File size: 28,039 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 |
import math
import pytest
import numpy as np
from scipy.conftest import array_api_compatible
import scipy._lib._elementwise_iterative_method as eim
from scipy._lib._array_api_no_0d import xp_assert_close, xp_assert_equal, xp_assert_less
from scipy._lib._array_api import is_numpy, is_torch, array_namespace
from scipy import stats, optimize, special
from scipy.differentiate import derivative, jacobian, hessian
from scipy.differentiate._differentiate import _EERRORINCREASE
pytestmark = [array_api_compatible, pytest.mark.usefixtures("skip_xp_backends")]
array_api_strict_skip_reason = 'Array API does not support fancy indexing assignment.'
jax_skip_reason = 'JAX arrays do not support item assignment.'
@pytest.mark.skip_xp_backends('array_api_strict', reason=array_api_strict_skip_reason)
@pytest.mark.skip_xp_backends('jax.numpy',reason=jax_skip_reason)
class TestDerivative:
def f(self, x):
return special.ndtr(x)
@pytest.mark.parametrize('x', [0.6, np.linspace(-0.05, 1.05, 10)])
def test_basic(self, x, xp):
# Invert distribution CDF and compare against distribution `ppf`
default_dtype = xp.asarray(1.).dtype
res = derivative(self.f, xp.asarray(x, dtype=default_dtype))
ref = xp.asarray(stats.norm().pdf(x), dtype=default_dtype)
xp_assert_close(res.df, ref)
# This would be nice, but doesn't always work out. `error` is an
# estimate, not a bound.
if not is_torch(xp):
xp_assert_less(xp.abs(res.df - ref), res.error)
@pytest.mark.skip_xp_backends(np_only=True)
@pytest.mark.parametrize('case', stats._distr_params.distcont)
def test_accuracy(self, case):
distname, params = case
dist = getattr(stats, distname)(*params)
x = dist.median() + 0.1
res = derivative(dist.cdf, x)
ref = dist.pdf(x)
xp_assert_close(res.df, ref, atol=1e-10)
@pytest.mark.parametrize('order', [1, 6])
@pytest.mark.parametrize('shape', [tuple(), (12,), (3, 4), (3, 2, 2)])
def test_vectorization(self, order, shape, xp):
# Test for correct functionality, output shapes, and dtypes for various
# input shapes.
x = np.linspace(-0.05, 1.05, 12).reshape(shape) if shape else 0.6
n = np.size(x)
state = {}
@np.vectorize
def _derivative_single(x):
return derivative(self.f, x, order=order)
def f(x, *args, **kwargs):
state['nit'] += 1
state['feval'] += 1 if (x.size == n or x.ndim <=1) else x.shape[-1]
return self.f(x, *args, **kwargs)
state['nit'] = -1
state['feval'] = 0
res = derivative(f, xp.asarray(x, dtype=xp.float64), order=order)
refs = _derivative_single(x).ravel()
ref_x = [ref.x for ref in refs]
xp_assert_close(xp.reshape(res.x, (-1,)), xp.asarray(ref_x))
ref_df = [ref.df for ref in refs]
xp_assert_close(xp.reshape(res.df, (-1,)), xp.asarray(ref_df))
ref_error = [ref.error for ref in refs]
xp_assert_close(xp.reshape(res.error, (-1,)), xp.asarray(ref_error),
atol=1e-12)
ref_success = [bool(ref.success) for ref in refs]
xp_assert_equal(xp.reshape(res.success, (-1,)), xp.asarray(ref_success))
ref_flag = [np.int32(ref.status) for ref in refs]
xp_assert_equal(xp.reshape(res.status, (-1,)), xp.asarray(ref_flag))
ref_nfev = [np.int32(ref.nfev) for ref in refs]
xp_assert_equal(xp.reshape(res.nfev, (-1,)), xp.asarray(ref_nfev))
if is_numpy(xp): # can't expect other backends to be exactly the same
assert xp.max(res.nfev) == state['feval']
ref_nit = [np.int32(ref.nit) for ref in refs]
xp_assert_equal(xp.reshape(res.nit, (-1,)), xp.asarray(ref_nit))
if is_numpy(xp): # can't expect other backends to be exactly the same
assert xp.max(res.nit) == state['nit']
def test_flags(self, xp):
