
{
0: list("abcd") * 2,
2: np.random.default_rng(2).standard_normal(8),
4: np.random.default_rng(2).standard_normal(8),
6: np.random.default_rng(2).standard_normal(8),
}
)
result = df.groupby(0)[df.columns[1:3]].mean()
result2 = df.groupby(0)[[2, 4]].mean()
expected = df.loc[:, [0, 2, 4]].groupby(0).mean()
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(result2, expected)
# per GH 23566 enforced deprecation raises a ValueError
with pytest.raises(ValueError, match="Cannot subset columns with a tuple"):
df.groupby(0)[2, 4].mean()
def test_getitem_single_tuple_of_columns_raises(self, df):
# per GH 23566 enforced deprecation raises a ValueError
with pytest.raises(ValueError, match="Cannot subset columns with a tuple"):
df.groupby("A")["C", "D"].mean()
def test_getitem_single_column(self):
df = DataFrame(
{
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
"C": np.random.default_rng(2).standard_normal(8),
"D": np.random.default_rng(2).standard_normal(8),
"E": np.random.default_rng(2).standard_normal(8),
}
)
result = df.groupby("A")["C"].mean()
as_frame = df.loc[:, ["A", "C"]].groupby("A").mean()
as_series = as_frame.iloc[:, 0]
expected = as_series
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"func", [lambda x: x.sum(), lambda x: x.agg(lambda y: y.sum())]
)
def test_getitem_from_grouper(self, func):
# GH 50383
df = DataFrame({"a": [1, 1, 2], "b": 3, "c": 4, "d": 5})
gb = df.groupby(["a", "b"])[["a", "c"]]
idx = MultiIndex.from_tuples([(1, 3), (2, 3)], names=["a", "b"])
expected = DataFrame({"a": [2, 2], "c": [8, 4]}, index=idx)
result = func(gb)
tm.assert_frame_equal(result, expected)
def test_indices_grouped_by_tuple_with_lambda(self):
# GH 36158
df = DataFrame(
{
"Tuples": (
(x, y)
for x in [0, 1]
for y in np.random.default_rng(2).integers(3, 5, 5)
)
}
)
gb = df.groupby("Tuples")
gb_lambda = df.groupby(lambda x: df.iloc[x, 0])
expected = gb.indices
result = gb_lambda.indices
tm.assert_dict_equal(result, expected)
# grouping
# --------------------------------
class TestGrouping:
@pytest.mark.parametrize(
"index",
[
Index(list("abcde")),
Index(np.arange(5)),
Index(np.arange(5, dtype=float)),
date_range("2020-01-01", periods=5),
period_range("2020-01-01", periods=5),
],
)
def test_grouper_index_types(self, index):
# related GH5375
# groupby misbehaving when using a Floatlike index
df = DataFrame(np.arange(10).reshape(5, 2), columns=list("AB"), index=index)
df.groupby(list("abcde"), group_keys=False).apply(lambda x: x)
df.index = df.index[::-1]
df.groupby(list("abcde"), group_keys=False).apply(lambda x: x)
def test_grouper_multilevel_freq(self):
# GH 7885
# with level and freq specified in a Grouper
d0 = date.today() - timedelta(days=14)
dates = date_range(d0, date.today())
date_index = MultiIndex.from_product([dates, dates], names=["foo", "bar"])
df = DataFrame(np.random.default_rng(2).integers(0, 100, 225), index=date_index)
# Check string level
expected = (
df.reset_index()
.groupby([Grouper(key="foo", freq="W"), Grouper(key="bar", freq="W")])
.sum()
)
# reset index changes columns dtype to object
expected.columns = Index([0], dtype="int64")
result = df.groupby(
[Grouper(level="foo", freq="W"), Grouper(level="bar", freq="W")]
).sum()
tm.assert_frame_equal(result, expected)
# Check integer level
result = df.groupby(
[Grouper(level=0, freq="W"), Grouper(level=1, freq="W")]
).sum()
tm.assert_frame_equal(result, expected)
def test_grouper_creation_bug(self):
# GH 8795
df = DataFrame({"A": [0, 0, 1, 1, 2, 2], "B": [1, 2, 3, 4, 5, 6]})
g = df.groupby("A")
expected = g.sum()
g = df.groupby(Grouper(key="A"))
result = g.sum()
tm.assert_frame_equal(result, expected)
msg = "Grouper axis keyword is deprecated and will be removed"
with tm.assert_produces_warning(FutureWarning, match=msg):
gpr = Grouper(key="A", axis=0)
g = df.groupby(gpr)
result = g.sum()
tm.assert_frame_equal(result, expected)
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = g.apply(lambda x: x.sum())
expected["A"] = [0, 2, 4]
expected = expected.loc[:, ["A", "B"]]
tm.assert_frame_equal(result, expected)
def test_grouper_creation_bug2(self):
# GH14334
# Grouper(key=...) may be passed in a list
df = DataFrame(
{"A": [0, 0, 0, 1, 1, 1], "B": [1, 1, 2, 2, 3, 3], "C": [1, 2, 3, 4, 5, 6]}
)
# Group by single column
expected = df.groupby("A").sum()
g = df.groupby([Grouper(key="A")])
result = g.sum()
tm.assert_frame_equal(result, expected)
# Group by two columns
# using a combination of strings and Grouper objects
expected = df.groupby(["A", "B"]).sum()
# Group with two Grouper objects
g = df.groupby([Grouper(key="A"), Grouper(key="B")])
result = g.sum()
tm.assert_frame_equal(result, expected)
# Group with a string and a Grouper object
g = df.groupby(["A", Grouper(key="B")])
