File size: 13,857 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import numpy as np
import pytest

import pandas as pd
from pandas import (
    DataFrame,
    Index,
    MultiIndex,
    Series,
    period_range,
    timedelta_range,
)
import pandas._testing as tm
from pandas.core.util.hashing import hash_tuples
from pandas.util import (
    hash_array,
    hash_pandas_object,
)


@pytest.fixture(
    params=[
        Series([1, 2, 3] * 3, dtype="int32"),
        Series([None, 2.5, 3.5] * 3, dtype="float32"),
        Series(["a", "b", "c"] * 3, dtype="category"),
        Series(["d", "e", "f"] * 3),
        Series([True, False, True] * 3),
        Series(pd.date_range("20130101", periods=9)),
        Series(pd.date_range("20130101", periods=9, tz="US/Eastern")),
        Series(timedelta_range("2000", periods=9)),
    ]
)
def series(request):
    return request.param


@pytest.fixture(params=[True, False])
def index(request):
    return request.param


def test_consistency():
    # Check that our hash doesn't change because of a mistake
    # in the actual code; this is the ground truth.
    result = hash_pandas_object(Index(["foo", "bar", "baz"]))
    expected = Series(
        np.array(
            [3600424527151052760, 1374399572096150070, 477881037637427054],
            dtype="uint64",
        ),
        index=["foo", "bar", "baz"],
    )
    tm.assert_series_equal(result, expected)


def test_hash_array(series):
    arr = series.values
    tm.assert_numpy_array_equal(hash_array(arr), hash_array(arr))


@pytest.mark.parametrize("dtype", ["U", object])
def test_hash_array_mixed(dtype):
    result1 = hash_array(np.array(["3", "4", "All"]))
    result2 = hash_array(np.array([3, 4, "All"], dtype=dtype))

    tm.assert_numpy_array_equal(result1, result2)


@pytest.mark.parametrize("val", [5, "foo", pd.Timestamp("20130101")])
def test_hash_array_errors(val):
    msg = "must pass a ndarray-like"
    with pytest.raises(TypeError, match=msg):
        hash_array(val)


def test_hash_array_index_exception():
    # GH42003 TypeError instead of AttributeError
    obj = pd.DatetimeIndex(["2018-10-28 01:20:00"], tz="Europe/Berlin")

    msg = "Use hash_pandas_object instead"
    with pytest.raises(TypeError, match=msg):
        hash_array(obj)


def test_hash_tuples():
    tuples = [(1, "one"), (1, "two"), (2, "one")]
    result = hash_tuples(tuples)

    expected = hash_pandas_object(MultiIndex.from_tuples(tuples)).values
    tm.assert_numpy_array_equal(result, expected)

    # We only need to support MultiIndex and list-of-tuples
    msg = "|".join(["object is not iterable", "zip argument #1 must support iteration"])
    with pytest.raises(TypeError, match=msg):
        hash_tuples(tuples[0])


@pytest.mark.parametrize("val", [5, "foo", pd.Timestamp("20130101")])
def test_hash_tuples_err(val):
    msg = "must be convertible to a list-of-tuples"
    with pytest.raises(TypeError, match=msg):
        hash_tuples(val)


def test_multiindex_unique():
    mi = MultiIndex.from_tuples([(118, 472), (236, 118), (51, 204), (102, 51)])
    assert mi.is_unique is True

    result = hash_pandas_object(mi)
    assert result.is_unique is True


def test_multiindex_objects():
    mi = MultiIndex(
        levels=[["b", "d", "a"], [1, 2, 3]],
        codes=[[0, 1, 0, 2], [2, 0, 0, 1]],
        names=["col1", "col2"],
    )
    recons = mi._sort_levels_monotonic()