# Test cases that should produce different status flags; show that all
# can be produced simultaneously.
rng = np.random.default_rng(5651219684984213)
def f(xs, js):
f.nit += 1
funcs = [lambda x: x - 2.5, # converges
lambda x: xp.exp(x)*rng.random(), # error increases
lambda x: xp.exp(x), # reaches maxiter due to order=2
lambda x: xp.full_like(x, xp.nan)] # stops due to NaN
res = [funcs[int(j)](x) for x, j in zip(xs, xp.reshape(js, (-1,)))]
return xp.stack(res)
f.nit = 0
args = (xp.arange(4, dtype=xp.int64),)
res = derivative(f, xp.ones(4, dtype=xp.float64),
tolerances=dict(rtol=1e-14),
order=2, args=args)
ref_flags = xp.asarray([eim._ECONVERGED,
_EERRORINCREASE,
eim._ECONVERR,
eim._EVALUEERR], dtype=xp.int32)
xp_assert_equal(res.status, ref_flags)
def test_flags_preserve_shape(self, xp):
# Same test as above but using `preserve_shape` option to simplify.
rng = np.random.default_rng(5651219684984213)
def f(x):
out = [x - 2.5, # converges
xp.exp(x)*rng.random(), # error increases
xp.exp(x), # reaches maxiter due to order=2
xp.full_like(x, xp.nan)] # stops due to NaN
return xp.stack(out)
res = derivative(f, xp.asarray(1, dtype=xp.float64),
tolerances=dict(rtol=1e-14),
order=2, preserve_shape=True)
ref_flags = xp.asarray([eim._ECONVERGED,
_EERRORINCREASE,
eim._ECONVERR,
eim._EVALUEERR], dtype=xp.int32)
xp_assert_equal(res.status, ref_flags)
def test_preserve_shape(self, xp):
# Test `preserve_shape` option
def f(x):
out = [x, xp.sin(3*x), x+xp.sin(10*x), xp.sin(20*x)*(x-1)**2]
return xp.stack(out)
x = xp.asarray(0.)
ref = xp.asarray([xp.asarray(1), 3*xp.cos(3*x), 1+10*xp.cos(10*x),
20*xp.cos(20*x)*(x-1)**2 + 2*xp.sin(20*x)*(x-1)])
res = derivative(f, x, preserve_shape=True)
xp_assert_close(res.df, ref)
def test_convergence(self, xp):
# Test that the convergence tolerances behave as expected
x = xp.asarray(1., dtype=xp.float64)
f = special.ndtr
ref = float(stats.norm.pdf(1.))
tolerances0 = dict(atol=0, rtol=0)
tolerances = tolerances0.copy()
tolerances['atol'] = 1e-3
res1 = derivative(f, x, tolerances=tolerances, order=4)
assert abs(res1.df - ref) < 1e-3
tolerances['atol'] = 1e-6
res2 = derivative(f, x, tolerances=tolerances, order=4)
assert abs(res2.df - ref) < 1e-6
assert abs(res2.df - ref) < abs(res1.df - ref)
tolerances = tolerances0.copy()
tolerances['rtol'] = 1e-3
res1 = derivative(f, x, tolerances=tolerances, order=4)
assert abs(res1.df - ref) < 1e-3 * ref
tolerances['rtol'] = 1e-6
res2 = derivative(f, x, tolerances=tolerances, order=4)
assert abs(res2.df - ref) < 1e-6 * ref
assert abs(res2.df - ref) < abs(res1.df - ref)
def test_step_parameters(self, xp):
# Test that step factors have the expected effect on accuracy
x = xp.asarray(1., dtype=xp.float64)
f = special.ndtr
ref = float(stats.norm.pdf(1.))