result = g.sum()
tm.assert_frame_equal(result, expected)
# Group with a Grouper object and a string
g = df.groupby([Grouper(key="A"), "B"])
result = g.sum()
tm.assert_frame_equal(result, expected)
def test_grouper_creation_bug3(self, unit):
# GH8866
dti = date_range("20130101", periods=2, unit=unit)
mi = MultiIndex.from_product(
[list("ab"), range(2), dti],
names=["one", "two", "three"],
)
ser = Series(
np.arange(8, dtype="int64"),
index=mi,
)
result = ser.groupby(Grouper(level="three", freq="ME")).sum()
exp_dti = pd.DatetimeIndex(
[Timestamp("2013-01-31")], freq="ME", name="three"
).as_unit(unit)
expected = Series(
[28],
index=exp_dti,
)
tm.assert_series_equal(result, expected)
# just specifying a level breaks
result = ser.groupby(Grouper(level="one")).sum()
expected = ser.groupby(level="one").sum()
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("func", [False, True])
def test_grouper_returning_tuples(self, func):
# GH 22257 , both with dict and with callable
df = DataFrame({"X": ["A", "B", "A", "B"], "Y": [1, 4, 3, 2]})
mapping = dict(zip(range(4), [("C", 5), ("D", 6)] * 2))
if func:
gb = df.groupby(by=lambda idx: mapping[idx], sort=False)
else:
gb = df.groupby(by=mapping, sort=False)
name, expected = next(iter(gb))
assert name == ("C", 5)
result = gb.get_group(name)
tm.assert_frame_equal(result, expected)
def test_grouper_column_and_index(self):
# GH 14327
# Grouping a multi-index frame by a column and an index level should
# be equivalent to resetting the index and grouping by two columns
idx = MultiIndex.from_tuples(
[("a", 1), ("a", 2), ("a", 3), ("b", 1), ("b", 2), ("b", 3)]
)
idx.names = ["outer", "inner"]
df_multi = DataFrame(
{"A": np.arange(6), "B": ["one", "one", "two", "two", "one", "one"]},
index=idx,
)
result = df_multi.groupby(["B", Grouper(level="inner")]).mean(numeric_only=True)
expected = (
df_multi.reset_index().groupby(["B", "inner"]).mean(numeric_only=True)
)
tm.assert_frame_equal(result, expected)
# Test the reverse grouping order
result = df_multi.groupby([Grouper(level="inner"), "B"]).mean(numeric_only=True)
expected = (
df_multi.reset_index().groupby(["inner", "B"]).mean(numeric_only=True)
)
tm.assert_frame_equal(result, expected)
# Grouping a single-index frame by a column and the index should
# be equivalent to resetting the index and grouping by two columns
df_single = df_multi.reset_index("outer")
result = df_single.groupby(["B", Grouper(level="inner")]).mean(
numeric_only=True
)
expected = (
df_single.reset_index().groupby(["B", "inner"]).mean(numeric_only=True)
)
tm.assert_frame_equal(result, expected)
# Test the reverse grouping order
result = df_single.groupby([Grouper(level="inner"), "B"]).mean(
numeric_only=True
)
expected = (
df_single.reset_index().groupby(["inner", "B"]).mean(numeric_only=True)
)
tm.assert_frame_equal(result, expected)
def test_groupby_levels_and_columns(self):
# GH9344, GH9049
idx_names = ["x", "y"]
idx = MultiIndex.from_tuples([(1, 1), (1, 2), (3, 4), (5, 6)], names=idx_names)
df = DataFrame(np.arange(12).reshape(-1, 3), index=idx)
by_levels = df.groupby(level=idx_names).mean()
# reset_index changes columns dtype to object
by_columns = df.reset_index().groupby(idx_names).mean()
# without casting, by_columns.columns is object-dtype
by_columns.columns = by_columns.columns.astype(np.int64)
tm.assert_frame_equal(by_levels, by_columns)
def test_groupby_categorical_index_and_columns(self, observed):
# GH18432, adapted for GH25871
columns = ["A", "B", "A", "B"]
categories = ["B", "A"]
data = np.array(
[[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 1, 2]], int
)
cat_columns = CategoricalIndex(columns, categories=categories, ordered=True)
df = DataFrame(data=data, columns=cat_columns)
depr_msg = "DataFrame.groupby with axis=1 is deprecated"
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
result = df.groupby(axis=1, level=0, observed=observed).sum()
expected_data = np.array([[4, 2], [4, 2], [4, 2], [4, 2], [4, 2]], int)
expected_columns = CategoricalIndex(
categories, categories=categories, ordered=True
)
expected = DataFrame(data=expected_data, columns=expected_columns)
tm.assert_frame_equal(result, expected)
# test transposed version
df = DataFrame(data.T, index=cat_columns)
msg = "The 'axis' keyword in DataFrame.groupby is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = df.groupby(axis=0, level=0, observed=observed).sum()
expected = DataFrame(data=expected_data.T, index=expected_columns)
tm.assert_frame_equal(result, expected)
def test_grouper_getting_correct_binner(self):
# GH 10063
# using a non-time-based grouper and a time-based grouper
# and specifying levels
df = DataFrame(
{"A": 1},
index=MultiIndex.from_product(
