File size: 26,463 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
from datetime import datetime
import re

import numpy as np
import pytest

from pandas.core.dtypes.dtypes import ArrowDtype

from pandas import (
    DataFrame,
    Index,
    MultiIndex,
    Series,
    _testing as tm,
)


def test_extract_expand_kwarg_wrong_type_raises(any_string_dtype):
    # TODO: should this raise TypeError
    values = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype)
    with pytest.raises(ValueError, match="expand must be True or False"):
        values.str.extract(".*(BAD[_]+).*(BAD)", expand=None)


def test_extract_expand_kwarg(any_string_dtype):
    s = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype)
    expected = DataFrame(["BAD__", np.nan, np.nan], dtype=any_string_dtype)

    result = s.str.extract(".*(BAD[_]+).*")
    tm.assert_frame_equal(result, expected)

    result = s.str.extract(".*(BAD[_]+).*", expand=True)
    tm.assert_frame_equal(result, expected)

    expected = DataFrame(
        [["BAD__", "BAD"], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype
    )
    result = s.str.extract(".*(BAD[_]+).*(BAD)", expand=False)
    tm.assert_frame_equal(result, expected)


def test_extract_expand_False_mixed_object():
    ser = Series(
        ["aBAD_BAD", np.nan, "BAD_b_BAD", True, datetime.today(), "foo", None, 1, 2.0]
    )

    # two groups
    result = ser.str.extract(".*(BAD[_]+).*(BAD)", expand=False)
    er = [np.nan, np.nan]  # empty row
    expected = DataFrame(
        [["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er], dtype=object
    )
    tm.assert_frame_equal(result, expected)

    # single group
    result = ser.str.extract(".*(BAD[_]+).*BAD", expand=False)
    expected = Series(
        ["BAD_", np.nan, "BAD_", np.nan, np.nan, np.nan, None, np.nan, np.nan],
        dtype=object,
    )
    tm.assert_series_equal(result, expected)


def test_extract_expand_index_raises():
    # GH9980
    # Index only works with one regex group since
    # multi-group would expand to a frame
    idx = Index(["A1", "A2", "A3", "A4", "B5"])
    msg = "only one regex group is supported with Index"
    with pytest.raises(ValueError, match=msg):
        idx.str.extract("([AB])([123])", expand=False)


def test_extract_expand_no_capture_groups_raises(index_or_series, any_string_dtype):
    s_or_idx = index_or_series(["A1", "B2", "C3"], dtype=any_string_dtype)
    msg = "pattern contains no capture groups"

    # no groups
    with pytest.raises(ValueError, match=msg):
        s_or_idx.str.extract("[ABC][123]", expand=False)

    # only non-capturing groups
    with pytest.raises(ValueError, match=msg):
        s_or_idx.str.extract("(?:[AB]).*", expand=False)


def test_extract_expand_single_capture_group(index_or_series, any_string_dtype):
    # single group renames series/index properly
    s_or_idx = index_or_series(["A1", "A2"], dtype=any_string_dtype)
    result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=False)

    expected = index_or_series(["A", "A"], name="uno", dtype=any_string_dtype)
    if index_or_series == Series:
        tm.assert_series_equal(result, expected)
    else:
        tm.assert_index_equal(result, expected)


def test_extract_expand_capture_groups(any_string_dtype):
    s = Series(["A1", "B2", "C3"], dtype=any_string_dtype)
    # one group, no matches
    result = s.str.extract("(_)", expand=False)
    expected = Series([np.nan, np.nan, np.nan], dtype=any_string_dtype)
    tm.assert_series_equal(result, expected)

    # two groups, no matches
    result = s.str.extract("(_)(_)", expand=False)
    expected = DataFrame(
        [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype
    )
    tm.assert_frame_equal(result, expected)

    # one group, some matches
    result = s.str.extract("([AB])[123]", expand=False)
    expected = Series(["A", "B", np.nan], dtype=any_string_dtype)
    tm.assert_series_equal(result, expected)