res1 = derivative(f, x, initial_step=0.5, maxiter=1)
res2 = derivative(f, x, initial_step=0.05, maxiter=1)
assert abs(res2.df - ref) < abs(res1.df - ref)
res1 = derivative(f, x, step_factor=2, maxiter=1)
res2 = derivative(f, x, step_factor=20, maxiter=1)
assert abs(res2.df - ref) < abs(res1.df - ref)
# `step_factor` can be less than 1: `initial_step` is the minimum step
kwargs = dict(order=4, maxiter=1, step_direction=0)
res = derivative(f, x, initial_step=0.5, step_factor=0.5, **kwargs)
ref = derivative(f, x, initial_step=1, step_factor=2, **kwargs)
xp_assert_close(res.df, ref.df, rtol=5e-15)
# This is a similar test for one-sided difference
kwargs = dict(order=2, maxiter=1, step_direction=1)
res = derivative(f, x, initial_step=1, step_factor=2, **kwargs)
ref = derivative(f, x, initial_step=1/np.sqrt(2), step_factor=0.5, **kwargs)
xp_assert_close(res.df, ref.df, rtol=5e-15)
kwargs['step_direction'] = -1
res = derivative(f, x, initial_step=1, step_factor=2, **kwargs)
ref = derivative(f, x, initial_step=1/np.sqrt(2), step_factor=0.5, **kwargs)
xp_assert_close(res.df, ref.df, rtol=5e-15)
def test_step_direction(self, xp):
# test that `step_direction` works as expected
def f(x):
y = xp.exp(x)
y[(x < 0) + (x > 2)] = xp.nan
return y
x = xp.linspace(0, 2, 10)
step_direction = xp.zeros_like(x)
step_direction[x < 0.6], step_direction[x > 1.4] = 1, -1
res = derivative(f, x, step_direction=step_direction)
xp_assert_close(res.df, xp.exp(x))
assert xp.all(res.success)
def test_vectorized_step_direction_args(self, xp):
# test that `step_direction` and `args` are vectorized properly
def f(x, p):
return x ** p
def df(x, p):
return p * x ** (p - 1)
x = xp.reshape(xp.asarray([1, 2, 3, 4]), (-1, 1, 1))
hdir = xp.reshape(xp.asarray([-1, 0, 1]), (1, -1, 1))
p = xp.reshape(xp.asarray([2, 3]), (1, 1, -1))
res = derivative(f, x, step_direction=hdir, args=(p,))
ref = xp.broadcast_to(df(x, p), res.df.shape)
ref = xp.asarray(ref, dtype=xp.asarray(1.).dtype)
xp_assert_close(res.df, ref)
def test_initial_step(self, xp):
# Test that `initial_step` works as expected and is vectorized
def f(x):
return xp.exp(x)
x = xp.asarray(0., dtype=xp.float64)
step_direction = xp.asarray([-1, 0, 1])
h0 = xp.reshape(xp.logspace(-3, 0, 10), (-1, 1))
res = derivative(f, x, initial_step=h0, order=2, maxiter=1,
step_direction=step_direction)
err = xp.abs(res.df - f(x))
# error should be smaller for smaller step sizes
assert xp.all(err[:-1, ...] < err[1:, ...])
# results of vectorized call should match results with
# initial_step taken one at a time
for i in range(h0.shape[0]):
ref = derivative(f, x, initial_step=h0[i, 0], order=2, maxiter=1,
step_direction=step_direction)
xp_assert_close(res.df[i, :], ref.df, rtol=1e-14)
def test_maxiter_callback(self, xp):
# Test behavior of `maxiter` parameter and `callback` interface
x = xp.asarray(0.612814, dtype=xp.float64)
maxiter = 3
def f(x):
res = special.ndtr(x)
return res
default_order = 8
res = derivative(f, x, maxiter=maxiter, tolerances=dict(rtol=1e-15))
assert not xp.any(res.success)
assert xp.all(res.nfev == default_order + 1 + (maxiter - 1)*2)
assert xp.all(res.nit == maxiter)
def callback(res):
callback.iter += 1
callback.res = res
assert hasattr(res, 'x')
assert float(res.df) not in callback.dfs
callback.dfs.add(float(res.df))
assert res.status == eim._EINPROGRESS
if callback.iter == maxiter:
raise StopIteration
callback.iter = -1 # callback called once before first iteration
callback.res = None
callback.dfs = set()
res2 = derivative(f, x, callback=callback, tolerances=dict(rtol=1e-15))
