File size: 51,335 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
""" test positional based indexing with iloc """

from datetime import datetime
import re

import numpy as np
import pytest

from pandas.errors import IndexingError
import pandas.util._test_decorators as td

from pandas import (
    NA,
    Categorical,
    CategoricalDtype,
    DataFrame,
    Index,
    Interval,
    NaT,
    Series,
    Timestamp,
    array,
    concat,
    date_range,
    interval_range,
    isna,
    to_datetime,
)
import pandas._testing as tm
from pandas.api.types import is_scalar
from pandas.tests.indexing.common import check_indexing_smoketest_or_raises

# We pass through the error message from numpy
_slice_iloc_msg = re.escape(
    "only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) "
    "and integer or boolean arrays are valid indices"
)


class TestiLoc:
    @pytest.mark.parametrize("key", [2, -1, [0, 1, 2]])
    @pytest.mark.parametrize("kind", ["series", "frame"])
    @pytest.mark.parametrize(
        "col",
        ["labels", "mixed", "ts", "floats", "empty"],
    )
    def test_iloc_getitem_int_and_list_int(self, key, kind, col, request):
        obj = request.getfixturevalue(f"{kind}_{col}")
        check_indexing_smoketest_or_raises(
            obj,
            "iloc",
            key,
            fails=IndexError,
        )

        # array of ints (GH5006), make sure that a single indexer is returning
        # the correct type


class TestiLocBaseIndependent:
    """Tests Independent Of Base Class"""

    @pytest.mark.parametrize(
        "key",
        [
            slice(None),
            slice(3),
            range(3),
            [0, 1, 2],
            Index(range(3)),
            np.asarray([0, 1, 2]),
        ],
    )
    @pytest.mark.parametrize("indexer", [tm.loc, tm.iloc])
    def test_iloc_setitem_fullcol_categorical(self, indexer, key, using_array_manager):
        frame = DataFrame({0: range(3)}, dtype=object)

        cat = Categorical(["alpha", "beta", "gamma"])

        if not using_array_manager:
            assert frame._mgr.blocks[0]._can_hold_element(cat)

        df = frame.copy()
        orig_vals = df.values

        indexer(df)[key, 0] = cat

        expected = DataFrame({0: cat}).astype(object)
        if not using_array_manager:
            assert np.shares_memory(df[0].values, orig_vals)

        tm.assert_frame_equal(df, expected)

        # check we dont have a view on cat (may be undesired GH#39986)
        df.iloc[0, 0] = "gamma"
        assert cat[0] != "gamma"

        # pre-2.0 with mixed dataframe ("split" path) we always overwrote the
        #  column.  as of 2.0 we correctly write "into" the column, so
        #  we retain the object dtype.
        frame = DataFrame({0: np.array([0, 1, 2], dtype=object), 1: range(3)})
        df = frame.copy()
        indexer(df)[key, 0] = cat
        expected = DataFrame({0: Series(cat.astype(object), dtype=object), 1: range(3)})
        tm.assert_frame_equal(df, expected)

    @pytest.mark.parametrize("box", [array, Series])
    def test_iloc_setitem_ea_inplace(self, frame_or_series, box, using_copy_on_write):
        # GH#38952 Case with not setting a full column
        #  IntegerArray without NAs
        arr = array([1, 2, 3, 4])
        obj = frame_or_series(arr.to_numpy("i8"))

        if frame_or_series is Series:
            values = obj.values
        else:
            values = obj._mgr.arrays[0]

        if frame_or_series is Series:
            obj.iloc[:2] = box(arr[2:])
        else:
            obj.iloc[:2, 0] = box(arr[2:])

        expected = frame_or_series(np.array([3, 4, 3, 4], dtype="i8"))
        tm.assert_equal(obj, expected)

        # Check that we are actually in-place
        if frame_or_series is Series:
            if using_copy_on_write:
                assert obj.values is not values
                assert np.shares_memory(obj.values, values)
            else:
                assert obj.values is values
        else:
            assert np.shares_memory(obj[0].values, values)

    def test_is_scalar_access(self):
        # GH#32085 index with duplicates doesn't matter for _is_scalar_access
        index = Index([1, 2, 1])
        ser = Series(range(3), index=index)

        assert ser.iloc._is_scalar_access((1,))

        df = ser.to_frame()
        assert df.iloc._is_scalar_access((1, 0))

    def test_iloc_exceeds_bounds(self):
        # GH6296
        # iloc should allow indexers that exceed the bounds
        df = DataFrame(np.random.default_rng(2).random((20, 5)), columns=list("ABCDE"))

        # lists of positions should raise IndexError!
        msg = "positional indexers are out-of-bounds"
        with pytest.raises(IndexError, match=msg):
            df.iloc[:, [0, 1, 2, 3, 4, 5]]
        with pytest.raises(IndexError, match=msg):
            df.iloc[[1, 30]]
        with pytest.raises(IndexError, match=msg):
            df.iloc[[1, -30]]
        with pytest.raises(IndexError, match=msg):
            df.iloc[[100]]

        s = df["A"]
        with pytest.raises(IndexError, match=msg):
            s.iloc[[100]]
        with pytest.raises(IndexError, match=msg):
            s.iloc[[-100]]

        # still raise on a single indexer
        msg = "single positional indexer is out-of-bounds"
        with pytest.raises(IndexError, match=msg):
            df.iloc[30]
        with pytest.raises(IndexError, match=msg):
            df.iloc[-30]

        # GH10779
        # single positive/negative indexer exceeding Series bounds should raise
        # an IndexError
        with pytest.raises(IndexError, match=msg):
            s.iloc[30]
        with pytest.raises(IndexError, match=msg):
            s.iloc[-30]

        # slices are ok
        result = df.iloc[:, 4:10]  # 0 < start < len < stop
        expected = df.iloc[:, 4:]
        tm.assert_frame_equal(result, expected)

        result = df.iloc[:, -4:-10]  # stop < 0 < start < len
        expected = df.iloc[:, :0]
        tm.assert_frame_equal(result, expected)

        result = df.iloc[:, 10:4:-1]  # 0 < stop < len < start (down)
        expected = df.iloc[:, :4:-1]
        tm.assert_frame_equal(result, expected)

        result = df.iloc[:, 4:-10:-1]  # stop < 0 < start < len (down)
        expected = df.iloc[:, 4::-1]
        tm.assert_frame_equal(result, expected)

        result = df.iloc[:, -10:4]  # start < 0 < stop < len
        expected = df.iloc[:, :4]
        tm.assert_frame_equal(result, expected)

        result = df.iloc[:, 10:4]  # 0 < stop < len < start
        expected = df.iloc[:, :0]
        tm.assert_frame_equal(result, expected)

        result = df.iloc[:, -10:-11:-1]  # stop < start < 0 < len (down)
        expected = df.iloc[:, :0]
        tm.assert_frame_equal(result, expected)

        result = df.iloc[:, 10:11]  # 0 < len < start < stop
        expected = df.iloc[:, :0]
        tm.assert_frame_equal(result, expected)