[list("ab"), date_range("20130101", periods=80)], names=["one", "two"]
),
)
result = df.groupby(
[Grouper(level="one"), Grouper(level="two", freq="ME")]
).sum()
expected = DataFrame(
{"A": [31, 28, 21, 31, 28, 21]},
index=MultiIndex.from_product(
[list("ab"), date_range("20130101", freq="ME", periods=3)],
names=["one", "two"],
),
)
tm.assert_frame_equal(result, expected)
def test_grouper_iter(self, df):
gb = df.groupby("A")
msg = "DataFrameGroupBy.grouper is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
grouper = gb.grouper
result = sorted(grouper)
expected = ["bar", "foo"]
assert result == expected
def test_empty_groups(self, df):
# see gh-1048
with pytest.raises(ValueError, match="No group keys passed!"):
df.groupby([])
def test_groupby_grouper(self, df):
grouped = df.groupby("A")
msg = "DataFrameGroupBy.grouper is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
grouper = grouped.grouper
result = df.groupby(grouper).mean(numeric_only=True)
expected = grouped.mean(numeric_only=True)
tm.assert_frame_equal(result, expected)
def test_groupby_dict_mapping(self):
# GH #679
s = Series({"T1": 5})
result = s.groupby({"T1": "T2"}).agg("sum")
expected = s.groupby(["T2"]).agg("sum")
tm.assert_series_equal(result, expected)
s = Series([1.0, 2.0, 3.0, 4.0], index=list("abcd"))
mapping = {"a": 0, "b": 0, "c": 1, "d": 1}
result = s.groupby(mapping).mean()
result2 = s.groupby(mapping).agg("mean")
exp_key = np.array([0, 0, 1, 1], dtype=np.int64)
expected = s.groupby(exp_key).mean()
expected2 = s.groupby(exp_key).mean()
tm.assert_series_equal(result, expected)
tm.assert_series_equal(result, result2)
tm.assert_series_equal(result, expected2)
@pytest.mark.parametrize(
"index",
[
[0, 1, 2, 3],
["a", "b", "c", "d"],
[Timestamp(2021, 7, 28 + i) for i in range(4)],
],
)
def test_groupby_series_named_with_tuple(self, frame_or_series, index):
# GH 42731
obj = frame_or_series([1, 2, 3, 4], index=index)
groups = Series([1, 0, 1, 0], index=index, name=("a", "a"))
result = obj.groupby(groups).last()
expected = frame_or_series([4, 3])
expected.index.name = ("a", "a")
tm.assert_equal(result, expected)
def test_groupby_grouper_f_sanity_checked(self):
dates = date_range("01-Jan-2013", periods=12, freq="MS")
ts = Series(np.random.default_rng(2).standard_normal(12), index=dates)
# GH51979
# simple check that the passed function doesn't operates on the whole index
msg = "'Timestamp' object is not subscriptable"
with pytest.raises(TypeError, match=msg):
ts.groupby(lambda key: key[0:6])
result = ts.groupby(lambda x: x).sum()
expected = ts.groupby(ts.index).sum()
expected.index.freq = None
tm.assert_series_equal(result, expected)
def test_groupby_with_datetime_key(self):
# GH 51158
df = DataFrame(
{
"id": ["a", "b"] * 3,
"b": date_range("2000-01-01", "2000-01-03", freq="9h"),
}
)
grouper = Grouper(key="b", freq="D")
gb = df.groupby([grouper, "id"])
# test number of groups
expected = {
(Timestamp("2000-01-01"), "a"): [0, 2],
(Timestamp("2000-01-01"), "b"): [1],
(Timestamp("2000-01-02"), "a"): [4],
(Timestamp("2000-01-02"), "b"): [3, 5],
}
tm.assert_dict_equal(gb.groups, expected)
# test number of group keys
assert len(gb.groups.keys()) == 4
def test_grouping_error_on_multidim_input(self, df):
msg = "Grouper for '<class 'pandas.core.frame.DataFrame'>' not 1-dimensional"
with pytest.raises(ValueError, match=msg):
Grouping(df.index, df[["A", "A"]])
def test_multiindex_passthru(self):
# GH 7997
# regression from 0.14.1
df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
df.columns = MultiIndex.from_tuples([(0, 1), (1, 1), (2, 1)])
depr_msg = "DataFrame.groupby with axis=1 is deprecated"
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
gb = df.groupby(axis=1, level=[0, 1])
result = gb.first()
tm.assert_frame_equal(result, df)
def test_multiindex_negative_level(self, multiindex_dataframe_random_data):
# GH 13901
result = multiindex_dataframe_random_data.groupby(level=-1).sum()
expected = multiindex_dataframe_random_data.groupby(level="second").sum()
tm.assert_frame_equal(result, expected)
result = multiindex_dataframe_random_data.groupby(level=-2).sum()
expected = multiindex_dataframe_random_data.groupby(level="first").sum()
tm.assert_frame_equal(result, expected)
result = multiindex_dataframe_random_data.groupby(level=[-2, -1]).sum()
expected = multiindex_dataframe_random_data.sort_index()
tm.assert_frame_equal(result, expected)
result = multiindex_dataframe_random_data.groupby(level=[-1, "first"]).sum()
expected = multiindex_dataframe_random_data.groupby(
level=["second", "first"]
).sum()
tm.assert_frame_equal(result, expected)
def test_multifunc_select_col_integer_cols(self, df):
df.columns = np.arange(len(df.columns))