# terminating with callback is identical to terminating due to maxiter
# (except for `status`)
for key in res.keys():
if key == 'status':
assert res[key] == eim._ECONVERR
assert res2[key] == eim._ECALLBACK
else:
assert res2[key] == callback.res[key] == res[key]
@pytest.mark.parametrize("hdir", (-1, 0, 1))
@pytest.mark.parametrize("x", (0.65, [0.65, 0.7]))
@pytest.mark.parametrize("dtype", ('float16', 'float32', 'float64'))
def test_dtype(self, hdir, x, dtype, xp):
if dtype == 'float16' and not is_numpy(xp):
pytest.skip('float16 not tested for alternative backends')
# Test that dtypes are preserved
dtype = getattr(xp, dtype)
x = xp.asarray(x, dtype=dtype)
def f(x):
assert x.dtype == dtype
return xp.exp(x)
def callback(res):
assert res.x.dtype == dtype
assert res.df.dtype == dtype
assert res.error.dtype == dtype
res = derivative(f, x, order=4, step_direction=hdir, callback=callback)
assert res.x.dtype == dtype
assert res.df.dtype == dtype
assert res.error.dtype == dtype
eps = xp.finfo(dtype).eps
# not sure why torch is less accurate here; might be worth investigating
rtol = eps**0.5 * 50 if is_torch(xp) else eps**0.5
xp_assert_close(res.df, xp.exp(res.x), rtol=rtol)
def test_input_validation(self, xp):
# Test input validation for appropriate error messages
one = xp.asarray(1)
message = '`f` must be callable.'
with pytest.raises(ValueError, match=message):
derivative(None, one)
message = 'Abscissae and function output must be real numbers.'
with pytest.raises(ValueError, match=message):
derivative(lambda x: x, xp.asarray(-4+1j))
message = "When `preserve_shape=False`, the shape of the array..."
with pytest.raises(ValueError, match=message):
derivative(lambda x: [1, 2, 3], xp.asarray([-2, -3]))
message = 'Tolerances and step parameters must be non-negative...'
with pytest.raises(ValueError, match=message):
derivative(lambda x: x, one, tolerances=dict(atol=-1))
with pytest.raises(ValueError, match=message):
derivative(lambda x: x, one, tolerances=dict(rtol='ekki'))
with pytest.raises(ValueError, match=message):
derivative(lambda x: x, one, step_factor=object())
message = '`maxiter` must be a positive integer.'
with pytest.raises(ValueError, match=message):
derivative(lambda x: x, one, maxiter=1.5)
with pytest.raises(ValueError, match=message):
derivative(lambda x: x, one, maxiter=0)
message = '`order` must be a positive integer'
with pytest.raises(ValueError, match=message):
derivative(lambda x: x, one, order=1.5)
with pytest.raises(ValueError, match=message):
derivative(lambda x: x, one, order=0)
message = '`preserve_shape` must be True or False.'
with pytest.raises(ValueError, match=message):
derivative(lambda x: x, one, preserve_shape='herring')
message = '`callback` must be callable.'
with pytest.raises(ValueError, match=message):
derivative(lambda x: x, one, callback='shrubbery')
def test_special_cases(self, xp):
# Test edge cases and other special cases
# Test that integers are not passed to `f`
# (otherwise this would overflow)
def f(x):
xp_test = array_namespace(x) # needs `isdtype`
assert xp_test.isdtype(x.dtype, 'real floating')
return x ** 99 - 1
if not is_torch(xp): # torch defaults to float32
res = derivative(f, xp.asarray(7), tolerances=dict(rtol=1e-10))
assert res.success
xp_assert_close(res.df, xp.asarray(99*7.**98))
# Test invalid step size and direction
res = derivative(xp.exp, xp.asarray(1), step_direction=xp.nan)
xp_assert_equal(res.df, xp.asarray(xp.nan))
xp_assert_equal(res.status, xp.asarray(-3, dtype=xp.int32))
res = derivative(xp.exp, xp.asarray(1), initial_step=0)
xp_assert_equal(res.df, xp.asarray(xp.nan))
xp_assert_equal(res.status, xp.asarray(-3, dtype=xp.int32))