        # slice bounds exceeding is ok
        result = s.iloc[18:30]
        expected = s.iloc[18:]
        tm.assert_series_equal(result, expected)

        result = s.iloc[30:]
        expected = s.iloc[:0]
        tm.assert_series_equal(result, expected)

        result = s.iloc[30::-1]
        expected = s.iloc[::-1]
        tm.assert_series_equal(result, expected)

        # doc example
        dfl = DataFrame(
            np.random.default_rng(2).standard_normal((5, 2)), columns=list("AB")
        )
        tm.assert_frame_equal(
            dfl.iloc[:, 2:3],
            DataFrame(index=dfl.index, columns=Index([], dtype=dfl.columns.dtype)),
        )
        tm.assert_frame_equal(dfl.iloc[:, 1:3], dfl.iloc[:, [1]])
        tm.assert_frame_equal(dfl.iloc[4:6], dfl.iloc[[4]])

        msg = "positional indexers are out-of-bounds"
        with pytest.raises(IndexError, match=msg):
            dfl.iloc[[4, 5, 6]]
        msg = "single positional indexer is out-of-bounds"
        with pytest.raises(IndexError, match=msg):
            dfl.iloc[:, 4]

    @pytest.mark.parametrize("index,columns", [(np.arange(20), list("ABCDE"))])
    @pytest.mark.parametrize(
        "index_vals,column_vals",
        [
            ([slice(None), ["A", "D"]]),
            (["1", "2"], slice(None)),
            ([datetime(2019, 1, 1)], slice(None)),
        ],
    )
    def test_iloc_non_integer_raises(self, index, columns, index_vals, column_vals):
        # GH 25753
        df = DataFrame(
            np.random.default_rng(2).standard_normal((len(index), len(columns))),
            index=index,
            columns=columns,
        )
        msg = ".iloc requires numeric indexers, got"
        with pytest.raises(IndexError, match=msg):
            df.iloc[index_vals, column_vals]

    def test_iloc_getitem_invalid_scalar(self, frame_or_series):
        # GH 21982

        obj = DataFrame(np.arange(100).reshape(10, 10))
        obj = tm.get_obj(obj, frame_or_series)

        with pytest.raises(TypeError, match="Cannot index by location index"):
            obj.iloc["a"]

    def test_iloc_array_not_mutating_negative_indices(self):
        # GH 21867
        array_with_neg_numbers = np.array([1, 2, -1])
        array_copy = array_with_neg_numbers.copy()
        df = DataFrame(
            {"A": [100, 101, 102], "B": [103, 104, 105], "C": [106, 107, 108]},
            index=[1, 2, 3],
        )
        df.iloc[array_with_neg_numbers]
        tm.assert_numpy_array_equal(array_with_neg_numbers, array_copy)
        df.iloc[:, array_with_neg_numbers]
        tm.assert_numpy_array_equal(array_with_neg_numbers, array_copy)

    def test_iloc_getitem_neg_int_can_reach_first_index(self):
        # GH10547 and GH10779
        # negative integers should be able to reach index 0
        df = DataFrame({"A": [2, 3, 5], "B": [7, 11, 13]})
        s = df["A"]

        expected = df.iloc[0]
        result = df.iloc[-3]
        tm.assert_series_equal(result, expected)

        expected = df.iloc[[0]]
        result = df.iloc[[-3]]
        tm.assert_frame_equal(result, expected)

        expected = s.iloc[0]
        result = s.iloc[-3]
        assert result == expected

        expected = s.iloc[[0]]
        result = s.iloc[[-3]]
        tm.assert_series_equal(result, expected)

        # check the length 1 Series case highlighted in GH10547
        expected = Series(["a"], index=["A"])
        result = expected.iloc[[-1]]
        tm.assert_series_equal(result, expected)

    def test_iloc_getitem_dups(self):
        # GH 6766
        df1 = DataFrame([{"A": None, "B": 1}, {"A": 2, "B": 2}])
        df2 = DataFrame([{"A": 3, "B": 3}, {"A": 4, "B": 4}])
        df = concat([df1, df2], axis=1)

        # cross-sectional indexing
        result = df.iloc[0, 0]
        assert isna(result)

        result = df.iloc[0, :]
        expected = Series([np.nan, 1, 3, 3], index=["A", "B", "A", "B"], name=0)
        tm.assert_series_equal(result, expected)

    def test_iloc_getitem_array(self):
        df = DataFrame(
            [
                {"A": 1, "B": 2, "C": 3},
                {"A": 100, "B": 200, "C": 300},
                {"A": 1000, "B": 2000, "C": 3000},
            ]
        )

        expected = DataFrame([{"A": 1, "B": 2, "C": 3}])
        tm.assert_frame_equal(df.iloc[[0]], expected)

        expected = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}])
        tm.assert_frame_equal(df.iloc[[0, 1]], expected)

        expected = DataFrame([{"B": 2, "C": 3}, {"B": 2000, "C": 3000}], index=[0, 2])
        result = df.iloc[[0, 2], [1, 2]]
        tm.assert_frame_equal(result, expected)

    def test_iloc_getitem_bool(self):
        df = DataFrame(
            [
                {"A": 1, "B": 2, "C": 3},
                {"A": 100, "B": 200, "C": 300},
                {"A": 1000, "B": 2000, "C": 3000},
            ]
        )

        expected = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}])
        result = df.iloc[[True, True, False]]
        tm.assert_frame_equal(result, expected)

        expected = DataFrame(
            [{"A": 1, "B": 2, "C": 3}, {"A": 1000, "B": 2000, "C": 3000}], index=[0, 2]
        )
        result = df.iloc[lambda x: x.index % 2 == 0]
        tm.assert_frame_equal(result, expected)

    @pytest.mark.parametrize("index", [[True, False], [True, False, True, False]])
    def test_iloc_getitem_bool_diff_len(self, index):
        # GH26658
        s = Series([1, 2, 3])
        msg = f"Boolean index has wrong length: {len(index)} instead of {len(s)}"
        with pytest.raises(IndexError, match=msg):
            s.iloc[index]

    def test_iloc_getitem_slice(self):
        df = DataFrame(
            [
                {"A": 1, "B": 2, "C": 3},
                {"A": 100, "B": 200, "C": 300},
                {"A": 1000, "B": 2000, "C": 3000},
            ]
        )

        expected = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}])
        result = df.iloc[:2]
        tm.assert_frame_equal(result, expected)

        expected = DataFrame([{"A": 100, "B": 200}], index=[1])
        result = df.iloc[1:2, 0:2]
        tm.assert_frame_equal(result, expected)

        expected = DataFrame(
            [{"A": 1, "C": 3}, {"A": 100, "C": 300}, {"A": 1000, "C": 3000}]
        )
        result = df.iloc[:, lambda df: [0, 2]]
        tm.assert_frame_equal(result, expected)

    def test_iloc_getitem_slice_dups(self):
        df1 = DataFrame(
            np.random.default_rng(2).standard_normal((10, 4)),
            columns=["A", "A", "B", "B"],
        )
        df2 = DataFrame(
            np.random.default_rng(2).integers(0, 10, size=20).reshape(10, 2),
            columns=["A", "C"],
        )