# it works!
msg = "Passing a dictionary to SeriesGroupBy.agg is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
df.groupby(1, as_index=False)[2].agg({"Q": np.mean})
def test_multiindex_columns_empty_level(self):
lst = [["count", "values"], ["to filter", ""]]
midx = MultiIndex.from_tuples(lst)
df = DataFrame([[1, "A"]], columns=midx)
grouped = df.groupby("to filter").groups
assert grouped["A"] == [0]
grouped = df.groupby([("to filter", "")]).groups
assert grouped["A"] == [0]
df = DataFrame([[1, "A"], [2, "B"]], columns=midx)
expected = df.groupby("to filter").groups
result = df.groupby([("to filter", "")]).groups
assert result == expected
df = DataFrame([[1, "A"], [2, "A"]], columns=midx)
expected = df.groupby("to filter").groups
result = df.groupby([("to filter", "")]).groups
tm.assert_dict_equal(result, expected)
def test_groupby_multiindex_tuple(self):
# GH 17979
df = DataFrame(
[[1, 2, 3, 4], [3, 4, 5, 6], [1, 4, 2, 3]],
columns=MultiIndex.from_arrays([["a", "b", "b", "c"], [1, 1, 2, 2]]),
)
expected = df.groupby([("b", 1)]).groups
result = df.groupby(("b", 1)).groups
tm.assert_dict_equal(expected, result)
df2 = DataFrame(
df.values,
columns=MultiIndex.from_arrays(
[["a", "b", "b", "c"], ["d", "d", "e", "e"]]
),
)
expected = df2.groupby([("b", "d")]).groups
result = df.groupby(("b", 1)).groups
tm.assert_dict_equal(expected, result)
df3 = DataFrame(df.values, columns=[("a", "d"), ("b", "d"), ("b", "e"), "c"])
expected = df3.groupby([("b", "d")]).groups
result = df.groupby(("b", 1)).groups
tm.assert_dict_equal(expected, result)
def test_groupby_multiindex_partial_indexing_equivalence(self):
# GH 17977
df = DataFrame(
[[1, 2, 3, 4], [3, 4, 5, 6], [1, 4, 2, 3]],
columns=MultiIndex.from_arrays([["a", "b", "b", "c"], [1, 1, 2, 2]]),
)
expected_mean = df.groupby([("a", 1)])[[("b", 1), ("b", 2)]].mean()
result_mean = df.groupby([("a", 1)])["b"].mean()
tm.assert_frame_equal(expected_mean, result_mean)
expected_sum = df.groupby([("a", 1)])[[("b", 1), ("b", 2)]].sum()
result_sum = df.groupby([("a", 1)])["b"].sum()
tm.assert_frame_equal(expected_sum, result_sum)
expected_count = df.groupby([("a", 1)])[[("b", 1), ("b", 2)]].count()
result_count = df.groupby([("a", 1)])["b"].count()
tm.assert_frame_equal(expected_count, result_count)
expected_min = df.groupby([("a", 1)])[[("b", 1), ("b", 2)]].min()
result_min = df.groupby([("a", 1)])["b"].min()
tm.assert_frame_equal(expected_min, result_min)
expected_max = df.groupby([("a", 1)])[[("b", 1), ("b", 2)]].max()
result_max = df.groupby([("a", 1)])["b"].max()
tm.assert_frame_equal(expected_max, result_max)
expected_groups = df.groupby([("a", 1)])[[("b", 1), ("b", 2)]].groups
result_groups = df.groupby([("a", 1)])["b"].groups
tm.assert_dict_equal(expected_groups, result_groups)
@pytest.mark.parametrize("sort", [True, False])
def test_groupby_level(self, sort, multiindex_dataframe_random_data, df):
# GH 17537
frame = multiindex_dataframe_random_data
deleveled = frame.reset_index()
result0 = frame.groupby(level=0, sort=sort).sum()
result1 = frame.groupby(level=1, sort=sort).sum()
expected0 = frame.groupby(deleveled["first"].values, sort=sort).sum()
expected1 = frame.groupby(deleveled["second"].values, sort=sort).sum()
expected0.index.name = "first"
expected1.index.name = "second"
assert result0.index.name == "first"
assert result1.index.name == "second"
tm.assert_frame_equal(result0, expected0)
tm.assert_frame_equal(result1, expected1)
assert result0.index.name == frame.index.names[0]
assert result1.index.name == frame.index.names[1]
# groupby level name
result0 = frame.groupby(level="first", sort=sort).sum()
result1 = frame.groupby(level="second", sort=sort).sum()
tm.assert_frame_equal(result0, expected0)
tm.assert_frame_equal(result1, expected1)