    # two groups, some matches
    result = s.str.extract("([AB])([123])", expand=False)
    expected = DataFrame(
        [["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype
    )
    tm.assert_frame_equal(result, expected)

    # one named group
    result = s.str.extract("(?P<letter>[AB])", expand=False)
    expected = Series(["A", "B", np.nan], name="letter", dtype=any_string_dtype)
    tm.assert_series_equal(result, expected)

    # two named groups
    result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=False)
    expected = DataFrame(
        [["A", "1"], ["B", "2"], [np.nan, np.nan]],
        columns=["letter", "number"],
        dtype=any_string_dtype,
    )
    tm.assert_frame_equal(result, expected)

    # mix named and unnamed groups
    result = s.str.extract("([AB])(?P<number>[123])", expand=False)
    expected = DataFrame(
        [["A", "1"], ["B", "2"], [np.nan, np.nan]],
        columns=[0, "number"],
        dtype=any_string_dtype,
    )
    tm.assert_frame_equal(result, expected)

    # one normal group, one non-capturing group
    result = s.str.extract("([AB])(?:[123])", expand=False)
    expected = Series(["A", "B", np.nan], dtype=any_string_dtype)
    tm.assert_series_equal(result, expected)

    # two normal groups, one non-capturing group
    s = Series(["A11", "B22", "C33"], dtype=any_string_dtype)
    result = s.str.extract("([AB])([123])(?:[123])", expand=False)
    expected = DataFrame(
        [["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype
    )
    tm.assert_frame_equal(result, expected)

    # one optional group followed by one normal group
    s = Series(["A1", "B2", "3"], dtype=any_string_dtype)
    result = s.str.extract("(?P<letter>[AB])?(?P<number>[123])", expand=False)
    expected = DataFrame(
        [["A", "1"], ["B", "2"], [np.nan, "3"]],
        columns=["letter", "number"],
        dtype=any_string_dtype,
    )
    tm.assert_frame_equal(result, expected)

    # one normal group followed by one optional group
    s = Series(["A1", "B2", "C"], dtype=any_string_dtype)
    result = s.str.extract("(?P<letter>[ABC])(?P<number>[123])?", expand=False)
    expected = DataFrame(
        [["A", "1"], ["B", "2"], ["C", np.nan]],
        columns=["letter", "number"],
        dtype=any_string_dtype,
    )
    tm.assert_frame_equal(result, expected)


def test_extract_expand_capture_groups_index(index, any_string_dtype):
    # https://github.com/pandas-dev/pandas/issues/6348
    # not passing index to the extractor
    data = ["A1", "B2", "C"]

    if len(index) == 0:
        pytest.skip("Test requires len(index) > 0")
    while len(index) < len(data):
        index = index.repeat(2)

    index = index[: len(data)]
    ser = Series(data, index=index, dtype=any_string_dtype)

    result = ser.str.extract(r"(\d)", expand=False)
    expected = Series(["1", "2", np.nan], index=index, dtype=any_string_dtype)
    tm.assert_series_equal(result, expected)

    result = ser.str.extract(r"(?P<letter>\D)(?P<number>\d)?", expand=False)
    expected = DataFrame(
        [["A", "1"], ["B", "2"], ["C", np.nan]],
        columns=["letter", "number"],
        index=index,
        dtype=any_string_dtype,
    )
    tm.assert_frame_equal(result, expected)


def test_extract_single_series_name_is_preserved(any_string_dtype):
    s = Series(["a3", "b3", "c2"], name="bob", dtype=any_string_dtype)
    result = s.str.extract(r"(?P<sue>[a-z])", expand=False)
    expected = Series(["a", "b", "c"], name="sue", dtype=any_string_dtype)
    tm.assert_series_equal(result, expected)


def test_extract_expand_True(any_string_dtype):
    # Contains tests like those in test_match and some others.
    s = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype)