        # axis=1
        df = concat([df1, df2], axis=1)
        tm.assert_frame_equal(df.iloc[:, :4], df1)
        tm.assert_frame_equal(df.iloc[:, 4:], df2)

        df = concat([df2, df1], axis=1)
        tm.assert_frame_equal(df.iloc[:, :2], df2)
        tm.assert_frame_equal(df.iloc[:, 2:], df1)

        exp = concat([df2, df1.iloc[:, [0]]], axis=1)
        tm.assert_frame_equal(df.iloc[:, 0:3], exp)

        # axis=0
        df = concat([df, df], axis=0)
        tm.assert_frame_equal(df.iloc[0:10, :2], df2)
        tm.assert_frame_equal(df.iloc[0:10, 2:], df1)
        tm.assert_frame_equal(df.iloc[10:, :2], df2)
        tm.assert_frame_equal(df.iloc[10:, 2:], df1)

    def test_iloc_setitem(self, warn_copy_on_write):
        df = DataFrame(
            np.random.default_rng(2).standard_normal((4, 4)),
            index=np.arange(0, 8, 2),
            columns=np.arange(0, 12, 3),
        )

        df.iloc[1, 1] = 1
        result = df.iloc[1, 1]
        assert result == 1

        df.iloc[:, 2:3] = 0
        expected = df.iloc[:, 2:3]
        result = df.iloc[:, 2:3]
        tm.assert_frame_equal(result, expected)

        # GH5771
        s = Series(0, index=[4, 5, 6])
        s.iloc[1:2] += 1
        expected = Series([0, 1, 0], index=[4, 5, 6])
        tm.assert_series_equal(s, expected)

    def test_iloc_setitem_axis_argument(self):
        # GH45032
        df = DataFrame([[6, "c", 10], [7, "d", 11], [8, "e", 12]])
        df[1] = df[1].astype(object)
        expected = DataFrame([[6, "c", 10], [7, "d", 11], [5, 5, 5]])
        expected[1] = expected[1].astype(object)
        df.iloc(axis=0)[2] = 5
        tm.assert_frame_equal(df, expected)

        df = DataFrame([[6, "c", 10], [7, "d", 11], [8, "e", 12]])
        df[1] = df[1].astype(object)
        expected = DataFrame([[6, "c", 5], [7, "d", 5], [8, "e", 5]])
        expected[1] = expected[1].astype(object)
        df.iloc(axis=1)[2] = 5
        tm.assert_frame_equal(df, expected)

    def test_iloc_setitem_list(self):
        # setitem with an iloc list
        df = DataFrame(
            np.arange(9).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"]
        )
        df.iloc[[0, 1], [1, 2]]
        df.iloc[[0, 1], [1, 2]] += 100

        expected = DataFrame(
            np.array([0, 101, 102, 3, 104, 105, 6, 7, 8]).reshape((3, 3)),
            index=["A", "B", "C"],
            columns=["A", "B", "C"],
        )
        tm.assert_frame_equal(df, expected)

    def test_iloc_setitem_pandas_object(self):
        # GH 17193
        s_orig = Series([0, 1, 2, 3])
        expected = Series([0, -1, -2, 3])

        s = s_orig.copy()
        s.iloc[Series([1, 2])] = [-1, -2]
        tm.assert_series_equal(s, expected)

        s = s_orig.copy()
        s.iloc[Index([1, 2])] = [-1, -2]
        tm.assert_series_equal(s, expected)

    def test_iloc_setitem_dups(self):
        # GH 6766
        # iloc with a mask aligning from another iloc
        df1 = DataFrame([{"A": None, "B": 1}, {"A": 2, "B": 2}])
        df2 = DataFrame([{"A": 3, "B": 3}, {"A": 4, "B": 4}])
        df = concat([df1, df2], axis=1)

        expected = df.fillna(3)
        inds = np.isnan(df.iloc[:, 0])
        mask = inds[inds].index
        df.iloc[mask, 0] = df.iloc[mask, 2]
        tm.assert_frame_equal(df, expected)

        # del a dup column across blocks
        expected = DataFrame({0: [1, 2], 1: [3, 4]})
        expected.columns = ["B", "B"]
        del df["A"]
        tm.assert_frame_equal(df, expected)

        # assign back to self
        df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]]
        tm.assert_frame_equal(df, expected)

        # reversed x 2
        df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index(drop=True)
        df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index(drop=True)
        tm.assert_frame_equal(df, expected)

    def test_iloc_setitem_frame_duplicate_columns_multiple_blocks(
        self, using_array_manager
    ):
        # Same as the "assign back to self" check in test_iloc_setitem_dups
        #  but on a DataFrame with multiple blocks
        df = DataFrame([[0, 1], [2, 3]], columns=["B", "B"])

        # setting float values that can be held by existing integer arrays
        #  is inplace
        df.iloc[:, 0] = df.iloc[:, 0].astype("f8")
        if not using_array_manager:
            assert len(df._mgr.blocks) == 1

        # if the assigned values cannot be held by existing integer arrays,
        #  we cast
        with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
            df.iloc[:, 0] = df.iloc[:, 0] + 0.5
        if not using_array_manager:
            assert len(df._mgr.blocks) == 2

        expected = df.copy()

        # assign back to self
        df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]]

        tm.assert_frame_equal(df, expected)

    # TODO: GH#27620 this test used to compare iloc against ix; check if this
    #  is redundant with another test comparing iloc against loc
    def test_iloc_getitem_frame(self):
        df = DataFrame(
            np.random.default_rng(2).standard_normal((10, 4)),
            index=range(0, 20, 2),
            columns=range(0, 8, 2),
        )

        result = df.iloc[2]
        exp = df.loc[4]
        tm.assert_series_equal(result, exp)

        result = df.iloc[2, 2]
        exp = df.loc[4, 4]
        assert result == exp

        # slice
        result = df.iloc[4:8]
        expected = df.loc[8:14]
        tm.assert_frame_equal(result, expected)

        result = df.iloc[:, 2:3]
        expected = df.loc[:, 4:5]
        tm.assert_frame_equal(result, expected)

        # list of integers
        result = df.iloc[[0, 1, 3]]
        expected = df.loc[[0, 2, 6]]
        tm.assert_frame_equal(result, expected)

        result = df.iloc[[0, 1, 3], [0, 1]]
        expected = df.loc[[0, 2, 6], [0, 2]]
        tm.assert_frame_equal(result, expected)