# axis=1
msg = "DataFrame.groupby with axis=1 is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
result0 = frame.T.groupby(level=0, axis=1, sort=sort).sum()
result1 = frame.T.groupby(level=1, axis=1, sort=sort).sum()
tm.assert_frame_equal(result0, expected0.T)
tm.assert_frame_equal(result1, expected1.T)
# raise exception for non-MultiIndex
msg = "level > 0 or level < -1 only valid with MultiIndex"
with pytest.raises(ValueError, match=msg):
df.groupby(level=1)
def test_groupby_level_index_names(self, axis):
# GH4014 this used to raise ValueError since 'exp'>1 (in py2)
df = DataFrame({"exp": ["A"] * 3 + ["B"] * 3, "var1": range(6)}).set_index(
"exp"
)
if axis in (1, "columns"):
df = df.T
depr_msg = "DataFrame.groupby with axis=1 is deprecated"
else:
depr_msg = "The 'axis' keyword in DataFrame.groupby is deprecated"
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
df.groupby(level="exp", axis=axis)
msg = f"level name foo is not the name of the {df._get_axis_name(axis)}"
with pytest.raises(ValueError, match=msg):
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
df.groupby(level="foo", axis=axis)
@pytest.mark.parametrize("sort", [True, False])
def test_groupby_level_with_nas(self, sort):
# GH 17537
index = MultiIndex(
levels=[[1, 0], [0, 1, 2, 3]],
codes=[[1, 1, 1, 1, 0, 0, 0, 0], [0, 1, 2, 3, 0, 1, 2, 3]],
)
# factorizing doesn't confuse things
s = Series(np.arange(8.0), index=index)
result = s.groupby(level=0, sort=sort).sum()
expected = Series([6.0, 22.0], index=[0, 1])
tm.assert_series_equal(result, expected)
index = MultiIndex(
levels=[[1, 0], [0, 1, 2, 3]],
codes=[[1, 1, 1, 1, -1, 0, 0, 0], [0, 1, 2, 3, 0, 1, 2, 3]],
)
# factorizing doesn't confuse things
s = Series(np.arange(8.0), index=index)
result = s.groupby(level=0, sort=sort).sum()
expected = Series([6.0, 18.0], index=[0.0, 1.0])
tm.assert_series_equal(result, expected)
def test_groupby_args(self, multiindex_dataframe_random_data):
# PR8618 and issue 8015
frame = multiindex_dataframe_random_data
msg = "You have to supply one of 'by' and 'level'"
with pytest.raises(TypeError, match=msg):
frame.groupby()
msg = "You have to supply one of 'by' and 'level'"
with pytest.raises(TypeError, match=msg):
frame.groupby(by=None, level=None)
@pytest.mark.parametrize(
"sort,labels",
[
[True, [2, 2, 2, 0, 0, 1, 1, 3, 3, 3]],
[False, [0, 0, 0, 1, 1, 2, 2, 3, 3, 3]],
],
)
def test_level_preserve_order(self, sort, labels, multiindex_dataframe_random_data):
# GH 17537
grouped = multiindex_dataframe_random_data.groupby(level=0, sort=sort)
exp_labels = np.array(labels, np.intp)
tm.assert_almost_equal(grouped._grouper.codes[0], exp_labels)
def test_grouping_labels(self, multiindex_dataframe_random_data):
grouped = multiindex_dataframe_random_data.groupby(
multiindex_dataframe_random_data.index.get_level_values(0)
)
exp_labels = np.array([2, 2, 2, 0, 0, 1, 1, 3, 3, 3], dtype=np.intp)
tm.assert_almost_equal(grouped._grouper.codes[0], exp_labels)
def test_list_grouper_with_nat(self):
# GH 14715
df = DataFrame({"date": date_range("1/1/2011", periods=365, freq="D")})
df.iloc[-1] = pd.NaT
grouper = Grouper(key="date", freq="YS")
# Grouper in a list grouping
result = df.groupby([grouper])
expected = {Timestamp("2011-01-01"): Index(list(range(364)))}
tm.assert_dict_equal(result.groups, expected)
# Test case without a list
result = df.groupby(grouper)
expected = {Timestamp("2011-01-01"): 365}
tm.assert_dict_equal(result.groups, expected)
@pytest.mark.parametrize(
"func,expected",
[
(
"transform",
Series(name=2, dtype=np.float64),
),
(
"agg",
Series(
name=2, dtype=np.float64, index=Index([], dtype=np.float64, name=1)
),
),
(
"apply",
Series(
name=2, dtype=np.float64, index=Index([], dtype=np.float64, name=1)
),
),
],
)
def test_evaluate_with_empty_groups(self, func, expected):