    result = s.str.extract(".*(BAD[_]+).*(BAD)", expand=True)
    expected = DataFrame(
        [["BAD__", "BAD"], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype
    )
    tm.assert_frame_equal(result, expected)


def test_extract_expand_True_mixed_object():
    er = [np.nan, np.nan]  # empty row
    mixed = Series(
        [
            "aBAD_BAD",
            np.nan,
            "BAD_b_BAD",
            True,
            datetime.today(),
            "foo",
            None,
            1,
            2.0,
        ]
    )

    result = mixed.str.extract(".*(BAD[_]+).*(BAD)", expand=True)
    expected = DataFrame(
        [["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er], dtype=object
    )
    tm.assert_frame_equal(result, expected)


def test_extract_expand_True_single_capture_group_raises(
    index_or_series, any_string_dtype
):
    # these should work for both Series and Index
    # no groups
    s_or_idx = index_or_series(["A1", "B2", "C3"], dtype=any_string_dtype)
    msg = "pattern contains no capture groups"
    with pytest.raises(ValueError, match=msg):
        s_or_idx.str.extract("[ABC][123]", expand=True)

    # only non-capturing groups
    with pytest.raises(ValueError, match=msg):
        s_or_idx.str.extract("(?:[AB]).*", expand=True)


def test_extract_expand_True_single_capture_group(index_or_series, any_string_dtype):
    # single group renames series/index properly
    s_or_idx = index_or_series(["A1", "A2"], dtype=any_string_dtype)
    result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=True)
    expected = DataFrame({"uno": ["A", "A"]}, dtype=any_string_dtype)
    tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize("name", [None, "series_name"])
def test_extract_series(name, any_string_dtype):
    # extract should give the same result whether or not the series has a name.
    s = Series(["A1", "B2", "C3"], name=name, dtype=any_string_dtype)

    # one group, no matches
    result = s.str.extract("(_)", expand=True)
    expected = DataFrame([np.nan, np.nan, np.nan], dtype=any_string_dtype)
    tm.assert_frame_equal(result, expected)

    # two groups, no matches
    result = s.str.extract("(_)(_)", expand=True)
    expected = DataFrame(
        [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype
    )
    tm.assert_frame_equal(result, expected)

    # one group, some matches
    result = s.str.extract("([AB])[123]", expand=True)
    expected = DataFrame(["A", "B", np.nan], dtype=any_string_dtype)
    tm.assert_frame_equal(result, expected)

    # two groups, some matches
    result = s.str.extract("([AB])([123])", expand=True)
    expected = DataFrame(
        [["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype
    )
    tm.assert_frame_equal(result, expected)

    # one named group
    result = s.str.extract("(?P<letter>[AB])", expand=True)
    expected = DataFrame({"letter": ["A", "B", np.nan]}, dtype=any_string_dtype)
    tm.assert_frame_equal(result, expected)

    # two named groups
    result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=True)
    expected = DataFrame(
        [["A", "1"], ["B", "2"], [np.nan, np.nan]],
        columns=["letter", "number"],
        dtype=any_string_dtype,
    )
    tm.assert_frame_equal(result, expected)

    # mix named and unnamed groups
    result = s.str.extract("([AB])(?P<number>[123])", expand=True)
    expected = DataFrame(
        [["A", "1"], ["B", "2"], [np.nan, np.nan]],
        columns=[0, "number"],
        dtype=any_string_dtype,
    )
    tm.assert_frame_equal(result, expected)

    # one normal group, one non-capturing group
    result = s.str.extract("([AB])(?:[123])", expand=True)
    expected = DataFrame(["A", "B", np.nan], dtype=any_string_dtype)
    tm.assert_frame_equal(result, expected)


def test_extract_optional_groups(any_string_dtype):
    # two normal groups, one non-capturing group
    s = Series(["A11", "B22", "C33"], dtype=any_string_dtype)
    result = s.str.extract("([AB])([123])(?:[123])", expand=True)
    expected = DataFrame(
        [["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype
    )
    tm.assert_frame_equal(result, expected)