        # neg indices
        result = df.iloc[[-1, 1, 3], [-1, 1]]
        expected = df.loc[[18, 2, 6], [6, 2]]
        tm.assert_frame_equal(result, expected)

        # dups indices
        result = df.iloc[[-1, -1, 1, 3], [-1, 1]]
        expected = df.loc[[18, 18, 2, 6], [6, 2]]
        tm.assert_frame_equal(result, expected)

        # with index-like
        s = Series(index=range(1, 5), dtype=object)
        result = df.iloc[s.index]
        expected = df.loc[[2, 4, 6, 8]]
        tm.assert_frame_equal(result, expected)

    def test_iloc_getitem_labelled_frame(self):
        # try with labelled frame
        df = DataFrame(
            np.random.default_rng(2).standard_normal((10, 4)),
            index=list("abcdefghij"),
            columns=list("ABCD"),
        )

        result = df.iloc[1, 1]
        exp = df.loc["b", "B"]
        assert result == exp

        result = df.iloc[:, 2:3]
        expected = df.loc[:, ["C"]]
        tm.assert_frame_equal(result, expected)

        # negative indexing
        result = df.iloc[-1, -1]
        exp = df.loc["j", "D"]
        assert result == exp

        # out-of-bounds exception
        msg = "index 5 is out of bounds for axis 0 with size 4|index out of bounds"
        with pytest.raises(IndexError, match=msg):
            df.iloc[10, 5]

        # trying to use a label
        msg = (
            r"Location based indexing can only have \[integer, integer "
            r"slice \(START point is INCLUDED, END point is EXCLUDED\), "
            r"listlike of integers, boolean array\] types"
        )
        with pytest.raises(ValueError, match=msg):
            df.iloc["j", "D"]

    def test_iloc_getitem_doc_issue(self, using_array_manager):
        # multi axis slicing issue with single block
        # surfaced in GH 6059

        arr = np.random.default_rng(2).standard_normal((6, 4))
        index = date_range("20130101", periods=6)
        columns = list("ABCD")
        df = DataFrame(arr, index=index, columns=columns)

        # defines ref_locs
        df.describe()

        result = df.iloc[3:5, 0:2]

        expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=columns[0:2])
        tm.assert_frame_equal(result, expected)

        # for dups
        df.columns = list("aaaa")
        result = df.iloc[3:5, 0:2]

        expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=list("aa"))
        tm.assert_frame_equal(result, expected)

        # related
        arr = np.random.default_rng(2).standard_normal((6, 4))
        index = list(range(0, 12, 2))
        columns = list(range(0, 8, 2))
        df = DataFrame(arr, index=index, columns=columns)

        if not using_array_manager:
            df._mgr.blocks[0].mgr_locs
        result = df.iloc[1:5, 2:4]
        expected = DataFrame(arr[1:5, 2:4], index=index[1:5], columns=columns[2:4])
        tm.assert_frame_equal(result, expected)

    def test_iloc_setitem_series(self):
        df = DataFrame(
            np.random.default_rng(2).standard_normal((10, 4)),
            index=list("abcdefghij"),
            columns=list("ABCD"),
        )

        df.iloc[1, 1] = 1
        result = df.iloc[1, 1]
        assert result == 1

        df.iloc[:, 2:3] = 0
        expected = df.iloc[:, 2:3]
        result = df.iloc[:, 2:3]
        tm.assert_frame_equal(result, expected)

        s = Series(np.random.default_rng(2).standard_normal(10), index=range(0, 20, 2))

        s.iloc[1] = 1
        result = s.iloc[1]
        assert result == 1

        s.iloc[:4] = 0
        expected = s.iloc[:4]
        result = s.iloc[:4]
        tm.assert_series_equal(result, expected)

        s = Series([-1] * 6)
        s.iloc[0::2] = [0, 2, 4]
        s.iloc[1::2] = [1, 3, 5]
        result = s
        expected = Series([0, 1, 2, 3, 4, 5])
        tm.assert_series_equal(result, expected)

    def test_iloc_setitem_list_of_lists(self):
        # GH 7551
        # list-of-list is set incorrectly in mixed vs. single dtyped frames
        df = DataFrame(
            {"A": np.arange(5, dtype="int64"), "B": np.arange(5, 10, dtype="int64")}
        )
        df.iloc[2:4] = [[10, 11], [12, 13]]
        expected = DataFrame({"A": [0, 1, 10, 12, 4], "B": [5, 6, 11, 13, 9]})
        tm.assert_frame_equal(df, expected)

        df = DataFrame(
            {"A": ["a", "b", "c", "d", "e"], "B": np.arange(5, 10, dtype="int64")}
        )
        df.iloc[2:4] = [["x", 11], ["y", 13]]
        expected = DataFrame({"A": ["a", "b", "x", "y", "e"], "B": [5, 6, 11, 13, 9]})
        tm.assert_frame_equal(df, expected)

    @pytest.mark.parametrize("indexer", [[0], slice(None, 1, None), np.array([0])])
    @pytest.mark.parametrize("value", [["Z"], np.array(["Z"])])
    def test_iloc_setitem_with_scalar_index(self, indexer, value):
        # GH #19474
        # assigning like "df.iloc[0, [0]] = ['Z']" should be evaluated
        # elementwisely, not using "setter('A', ['Z'])".

        # Set object type to avoid upcast when setting "Z"
        df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"]).astype({"A": object})
        df.iloc[0, indexer] = value
        result = df.iloc[0, 0]

        assert is_scalar(result) and result == "Z"

    @pytest.mark.filterwarnings("ignore::UserWarning")
    def test_iloc_mask(self):
        # GH 3631, iloc with a mask (of a series) should raise
        df = DataFrame(list(range(5)), index=list("ABCDE"), columns=["a"])
        mask = df.a % 2 == 0
        msg = "iLocation based boolean indexing cannot use an indexable as a mask"
        with pytest.raises(ValueError, match=msg):
            df.iloc[mask]
        mask.index = range(len(mask))
        msg = "iLocation based boolean indexing on an integer type is not available"
        with pytest.raises(NotImplementedError, match=msg):
            df.iloc[mask]

        # ndarray ok
        result = df.iloc[np.array([True] * len(mask), dtype=bool)]
        tm.assert_frame_equal(result, df)

        # the possibilities
        locs = np.arange(4)
        nums = 2**locs
        reps = [bin(num) for num in nums]
        df = DataFrame({"locs": locs, "nums": nums}, reps)

        expected = {
            (None, ""): "0b1100",
            (None, ".loc"): "0b1100",
            (None, ".iloc"): "0b1100",
            ("index", ""): "0b11",
            ("index", ".loc"): "0b11",
            ("index", ".iloc"): (
                "iLocation based boolean indexing cannot use an indexable as a mask"
            ),
            ("locs", ""): "Unalignable boolean Series provided as indexer "
            "(index of the boolean Series and of the indexed "
            "object do not match).",
            ("locs", ".loc"): "Unalignable boolean Series provided as indexer "
            "(index of the boolean Series and of the "
            "indexed object do not match).",
            ("locs", ".iloc"): (
                "iLocation based boolean indexing on an "
                "integer type is not available"
            ),
        }