# 26208
# test transform'ing empty groups
# (not testing other agg fns, because they return
# different index objects.
df = DataFrame({1: [], 2: []})
g = df.groupby(1, group_keys=False)
result = getattr(g[2], func)(lambda x: x)
tm.assert_series_equal(result, expected)
def test_groupby_empty(self):
# https://github.com/pandas-dev/pandas/issues/27190
s = Series([], name="name", dtype="float64")
gr = s.groupby([])
result = gr.mean()
expected = s.set_axis(Index([], dtype=np.intp))
tm.assert_series_equal(result, expected)
# check group properties
assert len(gr._grouper.groupings) == 1
tm.assert_numpy_array_equal(
gr._grouper.group_info[0], np.array([], dtype=np.dtype(np.intp))
)
tm.assert_numpy_array_equal(
gr._grouper.group_info[1], np.array([], dtype=np.dtype(np.intp))
)
assert gr._grouper.group_info[2] == 0
# check name
gb = s.groupby(s)
msg = "SeriesGroupBy.grouper is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
grouper = gb.grouper
result = grouper.names
expected = ["name"]
assert result == expected
def test_groupby_level_index_value_all_na(self):
# issue 20519
df = DataFrame(
[["x", np.nan, 10], [None, np.nan, 20]], columns=["A", "B", "C"]
).set_index(["A", "B"])
result = df.groupby(level=["A", "B"]).sum()
expected = DataFrame(
data=[],
index=MultiIndex(
levels=[Index(["x"], dtype="object"), Index([], dtype="float64")],
codes=[[], []],
names=["A", "B"],
),
columns=["C"],
dtype="int64",
)
tm.assert_frame_equal(result, expected)
def test_groupby_multiindex_level_empty(self):
# https://github.com/pandas-dev/pandas/issues/31670
df = DataFrame(
[[123, "a", 1.0], [123, "b", 2.0]], columns=["id", "category", "value"]
)
df = df.set_index(["id", "category"])
empty = df[df.value < 0]
result = empty.groupby("id").sum()
expected = DataFrame(
dtype="float64",
columns=["value"],
index=Index([], dtype=np.int64, name="id"),
)
tm.assert_frame_equal(result, expected)
# get_group
# --------------------------------
class TestGetGroup:
def test_get_group(self):
# GH 5267
# be datelike friendly
df = DataFrame(
{
"DATE": pd.to_datetime(
[
"10-Oct-2013",
"10-Oct-2013",
"10-Oct-2013",
"11-Oct-2013",
"11-Oct-2013",
"11-Oct-2013",
]
),
"label": ["foo", "foo", "bar", "foo", "foo", "bar"],
"VAL": [1, 2, 3, 4, 5, 6],
}
)
g = df.groupby("DATE")
key = next(iter(g.groups))
result1 = g.get_group(key)
result2 = g.get_group(Timestamp(key).to_pydatetime())
result3 = g.get_group(str(Timestamp(key)))
tm.assert_frame_equal(result1, result2)
tm.assert_frame_equal(result1, result3)
g = df.groupby(["DATE", "label"])
key = next(iter(g.groups))
result1 = g.get_group(key)
result2 = g.get_group((Timestamp(key[0]).to_pydatetime(), key[1]))
result3 = g.get_group((str(Timestamp(key[0])), key[1]))
tm.assert_frame_equal(result1, result2)
tm.assert_frame_equal(result1, result3)
# must pass a same-length tuple with multiple keys
msg = "must supply a tuple to get_group with multiple grouping keys"
with pytest.raises(ValueError, match=msg):
g.get_group("foo")
with pytest.raises(ValueError, match=msg):
g.get_group("foo")
msg = "must supply a same-length tuple to get_group with multiple grouping keys"
with pytest.raises(ValueError, match=msg):
g.get_group(("foo", "bar", "baz"))
def test_get_group_empty_bins(self, observed):
d = DataFrame([3, 1, 7, 6])
bins = [0, 5, 10, 15]
g = d.groupby(pd.cut(d[0], bins), observed=observed)
# TODO: should prob allow a str of Interval work as well
# IOW '(0, 5]'
result = g.get_group(pd.Interval(0, 5))
expected = DataFrame([3, 1], index=[0, 1])
tm.assert_frame_equal(result, expected)
msg = r"Interval\(10, 15, closed='right'\)"
with pytest.raises(KeyError, match=msg):
g.get_group(pd.Interval(10, 15))