    # one optional group followed by one normal group
    s = Series(["A1", "B2", "3"], dtype=any_string_dtype)
    result = s.str.extract("(?P<letter>[AB])?(?P<number>[123])", expand=True)
    expected = DataFrame(
        [["A", "1"], ["B", "2"], [np.nan, "3"]],
        columns=["letter", "number"],
        dtype=any_string_dtype,
    )
    tm.assert_frame_equal(result, expected)

    # one normal group followed by one optional group
    s = Series(["A1", "B2", "C"], dtype=any_string_dtype)
    result = s.str.extract("(?P<letter>[ABC])(?P<number>[123])?", expand=True)
    expected = DataFrame(
        [["A", "1"], ["B", "2"], ["C", np.nan]],
        columns=["letter", "number"],
        dtype=any_string_dtype,
    )
    tm.assert_frame_equal(result, expected)


def test_extract_dataframe_capture_groups_index(index, any_string_dtype):
    # GH6348
    # not passing index to the extractor

    data = ["A1", "B2", "C"]

    if len(index) < len(data):
        pytest.skip(f"Index needs more than {len(data)} values")

    index = index[: len(data)]
    s = Series(data, index=index, dtype=any_string_dtype)

    result = s.str.extract(r"(\d)", expand=True)
    expected = DataFrame(["1", "2", np.nan], index=index, dtype=any_string_dtype)
    tm.assert_frame_equal(result, expected)

    result = s.str.extract(r"(?P<letter>\D)(?P<number>\d)?", expand=True)
    expected = DataFrame(
        [["A", "1"], ["B", "2"], ["C", np.nan]],
        columns=["letter", "number"],
        index=index,
        dtype=any_string_dtype,
    )
    tm.assert_frame_equal(result, expected)


def test_extract_single_group_returns_frame(any_string_dtype):
    # GH11386 extract should always return DataFrame, even when
    # there is only one group. Prior to v0.18.0, extract returned
    # Series when there was only one group in the regex.
    s = Series(["a3", "b3", "c2"], name="series_name", dtype=any_string_dtype)
    result = s.str.extract(r"(?P<letter>[a-z])", expand=True)
    expected = DataFrame({"letter": ["a", "b", "c"]}, dtype=any_string_dtype)
    tm.assert_frame_equal(result, expected)


def test_extractall(any_string_dtype):
    data = [
        "[email protected]",
        "[email protected]",
        "[email protected]",
        "[email protected] some text [email protected]",
        "[email protected] some text [email protected] and [email protected]",
        np.nan,
        "",
    ]
    expected_tuples = [
        ("dave", "google", "com"),
        ("tdhock5", "gmail", "com"),
        ("maudelaperriere", "gmail", "com"),
        ("rob", "gmail", "com"),
        ("steve", "gmail", "com"),
        ("a", "b", "com"),
        ("c", "d", "com"),
        ("e", "f", "com"),
    ]
    pat = r"""
    (?P<user>[a-z0-9]+)
    @
    (?P<domain>[a-z]+)
    \.
    (?P<tld>[a-z]{2,4})
    """
    expected_columns = ["user", "domain", "tld"]
    s = Series(data, dtype=any_string_dtype)
    # extractall should return a DataFrame with one row for each match, indexed by the
    # subject from which the match came.
    expected_index = MultiIndex.from_tuples(
        [(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2)],
        names=(None, "match"),
    )
    expected = DataFrame(
        expected_tuples, expected_index, expected_columns, dtype=any_string_dtype
    )
    result = s.str.extractall(pat, flags=re.VERBOSE)
    tm.assert_frame_equal(result, expected)

