File size: 7,864 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
"""Fast Hankel transforms using the FFTLog algorithm.

The implementation closely follows the Fortran code of Hamilton (2000).

added: 14/11/2020 Nicolas Tessore <[email protected]>
"""

from ._basic import _dispatch
from scipy._lib.uarray import Dispatchable
from ._fftlog_backend import fhtoffset
import numpy as np

__all__ = ['fht', 'ifht', 'fhtoffset']


@_dispatch
def fht(a, dln, mu, offset=0.0, bias=0.0):
    r'''Compute the fast Hankel transform.

    Computes the discrete Hankel transform of a logarithmically spaced periodic
    sequence using the FFTLog algorithm [1]_, [2]_.

    Parameters
    ----------
    a : array_like (..., n)
        Real periodic input array, uniformly logarithmically spaced.  For
        multidimensional input, the transform is performed over the last axis.
    dln : float
        Uniform logarithmic spacing of the input array.
    mu : float
        Order of the Hankel transform, any positive or negative real number.
    offset : float, optional
        Offset of the uniform logarithmic spacing of the output array.
    bias : float, optional
        Exponent of power law bias, any positive or negative real number.

    Returns
    -------
    A : array_like (..., n)
        The transformed output array, which is real, periodic, uniformly
        logarithmically spaced, and of the same shape as the input array.

    See Also
    --------
    ifht : The inverse of `fht`.
    fhtoffset : Return an optimal offset for `fht`.

    Notes
    -----
    This function computes a discrete version of the Hankel transform

    .. math::

        A(k) = \int_{0}^{\infty} \! a(r) \, J_\mu(kr) \, k \, dr \;,

    where :math:`J_\mu` is the Bessel function of order :math:`\mu`.  The index
    :math:`\mu` may be any real number, positive or negative.  Note that the
    numerical Hankel transform uses an integrand of :math:`k \, dr`, while the
    mathematical Hankel transform is commonly defined using :math:`r \, dr`.

    The input array `a` is a periodic sequence of length :math:`n`, uniformly
    logarithmically spaced with spacing `dln`,

    .. math::

        a_j = a(r_j) \;, \quad
        r_j = r_c \exp[(j-j_c) \, \mathtt{dln}]

    centred about the point :math:`r_c`.  Note that the central index
    :math:`j_c = (n-1)/2` is half-integral if :math:`n` is even, so that
    :math:`r_c` falls between two input elements.  Similarly, the output
    array `A` is a periodic sequence of length :math:`n`, also uniformly
    logarithmically spaced with spacing `dln`

    .. math::

       A_j = A(k_j) \;, \quad
       k_j = k_c \exp[(j-j_c) \, \mathtt{dln}]

    centred about the point :math:`k_c`.

    The centre points :math:`r_c` and :math:`k_c` of the periodic intervals may
    be chosen arbitrarily, but it would be usual to choose the product
    :math:`k_c r_c = k_j r_{n-1-j} = k_{n-1-j} r_j` to be unity.  This can be
    changed using the `offset` parameter, which controls the logarithmic offset
    :math:`\log(k_c) = \mathtt{offset} - \log(r_c)` of the output array.
    Choosing an optimal value for `offset` may reduce ringing of the discrete
    Hankel transform.

    If the `bias` parameter is nonzero, this function computes a discrete
    version of the biased Hankel transform

    .. math::

        A(k) = \int_{0}^{\infty} \! a_q(r) \, (kr)^q \, J_\mu(kr) \, k \, dr

    where :math:`q` is the value of `bias`, and a power law bias
    :math:`a_q(r) = a(r) \, (kr)^{-q}` is applied to the input sequence.
    Biasing the transform can help approximate the continuous transform of
    :math:`a(r)` if there is a value :math:`q` such that :math:`a_q(r)` is
    close to a periodic sequence, in which case the resulting :math:`A(k)` will
    be close to the continuous transform.

    References
    ----------
    .. [1] Talman J. D., 1978, J. Comp. Phys., 29, 35
    .. [2] Hamilton A. J. S., 2000, MNRAS, 312, 257 (astro-ph/9905191)

    Examples
    --------

    This example is the adapted version of ``fftlogtest.f`` which is provided
    in [2]_. It evaluates the integral

    .. math::

        \int^\infty_0 r^{\mu+1} \exp(-r^2/2) J_\mu(kr) k dr
        = k^{\mu+1} \exp(-k^2/2) .