    # These are equal.
    assert mi.equals(recons)
    assert Index(mi.values).equals(Index(recons.values))


@pytest.mark.parametrize(
    "obj",
    [
        Series([1, 2, 3]),
        Series([1.0, 1.5, 3.2]),
        Series([1.0, 1.5, np.nan]),
        Series([1.0, 1.5, 3.2], index=[1.5, 1.1, 3.3]),
        Series(["a", "b", "c"]),
        Series(["a", np.nan, "c"]),
        Series(["a", None, "c"]),
        Series([True, False, True]),
        Series(dtype=object),
        DataFrame({"x": ["a", "b", "c"], "y": [1, 2, 3]}),
        DataFrame(),
        DataFrame(np.full((10, 4), np.nan)),
        DataFrame(
            {
                "A": [0.0, 1.0, 2.0, 3.0, 4.0],
                "B": [0.0, 1.0, 0.0, 1.0, 0.0],
                "C": Index(["foo1", "foo2", "foo3", "foo4", "foo5"], dtype=object),
                "D": pd.date_range("20130101", periods=5),
            }
        ),
        DataFrame(range(5), index=pd.date_range("2020-01-01", periods=5)),
        Series(range(5), index=pd.date_range("2020-01-01", periods=5)),
        Series(period_range("2020-01-01", periods=10, freq="D")),
        Series(pd.date_range("20130101", periods=3, tz="US/Eastern")),
    ],
)
def test_hash_pandas_object(obj, index):
    a = hash_pandas_object(obj, index=index)
    b = hash_pandas_object(obj, index=index)
    tm.assert_series_equal(a, b)


@pytest.mark.parametrize(
    "obj",
    [
        Series([1, 2, 3]),
        Series([1.0, 1.5, 3.2]),
        Series([1.0, 1.5, np.nan]),
        Series([1.0, 1.5, 3.2], index=[1.5, 1.1, 3.3]),
        Series(["a", "b", "c"]),
        Series(["a", np.nan, "c"]),
        Series(["a", None, "c"]),
        Series([True, False, True]),
        DataFrame({"x": ["a", "b", "c"], "y": [1, 2, 3]}),
        DataFrame(np.full((10, 4), np.nan)),
        DataFrame(
            {
                "A": [0.0, 1.0, 2.0, 3.0, 4.0],
                "B": [0.0, 1.0, 0.0, 1.0, 0.0],
                "C": Index(["foo1", "foo2", "foo3", "foo4", "foo5"], dtype=object),
                "D": pd.date_range("20130101", periods=5),
            }
        ),
        DataFrame(range(5), index=pd.date_range("2020-01-01", periods=5)),
        Series(range(5), index=pd.date_range("2020-01-01", periods=5)),
        Series(period_range("2020-01-01", periods=10, freq="D")),
        Series(pd.date_range("20130101", periods=3, tz="US/Eastern")),
    ],
)
def test_hash_pandas_object_diff_index_non_empty(obj):
    a = hash_pandas_object(obj, index=True)
    b = hash_pandas_object(obj, index=False)
    assert not (a == b).all()


@pytest.mark.parametrize(
    "obj",
    [
        Index([1, 2, 3]),
        Index([True, False, True]),
        timedelta_range("1 day", periods=2),
        period_range("2020-01-01", freq="D", periods=2),
        MultiIndex.from_product(
            [range(5), ["foo", "bar", "baz"], pd.date_range("20130101", periods=2)]
        ),
        MultiIndex.from_product([pd.CategoricalIndex(list("aabc")), range(3)]),
    ],
)
def test_hash_pandas_index(obj, index):
    a = hash_pandas_object(obj, index=index)
    b = hash_pandas_object(obj, index=index)
    tm.assert_series_equal(a, b)


def test_hash_pandas_series(series, index):
    a = hash_pandas_object(series, index=index)
    b = hash_pandas_object(series, index=index)
    tm.assert_series_equal(a, b)


def test_hash_pandas_series_diff_index(series):
    a = hash_pandas_object(series, index=True)
    b = hash_pandas_object(series, index=False)
    assert not (a == b).all()


@pytest.mark.parametrize(
    "obj", [Series([], dtype="float64"), Series([], dtype="object"), Index([])]
)
def test_hash_pandas_empty_object(obj, index):
    # These are by-definition the same with
    # or without the index as the data is empty.
    a = hash_pandas_object(obj, index=index)
    b = hash_pandas_object(obj, index=index)
    tm.assert_series_equal(a, b)


