File size: 5,304 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import numpy as np
from warnings import warn
from ._basic import rfft, irfft
from ..special import loggamma, poch

from scipy._lib._array_api import array_namespace

__all__ = ['fht', 'ifht', 'fhtoffset']

# constants
LN_2 = np.log(2)


def fht(a, dln, mu, offset=0.0, bias=0.0):
    xp = array_namespace(a)
    a = xp.asarray(a)

    # size of transform
    n = a.shape[-1]

    # bias input array
    if bias != 0:
        # a_q(r) = a(r) (r/r_c)^{-q}
        j_c = (n-1)/2
        j = xp.arange(n, dtype=xp.float64)
        a = a * xp.exp(-bias*(j - j_c)*dln)

    # compute FHT coefficients
    u = xp.asarray(fhtcoeff(n, dln, mu, offset=offset, bias=bias))

    # transform
    A = _fhtq(a, u, xp=xp)

    # bias output array
    if bias != 0:
        # A(k) = A_q(k) (k/k_c)^{-q} (k_c r_c)^{-q}
        A *= xp.exp(-bias*((j - j_c)*dln + offset))

    return A


def ifht(A, dln, mu, offset=0.0, bias=0.0):
    xp = array_namespace(A)
    A = xp.asarray(A)

    # size of transform
    n = A.shape[-1]

    # bias input array
    if bias != 0:
        # A_q(k) = A(k) (k/k_c)^{q} (k_c r_c)^{q}
        j_c = (n-1)/2
        j = xp.arange(n, dtype=xp.float64)
        A = A * xp.exp(bias*((j - j_c)*dln + offset))

    # compute FHT coefficients
    u = xp.asarray(fhtcoeff(n, dln, mu, offset=offset, bias=bias, inverse=True))

    # transform
    a = _fhtq(A, u, inverse=True, xp=xp)

    # bias output array
    if bias != 0:
        # a(r) = a_q(r) (r/r_c)^{q}
        a /= xp.exp(-bias*(j - j_c)*dln)

    return a


def fhtcoeff(n, dln, mu, offset=0.0, bias=0.0, inverse=False):
    """Compute the coefficient array for a fast Hankel transform."""
    lnkr, q = offset, bias

    # Hankel transform coefficients
    # u_m = (kr)^{-i 2m pi/(n dlnr)} U_mu(q + i 2m pi/(n dlnr))
    # with U_mu(x) = 2^x Gamma((mu+1+x)/2)/Gamma((mu+1-x)/2)
    xp = (mu+1+q)/2
    xm = (mu+1-q)/2
    y = np.linspace(0, np.pi*(n//2)/(n*dln), n//2+1)
    u = np.empty(n//2+1, dtype=complex)
    v = np.empty(n//2+1, dtype=complex)
    u.imag[:] = y
    u.real[:] = xm
    loggamma(u, out=v)
    u.real[:] = xp
    loggamma(u, out=u)
    y *= 2*(LN_2 - lnkr)
    u.real -= v.real
    u.real += LN_2*q
    u.imag += v.imag
    u.imag += y
    np.exp(u, out=u)

    # fix last coefficient to be real
    if n % 2 == 0:
        u.imag[-1] = 0

    # deal with special cases
    if not np.isfinite(u[0]):
        # write u_0 = 2^q Gamma(xp)/Gamma(xm) = 2^q poch(xm, xp-xm)
        # poch() handles special cases for negative integers correctly
        u[0] = 2**q * poch(xm, xp-xm)
        # the coefficient may be inf or 0, meaning the transform or the
        # inverse transform, respectively, is singular

    # check for singular transform or singular inverse transform
    if np.isinf(u[0]) and not inverse:
        warn('singular transform; consider changing the bias', stacklevel=3)
        # fix coefficient to obtain (potentially correct) transform anyway
        u = np.copy(u)
        u[0] = 0
    elif u[0] == 0 and inverse:
        warn('singular inverse transform; consider changing the bias', stacklevel=3)
        # fix coefficient to obtain (potentially correct) inverse anyway
        u = np.copy(u)
        u[0] = np.inf

    return u


def fhtoffset(dln, mu, initial=0.0, bias=0.0):
    """Return optimal offset for a fast Hankel transform.

    Returns an offset close to `initial` that fulfils the low-ringing
    condition of [1]_ for the fast Hankel transform `fht` with logarithmic
    spacing `dln`, order `mu` and bias `bias`.

    Parameters
    ----------
    dln : float
        Uniform logarithmic spacing of the transform.
    mu : float
        Order of the Hankel transform, any positive or negative real number.
    initial : float, optional
        Initial value for the offset. Returns the closest value that fulfils
        the low-ringing condition.
    bias : float, optional
        Exponent of power law bias, any positive or negative real number.

    Returns
    -------
    offset : float
        Optimal offset of the uniform logarithmic spacing of the transform that
        fulfils a low-ringing condition.

    Examples
    --------
    >>> from scipy.fft import fhtoffset
    >>> dln = 0.1
    >>> mu = 2.0
    >>> initial = 0.5
    >>> bias = 0.0
    >>> offset = fhtoffset(dln, mu, initial, bias)
    >>> offset
    0.5454581477676637

    See Also
    --------
    fht : Definition of the fast Hankel transform.

    References
    ----------
    .. [1] Hamilton A. J. S., 2000, MNRAS, 312, 257 (astro-ph/9905191)

    """

    lnkr, q = initial, bias

    xp = (mu+1+q)/2
    xm = (mu+1-q)/2
    y = np.pi/(2*dln)
    zp = loggamma(xp + 1j*y)
    zm = loggamma(xm + 1j*y)
    arg = (LN_2 - lnkr)/dln + (zp.imag + zm.imag)/np.pi
    return lnkr + (arg - np.round(arg))*dln


def _fhtq(a, u, inverse=False, *, xp=None):
    """Compute the biased fast Hankel transform.

    This is the basic FFTLog routine.
    """
    if xp is None:
        xp = np

    # size of transform
    n = a.shape[-1]

    # biased fast Hankel transform via real FFT
    A = rfft(a, axis=-1)
    if not inverse:
        # forward transform
        A *= u
    else:
        # backward transform
        A /= xp.conj(u)
    A = irfft(A, n, axis=-1)
    A = xp.flip(A, axis=-1)

    return A