# Test that if success is achieved in the correct number
# of iterations if function is a polynomial. Ideally, all polynomials
# of order 0-2 would get exact result with 0 refinement iterations,
# all polynomials of order 3-4 would be differentiated exactly after
# 1 iteration, etc. However, it seems that `derivative` needs an
# extra iteration to detect convergence based on the error estimate.
for n in range(6):
x = xp.asarray(1.5, dtype=xp.float64)
def f(x):
return 2*x**n
ref = 2*n*x**(n-1)
res = derivative(f, x, maxiter=1, order=max(1, n))
xp_assert_close(res.df, ref, rtol=1e-15)
xp_assert_equal(res.error, xp.asarray(xp.nan, dtype=xp.float64))
res = derivative(f, x, order=max(1, n))
assert res.success
assert res.nit == 2
xp_assert_close(res.df, ref, rtol=1e-15)
# Test scalar `args` (not in tuple)
def f(x, c):
return c*x - 1
res = derivative(f, xp.asarray(2), args=xp.asarray(3))
xp_assert_close(res.df, xp.asarray(3.))
# no need to run a test on multiple backends if it's xfailed
@pytest.mark.skip_xp_backends(np_only=True)
@pytest.mark.xfail
@pytest.mark.parametrize("case", ( # function, evaluation point
(lambda x: (x - 1) ** 3, 1),
(lambda x: np.where(x > 1, (x - 1) ** 5, (x - 1) ** 3), 1)
))
def test_saddle_gh18811(self, case):
# With default settings, `derivative` will not always converge when
# the true derivative is exactly zero. This tests that specifying a
# (tight) `atol` alleviates the problem. See discussion in gh-18811.
atol = 1e-16
res = derivative(*case, step_direction=[-1, 0, 1], atol=atol)
assert np.all(res.success)
xp_assert_close(res.df, 0, atol=atol)
class JacobianHessianTest:
def test_iv(self, xp):
jh_func = self.jh_func.__func__
# Test input validation
message = "Argument `x` must be at least 1-D."
with pytest.raises(ValueError, match=message):
jh_func(xp.sin, 1, tolerances=dict(atol=-1))
# Confirm that other parameters are being passed to `derivative`,
# which raises an appropriate error message.
x = xp.ones(3)
func = optimize.rosen
message = 'Tolerances and step parameters must be non-negative scalars.'
with pytest.raises(ValueError, match=message):
jh_func(func, x, tolerances=dict(atol=-1))
with pytest.raises(ValueError, match=message):
jh_func(func, x, tolerances=dict(rtol=-1))
with pytest.raises(ValueError, match=message):
jh_func(func, x, step_factor=-1)
message = '`order` must be a positive integer.'
with pytest.raises(ValueError, match=message):
jh_func(func, x, order=-1)
message = '`maxiter` must be a positive integer.'
with pytest.raises(ValueError, match=message):
jh_func(func, x, maxiter=-1)
@pytest.mark.skip_xp_backends('array_api_strict', reason=array_api_strict_skip_reason)
@pytest.mark.skip_xp_backends('jax.numpy',reason=jax_skip_reason)
class TestJacobian(JacobianHessianTest):
jh_func = jacobian
# Example functions and Jacobians from Wikipedia:
# https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant#Examples
def f1(z, xp):
x, y = z
return xp.stack([x ** 2 * y, 5 * x + xp.sin(y)])
def df1(z):
x, y = z
return [[2 * x * y, x ** 2], [np.full_like(x, 5), np.cos(y)]]
f1.mn = 2, 2 # type: ignore[attr-defined]
f1.ref = df1 # type: ignore[attr-defined]
def f2(z, xp):
r, phi = z
return xp.stack([r * xp.cos(phi), r * xp.sin(phi)])
def df2(z):
r, phi = z
return [[np.cos(phi), -r * np.sin(phi)],
[np.sin(phi), r * np.cos(phi)]]
f2.mn = 2, 2 # type: ignore[attr-defined]