@pytest.mark.parametrize(
    "s1",
    [
        Series(["a", "b", "c", "d"]),
        Series([1000, 2000, 3000, 4000]),
        Series(pd.date_range(0, periods=4)),
    ],
)
@pytest.mark.parametrize("categorize", [True, False])
def test_categorical_consistency(s1, categorize):
    # see gh-15143
    #
    # Check that categoricals hash consistent with their values,
    # not codes. This should work for categoricals of any dtype.
    s2 = s1.astype("category").cat.set_categories(s1)
    s3 = s2.cat.set_categories(list(reversed(s1)))

    # These should all hash identically.
    h1 = hash_pandas_object(s1, categorize=categorize)
    h2 = hash_pandas_object(s2, categorize=categorize)
    h3 = hash_pandas_object(s3, categorize=categorize)

    tm.assert_series_equal(h1, h2)
    tm.assert_series_equal(h1, h3)


def test_categorical_with_nan_consistency():
    c = pd.Categorical.from_codes(
        [-1, 0, 1, 2, 3, 4], categories=pd.date_range("2012-01-01", periods=5, name="B")
    )
    expected = hash_array(c, categorize=False)

    c = pd.Categorical.from_codes([-1, 0], categories=[pd.Timestamp("2012-01-01")])
    result = hash_array(c, categorize=False)

    assert result[0] in expected
    assert result[1] in expected


def test_pandas_errors():
    msg = "Unexpected type for hashing"
    with pytest.raises(TypeError, match=msg):
        hash_pandas_object(pd.Timestamp("20130101"))


def test_hash_keys():
    # Using different hash keys, should have
    # different hashes for the same data.
    #
    # This only matters for object dtypes.
    obj = Series(list("abc"))

    a = hash_pandas_object(obj, hash_key="9876543210123456")
    b = hash_pandas_object(obj, hash_key="9876543210123465")

    assert (a != b).all()


def test_df_hash_keys():
    # DataFrame version of the test_hash_keys.
    # https://github.com/pandas-dev/pandas/issues/41404
    obj = DataFrame({"x": np.arange(3), "y": list("abc")})

    a = hash_pandas_object(obj, hash_key="9876543210123456")
    b = hash_pandas_object(obj, hash_key="9876543210123465")

    assert (a != b).all()


def test_df_encoding():
    # Check that DataFrame recognizes optional encoding.
    # https://github.com/pandas-dev/pandas/issues/41404
    # https://github.com/pandas-dev/pandas/pull/42049
    obj = DataFrame({"x": np.arange(3), "y": list("a+c")})

    a = hash_pandas_object(obj, encoding="utf8")
    b = hash_pandas_object(obj, encoding="utf7")

    # Note that the "+" is encoded as "+-" in utf-7.
    assert a[0] == b[0]
    assert a[1] != b[1]
    assert a[2] == b[2]


def test_invalid_key():
    # This only matters for object dtypes.
    msg = "key should be a 16-byte string encoded"

    with pytest.raises(ValueError, match=msg):
        hash_pandas_object(Series(list("abc")), hash_key="foo")


def test_already_encoded(index):
    # If already encoded, then ok.
    obj = Series(list("abc")).str.encode("utf8")
    a = hash_pandas_object(obj, index=index)
    b = hash_pandas_object(obj, index=index)
    tm.assert_series_equal(a, b)


def test_alternate_encoding(index):
    obj = Series(list("abc"))
    a = hash_pandas_object(obj, index=index)
    b = hash_pandas_object(obj, index=index)
    tm.assert_series_equal(a, b)


@pytest.mark.parametrize("l_exp", range(8))
@pytest.mark.parametrize("l_add", [0, 1])
def test_same_len_hash_collisions(l_exp, l_add):
    length = 2 ** (l_exp + 8) + l_add
    idx = np.array([str(i) for i in range(length)], dtype=object)

    result = hash_array(idx, "utf8")
    assert not result[0] == result[1]