def test_get_group_grouped_by_tuple(self):
# GH 8121
df = DataFrame([[(1,), (1, 2), (1,), (1, 2)]], index=["ids"]).T
gr = df.groupby("ids")
expected = DataFrame({"ids": [(1,), (1,)]}, index=[0, 2])
result = gr.get_group((1,))
tm.assert_frame_equal(result, expected)
dt = pd.to_datetime(["2010-01-01", "2010-01-02", "2010-01-01", "2010-01-02"])
df = DataFrame({"ids": [(x,) for x in dt]})
gr = df.groupby("ids")
result = gr.get_group(("2010-01-01",))
expected = DataFrame({"ids": [(dt[0],), (dt[0],)]}, index=[0, 2])
tm.assert_frame_equal(result, expected)
def test_get_group_grouped_by_tuple_with_lambda(self):
# GH 36158
df = DataFrame(
{
"Tuples": (
(x, y)
for x in [0, 1]
for y in np.random.default_rng(2).integers(3, 5, 5)
)
}
)
gb = df.groupby("Tuples")
gb_lambda = df.groupby(lambda x: df.iloc[x, 0])
expected = gb.get_group(next(iter(gb.groups.keys())))
result = gb_lambda.get_group(next(iter(gb_lambda.groups.keys())))
tm.assert_frame_equal(result, expected)
def test_groupby_with_empty(self):
index = pd.DatetimeIndex(())
data = ()
series = Series(data, index, dtype=object)
grouper = Grouper(freq="D")
grouped = series.groupby(grouper)
assert next(iter(grouped), None) is None
def test_groupby_with_single_column(self):
df = DataFrame({"a": list("abssbab")})
tm.assert_frame_equal(df.groupby("a").get_group("a"), df.iloc[[0, 5]])
# GH 13530
exp = DataFrame(index=Index(["a", "b", "s"], name="a"), columns=[])
tm.assert_frame_equal(df.groupby("a").count(), exp)
tm.assert_frame_equal(df.groupby("a").sum(), exp)
exp = df.iloc[[3, 4, 5]]
tm.assert_frame_equal(df.groupby("a").nth(1), exp)
def test_gb_key_len_equal_axis_len(self):
# GH16843
# test ensures that index and column keys are recognized correctly
# when number of keys equals axis length of groupby
df = DataFrame(
[["foo", "bar", "B", 1], ["foo", "bar", "B", 2], ["foo", "baz", "C", 3]],
columns=["first", "second", "third", "one"],
)
df = df.set_index(["first", "second"])
df = df.groupby(["first", "second", "third"]).size()
assert df.loc[("foo", "bar", "B")] == 2
assert df.loc[("foo", "baz", "C")] == 1
# groups & iteration
# --------------------------------
class TestIteration:
def test_groups(self, df):
grouped = df.groupby(["A"])
groups = grouped.groups
assert groups is grouped.groups # caching works
for k, v in grouped.groups.items():
assert (df.loc[v]["A"] == k).all()
grouped = df.groupby(["A", "B"])
groups = grouped.groups
assert groups is grouped.groups # caching works
for k, v in grouped.groups.items():
assert (df.loc[v]["A"] == k[0]).all()
assert (df.loc[v]["B"] == k[1]).all()
def test_grouping_is_iterable(self, tsframe):
# this code path isn't used anywhere else
# not sure it's useful
grouped = tsframe.groupby([lambda x: x.weekday(), lambda x: x.year])
# test it works
for g in grouped._grouper.groupings[0]:
pass
def test_multi_iter(self):
s = Series(np.arange(6))
k1 = np.array(["a", "a", "a", "b", "b", "b"])
k2 = np.array(["1", "2", "1", "2", "1", "2"])
grouped = s.groupby([k1, k2])
iterated = list(grouped)
expected = [
("a", "1", s[[0, 2]]),
("a", "2", s[[1]]),
("b", "1", s[[4]]),
("b", "2", s[[3, 5]]),
]
for i, ((one, two), three) in enumerate(iterated):
e1, e2, e3 = expected[i]
assert e1 == one
assert e2 == two
tm.assert_series_equal(three, e3)
def test_multi_iter_frame(self, three_group):
k1 = np.array(["b", "b", "b", "a", "a", "a"])
k2 = np.array(["1", "2", "1", "2", "1", "2"])
df = DataFrame(
{
"v1": np.random.default_rng(2).standard_normal(6),
"v2": np.random.default_rng(2).standard_normal(6),
"k1": k1,
"k2": k2,
},
index=["one", "two", "three", "four", "five", "six"],
)
grouped = df.groupby(["k1", "k2"])