f2.ref = df2 # type: ignore[attr-defined]
def f3(z, xp):
r, phi, th = z
return xp.stack([r * xp.sin(phi) * xp.cos(th), r * xp.sin(phi) * xp.sin(th),
r * xp.cos(phi)])
def df3(z):
r, phi, th = z
return [[np.sin(phi) * np.cos(th), r * np.cos(phi) * np.cos(th),
-r * np.sin(phi) * np.sin(th)],
[np.sin(phi) * np.sin(th), r * np.cos(phi) * np.sin(th),
r * np.sin(phi) * np.cos(th)],
[np.cos(phi), -r * np.sin(phi), np.zeros_like(r)]]
f3.mn = 3, 3 # type: ignore[attr-defined]
f3.ref = df3 # type: ignore[attr-defined]
def f4(x, xp):
x1, x2, x3 = x
return xp.stack([x1, 5 * x3, 4 * x2 ** 2 - 2 * x3, x3 * xp.sin(x1)])
def df4(x):
x1, x2, x3 = x
one = np.ones_like(x1)
return [[one, 0 * one, 0 * one],
[0 * one, 0 * one, 5 * one],
[0 * one, 8 * x2, -2 * one],
[x3 * np.cos(x1), 0 * one, np.sin(x1)]]
f4.mn = 3, 4 # type: ignore[attr-defined]
f4.ref = df4 # type: ignore[attr-defined]
def f5(x, xp):
x1, x2, x3 = x
return xp.stack([5 * x2, 4 * x1 ** 2 - 2 * xp.sin(x2 * x3), x2 * x3])
def df5(x):
x1, x2, x3 = x
one = np.ones_like(x1)
return [[0 * one, 5 * one, 0 * one],
[8 * x1, -2 * x3 * np.cos(x2 * x3), -2 * x2 * np.cos(x2 * x3)],
[0 * one, x3, x2]]
f5.mn = 3, 3 # type: ignore[attr-defined]
f5.ref = df5 # type: ignore[attr-defined]
def rosen(x, _): return optimize.rosen(x)
rosen.mn = 5, 1 # type: ignore[attr-defined]
rosen.ref = optimize.rosen_der # type: ignore[attr-defined]
@pytest.mark.parametrize('dtype', ('float32', 'float64'))
@pytest.mark.parametrize('size', [(), (6,), (2, 3)])
@pytest.mark.parametrize('func', [f1, f2, f3, f4, f5, rosen])
def test_examples(self, dtype, size, func, xp):
atol = 1e-10 if dtype == 'float64' else 1.99e-3
dtype = getattr(xp, dtype)
rng = np.random.default_rng(458912319542)
m, n = func.mn
x = rng.random(size=(m,) + size)
res = jacobian(lambda x: func(x , xp), xp.asarray(x, dtype=dtype))
# convert list of arrays to single array before converting to xp array
ref = xp.asarray(np.asarray(func.ref(x)), dtype=dtype)
xp_assert_close(res.df, ref, atol=atol)
def test_attrs(self, xp):
# Test attributes of result object
z = xp.asarray([0.5, 0.25])
# case in which some elements of the Jacobian are harder
# to calculate than others
def df1(z):
x, y = z
return xp.stack([xp.cos(0.5*x) * xp.cos(y), xp.sin(2*x) * y**2])
def df1_0xy(x, y):
return xp.cos(0.5*x) * xp.cos(y)
def df1_1xy(x, y):
return xp.sin(2*x) * y**2
res = jacobian(df1, z, initial_step=10)
if is_numpy(xp):
assert len(np.unique(res.nit)) == 4
assert len(np.unique(res.nfev)) == 4
res00 = jacobian(lambda x: df1_0xy(x, z[1]), z[0:1], initial_step=10)
res01 = jacobian(lambda y: df1_0xy(z[0], y), z[1:2], initial_step=10)
res10 = jacobian(lambda x: df1_1xy(x, z[1]), z[0:1], initial_step=10)
res11 = jacobian(lambda y: df1_1xy(z[0], y), z[1:2], initial_step=10)
ref = optimize.OptimizeResult()
for attr in ['success', 'status', 'df', 'nit', 'nfev']:
ref_attr = xp.asarray([[getattr(res00, attr), getattr(res01, attr)],
[getattr(res10, attr), getattr(res11, attr)]])
ref[attr] = xp.squeeze(ref_attr)
rtol = 1.5e-5 if res[attr].dtype == xp.float32 else 1.5e-14
xp_assert_close(res[attr], ref[attr], rtol=rtol)
def test_step_direction_size(self, xp):
# Check that `step_direction` and `initial_step` can be used to ensure that
# the usable domain of a function is respected.
rng = np.random.default_rng(23892589425245)
b = rng.random(3)
eps = 1e-7 # torch needs wiggle room?