def test_hash_collisions():
    # Hash collisions are bad.
    #
    # https://github.com/pandas-dev/pandas/issues/14711#issuecomment-264885726
    hashes = [
        "Ingrid-9Z9fKIZmkO7i7Cn51Li34pJm44fgX6DYGBNj3VPlOH50m7HnBlPxfIwFMrcNJNMP6PSgLmwWnInciMWrCSAlLEvt7JkJl4IxiMrVbXSa8ZQoVaq5xoQPjltuJEfwdNlO6jo8qRRHvD8sBEBMQASrRa6TsdaPTPCBo3nwIBpE7YzzmyH0vMBhjQZLx1aCT7faSEx7PgFxQhHdKFWROcysamgy9iVj8DO2Fmwg1NNl93rIAqC3mdqfrCxrzfvIY8aJdzin2cHVzy3QUJxZgHvtUtOLxoqnUHsYbNTeq0xcLXpTZEZCxD4PGubIuCNf32c33M7HFsnjWSEjE2yVdWKhmSVodyF8hFYVmhYnMCztQnJrt3O8ZvVRXd5IKwlLexiSp4h888w7SzAIcKgc3g5XQJf6MlSMftDXm9lIsE1mJNiJEv6uY6pgvC3fUPhatlR5JPpVAHNSbSEE73MBzJrhCAbOLXQumyOXigZuPoME7QgJcBalliQol7YZ9",
        "Tim-b9MddTxOWW2AT1Py6vtVbZwGAmYCjbp89p8mxsiFoVX4FyDOF3wFiAkyQTUgwg9sVqVYOZo09Dh1AzhFHbgij52ylF0SEwgzjzHH8TGY8Lypart4p4onnDoDvVMBa0kdthVGKl6K0BDVGzyOXPXKpmnMF1H6rJzqHJ0HywfwS4XYpVwlAkoeNsiicHkJUFdUAhG229INzvIAiJuAHeJDUoyO4DCBqtoZ5TDend6TK7Y914yHlfH3g1WZu5LksKv68VQHJriWFYusW5e6ZZ6dKaMjTwEGuRgdT66iU5nqWTHRH8WSzpXoCFwGcTOwyuqPSe0fTe21DVtJn1FKj9F9nEnR9xOvJUO7E0piCIF4Ad9yAIDY4DBimpsTfKXCu1vdHpKYerzbndfuFe5AhfMduLYZJi5iAw8qKSwR5h86ttXV0Mc0QmXz8dsRvDgxjXSmupPxBggdlqUlC828hXiTPD7am0yETBV0F3bEtvPiNJfremszcV8NcqAoARMe",
    ]

    # These should be different.
    result1 = hash_array(np.asarray(hashes[0:1], dtype=object), "utf8")
    expected1 = np.array([14963968704024874985], dtype=np.uint64)
    tm.assert_numpy_array_equal(result1, expected1)

    result2 = hash_array(np.asarray(hashes[1:2], dtype=object), "utf8")
    expected2 = np.array([16428432627716348016], dtype=np.uint64)
    tm.assert_numpy_array_equal(result2, expected2)

    result = hash_array(np.asarray(hashes, dtype=object), "utf8")
    tm.assert_numpy_array_equal(result, np.concatenate([expected1, expected2], axis=0))


@pytest.mark.parametrize(
    "data, result_data",
    [
        [[tuple("1"), tuple("2")], [10345501319357378243, 8331063931016360761]],
        [[(1,), (2,)], [9408946347443669104, 3278256261030523334]],
    ],
)
def test_hash_with_tuple(data, result_data):
    # GH#28969 array containing a tuple raises on call to arr.astype(str)
    #  apparently a numpy bug github.com/numpy/numpy/issues/9441

    df = DataFrame({"data": data})
    result = hash_pandas_object(df)
    expected = Series(result_data, dtype=np.uint64)
    tm.assert_series_equal(result, expected)


def test_hashable_tuple_args():
    # require that the elements of such tuples are themselves hashable

    df3 = DataFrame(
        {
            "data": [
                (
                    1,
                    [],
                ),
                (
                    2,
                    {},
                ),
            ]
        }
    )
    with pytest.raises(TypeError, match="unhashable type: 'list'"):
        hash_pandas_object(df3)


def test_hash_object_none_key():
    # https://github.com/pandas-dev/pandas/issues/30887
    result = pd.util.hash_pandas_object(Series(["a", "b"]), hash_key=None)
    expected = Series([4578374827886788867, 17338122309987883691], dtype="uint64")
    tm.assert_series_equal(result, expected)