    # The index of the input Series should be used to construct the index of the output
    # DataFrame:
    mi = MultiIndex.from_tuples(
        [
            ("single", "Dave"),
            ("single", "Toby"),
            ("single", "Maude"),
            ("multiple", "robAndSteve"),
            ("multiple", "abcdef"),
            ("none", "missing"),
            ("none", "empty"),
        ]
    )
    s = Series(data, index=mi, dtype=any_string_dtype)
    expected_index = MultiIndex.from_tuples(
        [
            ("single", "Dave", 0),
            ("single", "Toby", 0),
            ("single", "Maude", 0),
            ("multiple", "robAndSteve", 0),
            ("multiple", "robAndSteve", 1),
            ("multiple", "abcdef", 0),
            ("multiple", "abcdef", 1),
            ("multiple", "abcdef", 2),
        ],
        names=(None, None, "match"),
    )
    expected = DataFrame(
        expected_tuples, expected_index, expected_columns, dtype=any_string_dtype
    )
    result = s.str.extractall(pat, flags=re.VERBOSE)
    tm.assert_frame_equal(result, expected)

    # MultiIndexed subject with names.
    s = Series(data, index=mi, dtype=any_string_dtype)
    s.index.names = ("matches", "description")
    expected_index.names = ("matches", "description", "match")
    expected = DataFrame(
        expected_tuples, expected_index, expected_columns, dtype=any_string_dtype
    )
    result = s.str.extractall(pat, flags=re.VERBOSE)
    tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize(
    "pat,expected_names",
    [
        # optional groups.
        ("(?P<letter>[AB])?(?P<number>[123])", ["letter", "number"]),
        # only one of two groups has a name.
        ("([AB])?(?P<number>[123])", [0, "number"]),
    ],
)
def test_extractall_column_names(pat, expected_names, any_string_dtype):
    s = Series(["", "A1", "32"], dtype=any_string_dtype)

    result = s.str.extractall(pat)
    expected = DataFrame(
        [("A", "1"), (np.nan, "3"), (np.nan, "2")],
        index=MultiIndex.from_tuples([(1, 0), (2, 0), (2, 1)], names=(None, "match")),
        columns=expected_names,
        dtype=any_string_dtype,
    )
    tm.assert_frame_equal(result, expected)


def test_extractall_single_group(any_string_dtype):
    s = Series(["a3", "b3", "d4c2"], name="series_name", dtype=any_string_dtype)
    expected_index = MultiIndex.from_tuples(
        [(0, 0), (1, 0), (2, 0), (2, 1)], names=(None, "match")
    )

    # extractall(one named group) returns DataFrame with one named column.
    result = s.str.extractall(r"(?P<letter>[a-z])")
    expected = DataFrame(
        {"letter": ["a", "b", "d", "c"]}, index=expected_index, dtype=any_string_dtype
    )
    tm.assert_frame_equal(result, expected)

    # extractall(one un-named group) returns DataFrame with one un-named column.
    result = s.str.extractall(r"([a-z])")
    expected = DataFrame(
        ["a", "b", "d", "c"], index=expected_index, dtype=any_string_dtype
    )
    tm.assert_frame_equal(result, expected)


def test_extractall_single_group_with_quantifier(any_string_dtype):
    # GH#13382
    # extractall(one un-named group with quantifier) returns DataFrame with one un-named
    # column.
    s = Series(["ab3", "abc3", "d4cd2"], name="series_name", dtype=any_string_dtype)
    result = s.str.extractall(r"([a-z]+)")
    expected = DataFrame(
        ["ab", "abc", "d", "cd"],
        index=MultiIndex.from_tuples(
            [(0, 0), (1, 0), (2, 0), (2, 1)], names=(None, "match")
        ),
        dtype=any_string_dtype,
    )
    tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize(
    "data, names",
    [
        ([], (None,)),
        ([], ("i1",)),
        ([], (None, "i2")),
        ([], ("i1", "i2")),
        (["a3", "b3", "d4c2"], (None,)),
        (["a3", "b3", "d4c2"], ("i1", "i2")),
        (["a3", "b3", "d4c2"], (None, "i2")),
        (["a3", "b3", "d4c2"], ("i1", "i2")),
    ],
)
def test_extractall_no_matches(data, names, any_string_dtype):
    # GH19075 extractall with no matches should return a valid MultiIndex
    n = len(data)
    if len(names) == 1:
        index = Index(range(n), name=names[0])
    else:
        tuples = (tuple([i] * (n - 1)) for i in range(n))
        index = MultiIndex.from_tuples(tuples, names=names)
    s = Series(data, name="series_name", index=index, dtype=any_string_dtype)
    expected_index = MultiIndex.from_tuples([], names=(names + ("match",)))