def f(x):
x[0, x[0] < b[0]] = xp.nan
x[0, x[0] > b[0] + 0.25] = xp.nan
x[1, x[1] > b[1]] = xp.nan
x[1, x[1] < b[1] - 0.1-eps] = xp.nan
return TestJacobian.f5(x, xp)
dir = [1, -1, 0]
h0 = [0.25, 0.1, 0.5]
atol = {'atol': 1e-8}
res = jacobian(f, xp.asarray(b, dtype=xp.float64), initial_step=h0,
step_direction=dir, tolerances=atol)
ref = xp.asarray(TestJacobian.df5(b), dtype=xp.float64)
xp_assert_close(res.df, ref, atol=1e-8)
assert xp.all(xp.isfinite(ref))
@pytest.mark.skip_xp_backends('array_api_strict', reason=array_api_strict_skip_reason)
@pytest.mark.skip_xp_backends('jax.numpy',reason=jax_skip_reason)
class TestHessian(JacobianHessianTest):
jh_func = hessian
@pytest.mark.parametrize('shape', [(), (4,), (2, 4)])
def test_example(self, shape, xp):
rng = np.random.default_rng(458912319542)
m = 3
x = xp.asarray(rng.random((m,) + shape), dtype=xp.float64)
res = hessian(optimize.rosen, x)
if shape:
x = xp.reshape(x, (m, -1))
ref = xp.stack([optimize.rosen_hess(xi) for xi in x.T])
ref = xp.moveaxis(ref, 0, -1)
ref = xp.reshape(ref, (m, m,) + shape)
else:
ref = optimize.rosen_hess(x)
xp_assert_close(res.ddf, ref, atol=1e-8)
# # Removed symmetry enforcement; consider adding back in as a feature
# # check symmetry
# for key in ['ddf', 'error', 'nfev', 'success', 'status']:
# assert_equal(res[key], np.swapaxes(res[key], 0, 1))
def test_float32(self, xp):
rng = np.random.default_rng(458912319542)
x = xp.asarray(rng.random(3), dtype=xp.float32)
res = hessian(optimize.rosen, x)
ref = optimize.rosen_hess(x)
mask = (ref != 0)
xp_assert_close(res.ddf[mask], ref[mask])
atol = 1e-2 * xp.abs(xp.min(ref[mask]))
xp_assert_close(res.ddf[~mask], ref[~mask], atol=atol)
def test_nfev(self, xp):
z = xp.asarray([0.5, 0.25])
xp_test = array_namespace(z)
def f1(z):
x, y = xp_test.broadcast_arrays(*z)
f1.nfev = f1.nfev + (math.prod(x.shape[2:]) if x.ndim > 2 else 1)
return xp.sin(x) * y ** 3
f1.nfev = 0
res = hessian(f1, z, initial_step=10)
f1.nfev = 0
res00 = hessian(lambda x: f1([x[0], z[1]]), z[0:1], initial_step=10)
assert res.nfev[0, 0] == f1.nfev == res00.nfev[0, 0]
f1.nfev = 0
res11 = hessian(lambda y: f1([z[0], y[0]]), z[1:2], initial_step=10)
assert res.nfev[1, 1] == f1.nfev == res11.nfev[0, 0]
# Removed symmetry enforcement; consider adding back in as a feature
# assert_equal(res.nfev, res.nfev.T) # check symmetry
# assert np.unique(res.nfev).size == 3
@pytest.mark.thread_unsafe
@pytest.mark.skip_xp_backends(np_only=True,
reason='Python list input uses NumPy backend')
def test_small_rtol_warning(self, xp):
message = 'The specified `rtol=1e-15`, but...'
with pytest.warns(RuntimeWarning, match=message):
hessian(xp.sin, [1.], tolerances=dict(rtol=1e-15))
|