        # UserWarnings from reindex of a boolean mask
        for idx in [None, "index", "locs"]:
            mask = (df.nums > 2).values
            if idx:
                mask_index = getattr(df, idx)[::-1]
                mask = Series(mask, list(mask_index))
            for method in ["", ".loc", ".iloc"]:
                try:
                    if method:
                        accessor = getattr(df, method[1:])
                    else:
                        accessor = df
                    answer = str(bin(accessor[mask]["nums"].sum()))
                except (ValueError, IndexingError, NotImplementedError) as err:
                    answer = str(err)

                key = (
                    idx,
                    method,
                )
                r = expected.get(key)
                if r != answer:
                    raise AssertionError(
                        f"[{key}] does not match [{answer}], received [{r}]"
                    )

    def test_iloc_non_unique_indexing(self):
        # GH 4017, non-unique indexing (on the axis)
        df = DataFrame({"A": [0.1] * 3000, "B": [1] * 3000})
        idx = np.arange(30) * 99
        expected = df.iloc[idx]

        df3 = concat([df, 2 * df, 3 * df])
        result = df3.iloc[idx]

        tm.assert_frame_equal(result, expected)

        df2 = DataFrame({"A": [0.1] * 1000, "B": [1] * 1000})
        df2 = concat([df2, 2 * df2, 3 * df2])

        with pytest.raises(KeyError, match="not in index"):
            df2.loc[idx]

    def test_iloc_empty_list_indexer_is_ok(self):
        df = DataFrame(
            np.ones((5, 2)),
            index=Index([f"i-{i}" for i in range(5)], name="a"),
            columns=Index([f"i-{i}" for i in range(2)], name="a"),
        )
        # vertical empty
        tm.assert_frame_equal(
            df.iloc[:, []],
            df.iloc[:, :0],
            check_index_type=True,
            check_column_type=True,
        )
        # horizontal empty
        tm.assert_frame_equal(
            df.iloc[[], :],
            df.iloc[:0, :],
            check_index_type=True,
            check_column_type=True,
        )
        # horizontal empty
        tm.assert_frame_equal(
            df.iloc[[]], df.iloc[:0, :], check_index_type=True, check_column_type=True
        )

    def test_identity_slice_returns_new_object(
        self, using_copy_on_write, warn_copy_on_write
    ):
        # GH13873
        original_df = DataFrame({"a": [1, 2, 3]})
        sliced_df = original_df.iloc[:]
        assert sliced_df is not original_df

        # should be a shallow copy
        assert np.shares_memory(original_df["a"], sliced_df["a"])

        # Setting using .loc[:, "a"] sets inplace so alters both sliced and orig
        # depending on CoW
        with tm.assert_cow_warning(warn_copy_on_write):
            original_df.loc[:, "a"] = [4, 4, 4]
        if using_copy_on_write:
            assert (sliced_df["a"] == [1, 2, 3]).all()
        else:
            assert (sliced_df["a"] == 4).all()

        original_series = Series([1, 2, 3, 4, 5, 6])
        sliced_series = original_series.iloc[:]
        assert sliced_series is not original_series

        # should also be a shallow copy
        with tm.assert_cow_warning(warn_copy_on_write):
            original_series[:3] = [7, 8, 9]
        if using_copy_on_write:
            # shallow copy not updated (CoW)
            assert all(sliced_series[:3] == [1, 2, 3])
        else:
            assert all(sliced_series[:3] == [7, 8, 9])

    def test_indexing_zerodim_np_array(self):
        # GH24919
        df = DataFrame([[1, 2], [3, 4]])
        result = df.iloc[np.array(0)]
        s = Series([1, 2], name=0)
        tm.assert_series_equal(result, s)

    def test_series_indexing_zerodim_np_array(self):
        # GH24919
        s = Series([1, 2])
        result = s.iloc[np.array(0)]
        assert result == 1

    def test_iloc_setitem_categorical_updates_inplace(self):
        # Mixed dtype ensures we go through take_split_path in setitem_with_indexer
        cat = Categorical(["A", "B", "C"])
        df = DataFrame({1: cat, 2: [1, 2, 3]}, copy=False)

        assert tm.shares_memory(df[1], cat)

        # With the enforcement of GH#45333 in 2.0, this modifies original
        #  values inplace
        df.iloc[:, 0] = cat[::-1]

        assert tm.shares_memory(df[1], cat)
        expected = Categorical(["C", "B", "A"], categories=["A", "B", "C"])
        tm.assert_categorical_equal(cat, expected)

    def test_iloc_with_boolean_operation(self):
        # GH 20627
        result = DataFrame([[0, 1], [2, 3], [4, 5], [6, np.nan]])
        result.iloc[result.index <= 2] *= 2
        expected = DataFrame([[0, 2], [4, 6], [8, 10], [6, np.nan]])
        tm.assert_frame_equal(result, expected)

        result.iloc[result.index > 2] *= 2
        expected = DataFrame([[0, 2], [4, 6], [8, 10], [12, np.nan]])
        tm.assert_frame_equal(result, expected)

        result.iloc[[True, True, False, False]] *= 2
        expected = DataFrame([[0, 4], [8, 12], [8, 10], [12, np.nan]])
        tm.assert_frame_equal(result, expected)

        result.iloc[[False, False, True, True]] /= 2
        expected = DataFrame([[0, 4.0], [8, 12.0], [4, 5.0], [6, np.nan]])
        tm.assert_frame_equal(result, expected)

    def test_iloc_getitem_singlerow_slice_categoricaldtype_gives_series(self):
        # GH#29521
        df = DataFrame({"x": Categorical("a b c d e".split())})
        result = df.iloc[0]
        raw_cat = Categorical(["a"], categories=["a", "b", "c", "d", "e"])
        expected = Series(raw_cat, index=["x"], name=0, dtype="category")

        tm.assert_series_equal(result, expected)

    def test_iloc_getitem_categorical_values(self):
        # GH#14580
        # test iloc() on Series with Categorical data

        ser = Series([1, 2, 3]).astype("category")

        # get slice
        result = ser.iloc[0:2]
        expected = Series([1, 2]).astype(CategoricalDtype([1, 2, 3]))
        tm.assert_series_equal(result, expected)

        # get list of indexes
        result = ser.iloc[[0, 1]]
        expected = Series([1, 2]).astype(CategoricalDtype([1, 2, 3]))
        tm.assert_series_equal(result, expected)

        # get boolean array
        result = ser.iloc[[True, False, False]]
        expected = Series([1]).astype(CategoricalDtype([1, 2, 3]))
        tm.assert_series_equal(result, expected)