    # one un-named group.
    result = s.str.extractall("(z)")
    expected = DataFrame(columns=[0], index=expected_index, dtype=any_string_dtype)
    tm.assert_frame_equal(result, expected)

    # two un-named groups.
    result = s.str.extractall("(z)(z)")
    expected = DataFrame(columns=[0, 1], index=expected_index, dtype=any_string_dtype)
    tm.assert_frame_equal(result, expected)

    # one named group.
    result = s.str.extractall("(?P<first>z)")
    expected = DataFrame(
        columns=["first"], index=expected_index, dtype=any_string_dtype
    )
    tm.assert_frame_equal(result, expected)

    # two named groups.
    result = s.str.extractall("(?P<first>z)(?P<second>z)")
    expected = DataFrame(
        columns=["first", "second"], index=expected_index, dtype=any_string_dtype
    )
    tm.assert_frame_equal(result, expected)

    # one named, one un-named.
    result = s.str.extractall("(z)(?P<second>z)")
    expected = DataFrame(
        columns=[0, "second"], index=expected_index, dtype=any_string_dtype
    )
    tm.assert_frame_equal(result, expected)


def test_extractall_stringindex(any_string_dtype):
    s = Series(["a1a2", "b1", "c1"], name="xxx", dtype=any_string_dtype)
    result = s.str.extractall(r"[ab](?P<digit>\d)")
    expected = DataFrame(
        {"digit": ["1", "2", "1"]},
        index=MultiIndex.from_tuples([(0, 0), (0, 1), (1, 0)], names=[None, "match"]),
        dtype=any_string_dtype,
    )
    tm.assert_frame_equal(result, expected)

    # index should return the same result as the default index without name thus
    # index.name doesn't affect to the result
    if any_string_dtype == "object":
        for idx in [
            Index(["a1a2", "b1", "c1"], dtype=object),
            Index(["a1a2", "b1", "c1"], name="xxx", dtype=object),
        ]:
            result = idx.str.extractall(r"[ab](?P<digit>\d)")
            tm.assert_frame_equal(result, expected)

    s = Series(
        ["a1a2", "b1", "c1"],
        name="s_name",
        index=Index(["XX", "yy", "zz"], name="idx_name"),
        dtype=any_string_dtype,
    )
    result = s.str.extractall(r"[ab](?P<digit>\d)")
    expected = DataFrame(
        {"digit": ["1", "2", "1"]},
        index=MultiIndex.from_tuples(
            [("XX", 0), ("XX", 1), ("yy", 0)], names=["idx_name", "match"]
        ),
        dtype=any_string_dtype,
    )
    tm.assert_frame_equal(result, expected)


def test_extractall_no_capture_groups_raises(any_string_dtype):
    # Does not make sense to use extractall with a regex that has no capture groups.
    # (it returns DataFrame with one column for each capture group)
    s = Series(["a3", "b3", "d4c2"], name="series_name", dtype=any_string_dtype)
    with pytest.raises(ValueError, match="no capture groups"):
        s.str.extractall(r"[a-z]")


def test_extract_index_one_two_groups():
    s = Series(["a3", "b3", "d4c2"], index=["A3", "B3", "D4"], name="series_name")
    r = s.index.str.extract(r"([A-Z])", expand=True)
    e = DataFrame(["A", "B", "D"])
    tm.assert_frame_equal(r, e)