# things get sorted!
iterated = list(grouped)
idx = df.index
expected = [
("a", "1", df.loc[idx[[4]]]),
("a", "2", df.loc[idx[[3, 5]]]),
("b", "1", df.loc[idx[[0, 2]]]),
("b", "2", df.loc[idx[[1]]]),
]
for i, ((one, two), three) in enumerate(iterated):
e1, e2, e3 = expected[i]
assert e1 == one
assert e2 == two
tm.assert_frame_equal(three, e3)
# don't iterate through groups with no data
df["k1"] = np.array(["b", "b", "b", "a", "a", "a"])
df["k2"] = np.array(["1", "1", "1", "2", "2", "2"])
grouped = df.groupby(["k1", "k2"])
# calling `dict` on a DataFrameGroupBy leads to a TypeError,
# we need to use a dictionary comprehension here
# pylint: disable-next=unnecessary-comprehension
groups = {key: gp for key, gp in grouped} # noqa: C416
assert len(groups) == 2
# axis = 1
three_levels = three_group.groupby(["A", "B", "C"]).mean()
depr_msg = "DataFrame.groupby with axis=1 is deprecated"
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
grouped = three_levels.T.groupby(axis=1, level=(1, 2))
for key, group in grouped:
pass
def test_dictify(self, df):
dict(iter(df.groupby("A")))
dict(iter(df.groupby(["A", "B"])))
dict(iter(df["C"].groupby(df["A"])))
dict(iter(df["C"].groupby([df["A"], df["B"]])))
dict(iter(df.groupby("A")["C"]))
dict(iter(df.groupby(["A", "B"])["C"]))
def test_groupby_with_small_elem(self):
# GH 8542
# length=2
df = DataFrame(
{"event": ["start", "start"], "change": [1234, 5678]},
index=pd.DatetimeIndex(["2014-09-10", "2013-10-10"]),
)
grouped = df.groupby([Grouper(freq="ME"), "event"])
assert len(grouped.groups) == 2
assert grouped.ngroups == 2
assert (Timestamp("2014-09-30"), "start") in grouped.groups
assert (Timestamp("2013-10-31"), "start") in grouped.groups
res = grouped.get_group((Timestamp("2014-09-30"), "start"))
tm.assert_frame_equal(res, df.iloc[[0], :])
res = grouped.get_group((Timestamp("2013-10-31"), "start"))
tm.assert_frame_equal(res, df.iloc[[1], :])
df = DataFrame(
{"event": ["start", "start", "start"], "change": [1234, 5678, 9123]},
index=pd.DatetimeIndex(["2014-09-10", "2013-10-10", "2014-09-15"]),
)
grouped = df.groupby([Grouper(freq="ME"), "event"])
assert len(grouped.groups) == 2
assert grouped.ngroups == 2
assert (Timestamp("2014-09-30"), "start") in grouped.groups
assert (Timestamp("2013-10-31"), "start") in grouped.groups
res = grouped.get_group((Timestamp("2014-09-30"), "start"))
tm.assert_frame_equal(res, df.iloc[[0, 2], :])
res = grouped.get_group((Timestamp("2013-10-31"), "start"))
tm.assert_frame_equal(res, df.iloc[[1], :])
# length=3
df = DataFrame(
{"event": ["start", "start", "start"], "change": [1234, 5678, 9123]},
index=pd.DatetimeIndex(["2014-09-10", "2013-10-10", "2014-08-05"]),
)
grouped = df.groupby([Grouper(freq="ME"), "event"])
assert len(grouped.groups) == 3
assert grouped.ngroups == 3
assert (Timestamp("2014-09-30"), "start") in grouped.groups
assert (Timestamp("2013-10-31"), "start") in grouped.groups
assert (Timestamp("2014-08-31"), "start") in grouped.groups
res = grouped.get_group((Timestamp("2014-09-30"), "start"))
tm.assert_frame_equal(res, df.iloc[[0], :])
res = grouped.get_group((Timestamp("2013-10-31"), "start"))
tm.assert_frame_equal(res, df.iloc[[1], :])
res = grouped.get_group((Timestamp("2014-08-31"), "start"))
tm.assert_frame_equal(res, df.iloc[[2], :])
def test_grouping_string_repr(self):
# GH 13394
mi = MultiIndex.from_arrays([list("AAB"), list("aba")])
df = DataFrame([[1, 2, 3]], columns=mi)
gr = df.groupby(df[("A", "a")])
result = gr._grouper.groupings[0].__repr__()
expected = "Grouping(('A', 'a'))"
assert result == expected
def test_grouping_by_key_is_in_axis():
# GH#50413 - Groupers specified by key are in-axis
df = DataFrame({"a": [1, 1, 2], "b": [1, 1, 2], "c": [3, 4, 5]}).set_index("a")
gb = df.groupby([Grouper(level="a"), Grouper(key="b")], as_index=False)
assert not gb._grouper.groupings[0].in_axis
assert gb._grouper.groupings[1].in_axis
# Currently only in-axis groupings are including in the result when as_index=False;
# This is likely to change in the future.
msg = "A grouping .* was excluded from the result"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = gb.sum()
expected = DataFrame({"b": [1, 2], "c": [7, 5]})
tm.assert_frame_equal(result, expected)
def test_grouper_groups():
# GH#51182 check Grouper.groups does not raise AttributeError
df = DataFrame({"a": [1, 2, 3], "b": 1})
grper = Grouper(key="a")
gb = df.groupby(grper)
msg = "Use GroupBy.groups instead"
with tm.assert_produces_warning(FutureWarning, match=msg):
res = grper.groups
assert res is gb.groups
msg = "Use GroupBy.grouper instead"
with tm.assert_produces_warning(FutureWarning, match=msg):
res = grper.grouper
assert res is gb._grouper
msg = "Grouper.obj is deprecated and will be removed"
with tm.assert_produces_warning(FutureWarning, match=msg):
res = grper.obj
assert res is gb.obj
msg = "Use Resampler.ax instead"
with tm.assert_produces_warning(FutureWarning, match=msg):
grper.ax
msg = "Grouper.indexer is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
grper.indexer
@pytest.mark.parametrize("attr", ["group_index", "result_index", "group_arraylike"])
def test_depr_grouping_attrs(attr):
# GH#56148
df = DataFrame({"a": [1, 1, 2], "b": [3, 4, 5]})
gb = df.groupby("a")
msg = f"{attr} is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
getattr(gb._grouper.groupings[0], attr)
|