    @pytest.mark.parametrize("value", [None, NaT, np.nan])
    def test_iloc_setitem_td64_values_cast_na(self, value):
        # GH#18586
        series = Series([0, 1, 2], dtype="timedelta64[ns]")
        series.iloc[0] = value
        expected = Series([NaT, 1, 2], dtype="timedelta64[ns]")
        tm.assert_series_equal(series, expected)

    @pytest.mark.parametrize("not_na", [Interval(0, 1), "a", 1.0])
    def test_setitem_mix_of_nan_and_interval(self, not_na, nulls_fixture):
        # GH#27937
        dtype = CategoricalDtype(categories=[not_na])
        ser = Series(
            [nulls_fixture, nulls_fixture, nulls_fixture, nulls_fixture], dtype=dtype
        )
        ser.iloc[:3] = [nulls_fixture, not_na, nulls_fixture]
        exp = Series([nulls_fixture, not_na, nulls_fixture, nulls_fixture], dtype=dtype)
        tm.assert_series_equal(ser, exp)

    def test_iloc_setitem_empty_frame_raises_with_3d_ndarray(self):
        idx = Index([])
        obj = DataFrame(
            np.random.default_rng(2).standard_normal((len(idx), len(idx))),
            index=idx,
            columns=idx,
        )
        nd3 = np.random.default_rng(2).integers(5, size=(2, 2, 2))

        msg = f"Cannot set values with ndim > {obj.ndim}"
        with pytest.raises(ValueError, match=msg):
            obj.iloc[nd3] = 0

    @pytest.mark.parametrize("indexer", [tm.loc, tm.iloc])
    def test_iloc_getitem_read_only_values(self, indexer):
        # GH#10043 this is fundamentally a test for iloc, but test loc while
        #  we're here
        rw_array = np.eye(10)
        rw_df = DataFrame(rw_array)

        ro_array = np.eye(10)
        ro_array.setflags(write=False)
        ro_df = DataFrame(ro_array)

        tm.assert_frame_equal(indexer(rw_df)[[1, 2, 3]], indexer(ro_df)[[1, 2, 3]])
        tm.assert_frame_equal(indexer(rw_df)[[1]], indexer(ro_df)[[1]])
        tm.assert_series_equal(indexer(rw_df)[1], indexer(ro_df)[1])
        tm.assert_frame_equal(indexer(rw_df)[1:3], indexer(ro_df)[1:3])

    def test_iloc_getitem_readonly_key(self):
        # GH#17192 iloc with read-only array raising TypeError
        df = DataFrame({"data": np.ones(100, dtype="float64")})
        indices = np.array([1, 3, 6])
        indices.flags.writeable = False

        result = df.iloc[indices]
        expected = df.loc[[1, 3, 6]]
        tm.assert_frame_equal(result, expected)

        result = df["data"].iloc[indices]
        expected = df["data"].loc[[1, 3, 6]]
        tm.assert_series_equal(result, expected)

    def test_iloc_assign_series_to_df_cell(self):
        # GH 37593
        df = DataFrame(columns=["a"], index=[0])
        df.iloc[0, 0] = Series([1, 2, 3])
        expected = DataFrame({"a": [Series([1, 2, 3])]}, columns=["a"], index=[0])
        tm.assert_frame_equal(df, expected)

    @pytest.mark.parametrize("klass", [list, np.array])
    def test_iloc_setitem_bool_indexer(self, klass):
        # GH#36741
        df = DataFrame({"flag": ["x", "y", "z"], "value": [1, 3, 4]})
        indexer = klass([True, False, False])
        df.iloc[indexer, 1] = df.iloc[indexer, 1] * 2
        expected = DataFrame({"flag": ["x", "y", "z"], "value": [2, 3, 4]})
        tm.assert_frame_equal(df, expected)

    @pytest.mark.parametrize("indexer", [[1], slice(1, 2)])
    def test_iloc_setitem_pure_position_based(self, indexer):
        # GH#22046
        df1 = DataFrame({"a2": [11, 12, 13], "b2": [14, 15, 16]})
        df2 = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]})
        df2.iloc[:, indexer] = df1.iloc[:, [0]]
        expected = DataFrame({"a": [1, 2, 3], "b": [11, 12, 13], "c": [7, 8, 9]})
        tm.assert_frame_equal(df2, expected)

    def test_iloc_setitem_dictionary_value(self):
        # GH#37728
        df = DataFrame({"x": [1, 2], "y": [2, 2]})
        rhs = {"x": 9, "y": 99}
        df.iloc[1] = rhs
        expected = DataFrame({"x": [1, 9], "y": [2, 99]})
        tm.assert_frame_equal(df, expected)

        # GH#38335 same thing, mixed dtypes
        df = DataFrame({"x": [1, 2], "y": [2.0, 2.0]})
        df.iloc[1] = rhs
        expected = DataFrame({"x": [1, 9], "y": [2.0, 99.0]})
        tm.assert_frame_equal(df, expected)

    def test_iloc_getitem_float_duplicates(self):
        df = DataFrame(
            np.random.default_rng(2).standard_normal((3, 3)),
            index=[0.1, 0.2, 0.2],
            columns=list("abc"),
        )
        expect = df.iloc[1:]
        tm.assert_frame_equal(df.loc[0.2], expect)

        expect = df.iloc[1:, 0]
        tm.assert_series_equal(df.loc[0.2, "a"], expect)

        df.index = [1, 0.2, 0.2]
        expect = df.iloc[1:]
        tm.assert_frame_equal(df.loc[0.2], expect)

        expect = df.iloc[1:, 0]
        tm.assert_series_equal(df.loc[0.2, "a"], expect)

        df = DataFrame(
            np.random.default_rng(2).standard_normal((4, 3)),
            index=[1, 0.2, 0.2, 1],
            columns=list("abc"),
        )
        expect = df.iloc[1:-1]
        tm.assert_frame_equal(df.loc[0.2], expect)

        expect = df.iloc[1:-1, 0]
        tm.assert_series_equal(df.loc[0.2, "a"], expect)

        df.index = [0.1, 0.2, 2, 0.2]
        expect = df.iloc[[1, -1]]
        tm.assert_frame_equal(df.loc[0.2], expect)

        expect = df.iloc[[1, -1], 0]
        tm.assert_series_equal(df.loc[0.2, "a"], expect)

    def test_iloc_setitem_custom_object(self):
        # iloc with an object
        class TO:
            def __init__(self, value) -> None:
                self.value = value

            def __str__(self) -> str:
                return f"[{self.value}]"

            __repr__ = __str__

            def __eq__(self, other) -> bool:
                return self.value == other.value

            def view(self):
                return self

        df = DataFrame(index=[0, 1], columns=[0])
        df.iloc[1, 0] = TO(1)
        df.iloc[1, 0] = TO(2)

        result = DataFrame(index=[0, 1], columns=[0])
        result.iloc[1, 0] = TO(2)

        tm.assert_frame_equal(result, df)