    # Prior to v0.18.0, index.str.extract(regex with one group)
    # returned Index. With more than one group, extract raised an
    # error (GH9980). Now extract always returns DataFrame.
    r = s.index.str.extract(r"(?P<letter>[A-Z])(?P<digit>[0-9])", expand=True)
    e_list = [("A", "3"), ("B", "3"), ("D", "4")]
    e = DataFrame(e_list, columns=["letter", "digit"])
    tm.assert_frame_equal(r, e)


def test_extractall_same_as_extract(any_string_dtype):
    s = Series(["a3", "b3", "c2"], name="series_name", dtype=any_string_dtype)

    pattern_two_noname = r"([a-z])([0-9])"
    extract_two_noname = s.str.extract(pattern_two_noname, expand=True)
    has_multi_index = s.str.extractall(pattern_two_noname)
    no_multi_index = has_multi_index.xs(0, level="match")
    tm.assert_frame_equal(extract_two_noname, no_multi_index)

    pattern_two_named = r"(?P<letter>[a-z])(?P<digit>[0-9])"
    extract_two_named = s.str.extract(pattern_two_named, expand=True)
    has_multi_index = s.str.extractall(pattern_two_named)
    no_multi_index = has_multi_index.xs(0, level="match")
    tm.assert_frame_equal(extract_two_named, no_multi_index)

    pattern_one_named = r"(?P<group_name>[a-z])"
    extract_one_named = s.str.extract(pattern_one_named, expand=True)
    has_multi_index = s.str.extractall(pattern_one_named)
    no_multi_index = has_multi_index.xs(0, level="match")
    tm.assert_frame_equal(extract_one_named, no_multi_index)

    pattern_one_noname = r"([a-z])"
    extract_one_noname = s.str.extract(pattern_one_noname, expand=True)
    has_multi_index = s.str.extractall(pattern_one_noname)
    no_multi_index = has_multi_index.xs(0, level="match")
    tm.assert_frame_equal(extract_one_noname, no_multi_index)


def test_extractall_same_as_extract_subject_index(any_string_dtype):
    # same as above tests, but s has an MultiIndex.
    mi = MultiIndex.from_tuples(
        [("A", "first"), ("B", "second"), ("C", "third")],
        names=("capital", "ordinal"),
    )
    s = Series(["a3", "b3", "c2"], index=mi, name="series_name", dtype=any_string_dtype)

    pattern_two_noname = r"([a-z])([0-9])"
    extract_two_noname = s.str.extract(pattern_two_noname, expand=True)
    has_match_index = s.str.extractall(pattern_two_noname)
    no_match_index = has_match_index.xs(0, level="match")
    tm.assert_frame_equal(extract_two_noname, no_match_index)

    pattern_two_named = r"(?P<letter>[a-z])(?P<digit>[0-9])"
    extract_two_named = s.str.extract(pattern_two_named, expand=True)
    has_match_index = s.str.extractall(pattern_two_named)
    no_match_index = has_match_index.xs(0, level="match")
    tm.assert_frame_equal(extract_two_named, no_match_index)

    pattern_one_named = r"(?P<group_name>[a-z])"
    extract_one_named = s.str.extract(pattern_one_named, expand=True)
    has_match_index = s.str.extractall(pattern_one_named)
    no_match_index = has_match_index.xs(0, level="match")
    tm.assert_frame_equal(extract_one_named, no_match_index)

    pattern_one_noname = r"([a-z])"
    extract_one_noname = s.str.extract(pattern_one_noname, expand=True)
    has_match_index = s.str.extractall(pattern_one_noname)
    no_match_index = has_match_index.xs(0, level="match")
    tm.assert_frame_equal(extract_one_noname, no_match_index)


def test_extractall_preserves_dtype():
    # Ensure that when extractall is called on a series with specific dtypes set, that
    # the dtype is preserved in the resulting DataFrame's column.
    pa = pytest.importorskip("pyarrow")

    result = Series(["abc", "ab"], dtype=ArrowDtype(pa.string())).str.extractall("(ab)")
    assert result.dtypes[0] == "string[pyarrow]"