    >>> import numpy as np
    >>> from scipy import fft
    >>> import matplotlib.pyplot as plt

    Parameters for the transform.

    >>> mu = 0.0                     # Order mu of Bessel function
    >>> r = np.logspace(-7, 1, 128)  # Input evaluation points
    >>> dln = np.log(r[1]/r[0])      # Step size
    >>> offset = fft.fhtoffset(dln, initial=-6*np.log(10), mu=mu)
    >>> k = np.exp(offset)/r[::-1]   # Output evaluation points

    Define the analytical function.

    >>> def f(x, mu):
    ...     """Analytical function: x^(mu+1) exp(-x^2/2)."""
    ...     return x**(mu + 1)*np.exp(-x**2/2)

    Evaluate the function at ``r`` and compute the corresponding values at
    ``k`` using FFTLog.

    >>> a_r = f(r, mu)
    >>> fht = fft.fht(a_r, dln, mu=mu, offset=offset)

    For this example we can actually compute the analytical response (which in
    this case is the same as the input function) for comparison and compute the
    relative error.

    >>> a_k = f(k, mu)
    >>> rel_err = abs((fht-a_k)/a_k)

    Plot the result.

    >>> figargs = {'sharex': True, 'sharey': True, 'constrained_layout': True}
    >>> fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4), **figargs)
    >>> ax1.set_title(r'$r^{\mu+1}\ \exp(-r^2/2)$')
    >>> ax1.loglog(r, a_r, 'k', lw=2)
    >>> ax1.set_xlabel('r')
    >>> ax2.set_title(r'$k^{\mu+1} \exp(-k^2/2)$')
    >>> ax2.loglog(k, a_k, 'k', lw=2, label='Analytical')
    >>> ax2.loglog(k, fht, 'C3--', lw=2, label='FFTLog')
    >>> ax2.set_xlabel('k')
    >>> ax2.legend(loc=3, framealpha=1)
    >>> ax2.set_ylim([1e-10, 1e1])
    >>> ax2b = ax2.twinx()
    >>> ax2b.loglog(k, rel_err, 'C0', label='Rel. Error (-)')
    >>> ax2b.set_ylabel('Rel. Error (-)', color='C0')
    >>> ax2b.tick_params(axis='y', labelcolor='C0')
    >>> ax2b.legend(loc=4, framealpha=1)
    >>> ax2b.set_ylim([1e-9, 1e-3])
    >>> plt.show()

    '''
    return (Dispatchable(a, np.ndarray),)


@_dispatch
def ifht(A, dln, mu, offset=0.0, bias=0.0):
    r"""Compute the inverse fast Hankel transform.

    Computes the discrete inverse Hankel transform of a logarithmically spaced
    periodic sequence. This is the inverse operation to `fht`.

    Parameters
    ----------
    A : array_like (..., n)
        Real periodic input array, uniformly logarithmically spaced.  For
        multidimensional input, the transform is performed over the last axis.
    dln : float
        Uniform logarithmic spacing of the input array.
    mu : float
        Order of the Hankel transform, any positive or negative real number.
    offset : float, optional
        Offset of the uniform logarithmic spacing of the output array.
    bias : float, optional
        Exponent of power law bias, any positive or negative real number.

    Returns
    -------
    a : array_like (..., n)
        The transformed output array, which is real, periodic, uniformly
        logarithmically spaced, and of the same shape as the input array.

    See Also
    --------
    fht : Definition of the fast Hankel transform.
    fhtoffset : Return an optimal offset for `ifht`.

    Notes
    -----
    This function computes a discrete version of the Hankel transform

    .. math::

        a(r) = \int_{0}^{\infty} \! A(k) \, J_\mu(kr) \, r \, dk \;,

    where :math:`J_\mu` is the Bessel function of order :math:`\mu`.  The index
    :math:`\mu` may be any real number, positive or negative. Note that the
    numerical inverse Hankel transform uses an integrand of :math:`r \, dk`, while the
    mathematical inverse Hankel transform is commonly defined using :math:`k \, dk`.

    See `fht` for further details.
    """
    return (Dispatchable(A, np.ndarray),)