        # remains object dtype even after setting it back
        df = DataFrame(index=[0, 1], columns=[0])
        df.iloc[1, 0] = TO(1)
        df.iloc[1, 0] = np.nan
        result = DataFrame(index=[0, 1], columns=[0])

        tm.assert_frame_equal(result, df)

    def test_iloc_getitem_with_duplicates(self):
        df = DataFrame(
            np.random.default_rng(2).random((3, 3)),
            columns=list("ABC"),
            index=list("aab"),
        )

        result = df.iloc[0]
        assert isinstance(result, Series)
        tm.assert_almost_equal(result.values, df.values[0])

        result = df.T.iloc[:, 0]
        assert isinstance(result, Series)
        tm.assert_almost_equal(result.values, df.values[0])

    def test_iloc_getitem_with_duplicates2(self):
        # GH#2259
        df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=[1, 1, 2])
        result = df.iloc[:, [0]]
        expected = df.take([0], axis=1)
        tm.assert_frame_equal(result, expected)

    def test_iloc_interval(self):
        # GH#17130
        df = DataFrame({Interval(1, 2): [1, 2]})

        result = df.iloc[0]
        expected = Series({Interval(1, 2): 1}, name=0)
        tm.assert_series_equal(result, expected)

        result = df.iloc[:, 0]
        expected = Series([1, 2], name=Interval(1, 2))
        tm.assert_series_equal(result, expected)

        result = df.copy()
        result.iloc[:, 0] += 1
        expected = DataFrame({Interval(1, 2): [2, 3]})
        tm.assert_frame_equal(result, expected)

    @pytest.mark.parametrize("indexing_func", [list, np.array])
    @pytest.mark.parametrize("rhs_func", [list, np.array])
    def test_loc_setitem_boolean_list(self, rhs_func, indexing_func):
        # GH#20438 testing specifically list key, not arraylike
        ser = Series([0, 1, 2])
        ser.iloc[indexing_func([True, False, True])] = rhs_func([5, 10])
        expected = Series([5, 1, 10])
        tm.assert_series_equal(ser, expected)

        df = DataFrame({"a": [0, 1, 2]})
        df.iloc[indexing_func([True, False, True])] = rhs_func([[5], [10]])
        expected = DataFrame({"a": [5, 1, 10]})
        tm.assert_frame_equal(df, expected)

    def test_iloc_getitem_slice_negative_step_ea_block(self):
        # GH#44551
        df = DataFrame({"A": [1, 2, 3]}, dtype="Int64")

        res = df.iloc[:, ::-1]
        tm.assert_frame_equal(res, df)

        df["B"] = "foo"
        res = df.iloc[:, ::-1]
        expected = DataFrame({"B": df["B"], "A": df["A"]})
        tm.assert_frame_equal(res, expected)

    def test_iloc_setitem_2d_ndarray_into_ea_block(self):
        # GH#44703
        df = DataFrame({"status": ["a", "b", "c"]}, dtype="category")
        df.iloc[np.array([0, 1]), np.array([0])] = np.array([["a"], ["a"]])

        expected = DataFrame({"status": ["a", "a", "c"]}, dtype=df["status"].dtype)
        tm.assert_frame_equal(df, expected)

    @td.skip_array_manager_not_yet_implemented
    def test_iloc_getitem_int_single_ea_block_view(self):
        # GH#45241
        # TODO: make an extension interface test for this?
        arr = interval_range(1, 10.0)._values
        df = DataFrame(arr)

        # ser should be a *view* on the DataFrame data
        ser = df.iloc[2]

        # if we have a view, then changing arr[2] should also change ser[0]
        assert arr[2] != arr[-1]  # otherwise the rest isn't meaningful
        arr[2] = arr[-1]
        assert ser[0] == arr[-1]

    def test_iloc_setitem_multicolumn_to_datetime(self):
        # GH#20511
        df = DataFrame({"A": ["2022-01-01", "2022-01-02"], "B": ["2021", "2022"]})

        df.iloc[:, [0]] = DataFrame({"A": to_datetime(["2021", "2022"])})
        expected = DataFrame(
            {
                "A": [
                    Timestamp("2021-01-01 00:00:00"),
                    Timestamp("2022-01-01 00:00:00"),
                ],
                "B": ["2021", "2022"],
            }
        )
        tm.assert_frame_equal(df, expected, check_dtype=False)


class TestILocErrors:
    # NB: this test should work for _any_ Series we can pass as
    #  series_with_simple_index
    def test_iloc_float_raises(
        self, series_with_simple_index, frame_or_series, warn_copy_on_write
    ):
        # GH#4892
        # float_indexers should raise exceptions
        # on appropriate Index types & accessors
        # this duplicates the code below
        # but is specifically testing for the error
        # message

        obj = series_with_simple_index
        if frame_or_series is DataFrame:
            obj = obj.to_frame()

        msg = "Cannot index by location index with a non-integer key"
        with pytest.raises(TypeError, match=msg):
            obj.iloc[3.0]

        with pytest.raises(IndexError, match=_slice_iloc_msg):
            with tm.assert_cow_warning(
                warn_copy_on_write and frame_or_series is DataFrame
            ):
                obj.iloc[3.0] = 0

    def test_iloc_getitem_setitem_fancy_exceptions(self, float_frame):
        with pytest.raises(IndexingError, match="Too many indexers"):
            float_frame.iloc[:, :, :]

        with pytest.raises(IndexError, match="too many indices for array"):
            # GH#32257 we let numpy do validation, get their exception
            float_frame.iloc[:, :, :] = 1

    def test_iloc_frame_indexer(self):
        # GH#39004
        df = DataFrame({"a": [1, 2, 3]})
        indexer = DataFrame({"a": [True, False, True]})
        msg = "DataFrame indexer for .iloc is not supported. Consider using .loc"
        with pytest.raises(TypeError, match=msg):
            df.iloc[indexer] = 1

        msg = (
            "DataFrame indexer is not allowed for .iloc\n"
            "Consider using .loc for automatic alignment."
        )
        with pytest.raises(IndexError, match=msg):
            df.iloc[indexer]


class TestILocSetItemDuplicateColumns:
    def test_iloc_setitem_scalar_duplicate_columns(self):
        # GH#15686, duplicate columns and mixed dtype
        df1 = DataFrame([{"A": None, "B": 1}, {"A": 2, "B": 2}])
        df2 = DataFrame([{"A": 3, "B": 3}, {"A": 4, "B": 4}])
        df = concat([df1, df2], axis=1)
        df.iloc[0, 0] = -1

        assert df.iloc[0, 0] == -1
        assert df.iloc[0, 2] == 3
        assert df.dtypes.iloc[2] == np.int64

    def test_iloc_setitem_list_duplicate_columns(self):
        # GH#22036 setting with same-sized list
        df = DataFrame([[0, "str", "str2"]], columns=["a", "b", "b"])

        df.iloc[:, 2] = ["str3"]

        expected = DataFrame([[0, "str", "str3"]], columns=["a", "b", "b"])
        tm.assert_frame_equal(df, expected)

    def test_iloc_setitem_series_duplicate_columns(self):
        df = DataFrame(
            np.arange(8, dtype=np.int64).reshape(2, 4), columns=["A", "B", "A", "B"]
        )
        df.iloc[:, 0] = df.iloc[:, 0].astype(np.float64)
        assert df.dtypes.iloc[2] == np.int64

    @pytest.mark.parametrize(
        ["dtypes", "init_value", "expected_value"],
        [("int64", "0", 0), ("float", "1.2", 1.2)],
    )
    def test_iloc_setitem_dtypes_duplicate_columns(
        self, dtypes, init_value, expected_value
    ):
        # GH#22035
        df = DataFrame(
            [[init_value, "str", "str2"]], columns=["a", "b", "b"], dtype=object
        )

        # with the enforcement of GH#45333 in 2.0, this sets values inplace,
        #  so we retain object dtype
        df.iloc[:, 0] = df.iloc[:, 0].astype(dtypes)

        expected_df = DataFrame(
            [[expected_value, "str", "str2"]],
            columns=["a", "b", "b"],
            dtype=object,
        )
        tm.assert_frame_equal(df, expected_df)


class TestILocCallable:
    def test_frame_iloc_getitem_callable(self):
        # GH#11485
        df = DataFrame({"X": [1, 2, 3, 4], "Y": list("aabb")}, index=list("ABCD"))

        # return location
        res = df.iloc[lambda x: [1, 3]]
        tm.assert_frame_equal(res, df.iloc[[1, 3]])

        res = df.iloc[lambda x: [1, 3], :]
        tm.assert_frame_equal(res, df.iloc[[1, 3], :])

        res = df.iloc[lambda x: [1, 3], lambda x: 0]
        tm.assert_series_equal(res, df.iloc[[1, 3], 0])

        res = df.iloc[lambda x: [1, 3], lambda x: [0]]
        tm.assert_frame_equal(res, df.iloc[[1, 3], [0]])

        # mixture
        res = df.iloc[[1, 3], lambda x: 0]
        tm.assert_series_equal(res, df.iloc[[1, 3], 0])

        res = df.iloc[[1, 3], lambda x: [0]]
        tm.assert_frame_equal(res, df.iloc[[1, 3], [0]])

        res = df.iloc[lambda x: [1, 3], 0]
        tm.assert_series_equal(res, df.iloc[[1, 3], 0])

        res = df.iloc[lambda x: [1, 3], [0]]
        tm.assert_frame_equal(res, df.iloc[[1, 3], [0]])

    def test_frame_iloc_setitem_callable(self):
        # GH#11485
        df = DataFrame(
            {"X": [1, 2, 3, 4], "Y": Series(list("aabb"), dtype=object)},
            index=list("ABCD"),
        )

        # return location
        res = df.copy()
        res.iloc[lambda x: [1, 3]] = 0
        exp = df.copy()
        exp.iloc[[1, 3]] = 0
        tm.assert_frame_equal(res, exp)

        res = df.copy()
        res.iloc[lambda x: [1, 3], :] = -1
        exp = df.copy()
        exp.iloc[[1, 3], :] = -1
        tm.assert_frame_equal(res, exp)

        res = df.copy()
        res.iloc[lambda x: [1, 3], lambda x: 0] = 5
        exp = df.copy()
        exp.iloc[[1, 3], 0] = 5
        tm.assert_frame_equal(res, exp)

        res = df.copy()
        res.iloc[lambda x: [1, 3], lambda x: [0]] = 25
        exp = df.copy()
        exp.iloc[[1, 3], [0]] = 25
        tm.assert_frame_equal(res, exp)

        # mixture
        res = df.copy()
        res.iloc[[1, 3], lambda x: 0] = -3
        exp = df.copy()
        exp.iloc[[1, 3], 0] = -3
        tm.assert_frame_equal(res, exp)

        res = df.copy()
        res.iloc[[1, 3], lambda x: [0]] = -5
        exp = df.copy()
        exp.iloc[[1, 3], [0]] = -5
        tm.assert_frame_equal(res, exp)

        res = df.copy()
        res.iloc[lambda x: [1, 3], 0] = 10
        exp = df.copy()
        exp.iloc[[1, 3], 0] = 10
        tm.assert_frame_equal(res, exp)

        res = df.copy()
        res.iloc[lambda x: [1, 3], [0]] = [-5, -5]
        exp = df.copy()
        exp.iloc[[1, 3], [0]] = [-5, -5]
        tm.assert_frame_equal(res, exp)


class TestILocSeries:
    def test_iloc(self, using_copy_on_write, warn_copy_on_write):
        ser = Series(
            np.random.default_rng(2).standard_normal(10), index=list(range(0, 20, 2))
        )
        ser_original = ser.copy()

        for i in range(len(ser)):
            result = ser.iloc[i]
            exp = ser[ser.index[i]]
            tm.assert_almost_equal(result, exp)

        # pass a slice
        result = ser.iloc[slice(1, 3)]
        expected = ser.loc[2:4]
        tm.assert_series_equal(result, expected)

        # test slice is a view
        with tm.assert_produces_warning(None):
            # GH#45324 make sure we aren't giving a spurious FutureWarning
            with tm.assert_cow_warning(warn_copy_on_write):
                result[:] = 0
        if using_copy_on_write:
            tm.assert_series_equal(ser, ser_original)
        else:
            assert (ser.iloc[1:3] == 0).all()

        # list of integers
        result = ser.iloc[[0, 2, 3, 4, 5]]
        expected = ser.reindex(ser.index[[0, 2, 3, 4, 5]])
        tm.assert_series_equal(result, expected)

    def test_iloc_getitem_nonunique(self):
        ser = Series([0, 1, 2], index=[0, 1, 0])
        assert ser.iloc[2] == 2

    def test_iloc_setitem_pure_position_based(self):
        # GH#22046
        ser1 = Series([1, 2, 3])
        ser2 = Series([4, 5, 6], index=[1, 0, 2])
        ser1.iloc[1:3] = ser2.iloc[1:3]
        expected = Series([1, 5, 6])
        tm.assert_series_equal(ser1, expected)

    def test_iloc_nullable_int64_size_1_nan(self):
        # GH 31861
        result = DataFrame({"a": ["test"], "b": [np.nan]})
        with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
            result.loc[:, "b"] = result.loc[:, "b"].astype("Int64")
        expected = DataFrame({"a": ["test"], "b": array([NA], dtype="Int64")})
        tm.assert_frame_equal(result, expected)