File size: 28,248 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
# mypy: disable-error-code="attr-defined"
import pytest
import numpy as np
from numpy.testing import assert_equal, assert_almost_equal, assert_allclose
from hypothesis import given
import hypothesis.strategies as st
import hypothesis.extra.numpy as hyp_num

from scipy.integrate import (romb, newton_cotes,
                             cumulative_trapezoid, trapezoid,
                             quad, simpson, fixed_quad,
                             qmc_quad, cumulative_simpson)
from scipy.integrate._quadrature import _cumulative_simpson_unequal_intervals

from scipy import stats, special, integrate
from scipy.conftest import array_api_compatible, skip_xp_invalid_arg
from scipy._lib._array_api_no_0d import xp_assert_close

skip_xp_backends = pytest.mark.skip_xp_backends


class TestFixedQuad:
    def test_scalar(self):
        n = 4
        expected = 1/(2*n)
        got, _ = fixed_quad(lambda x: x**(2*n - 1), 0, 1, n=n)
        # quadrature exact for this input
        assert_allclose(got, expected, rtol=1e-12)

    def test_vector(self):
        n = 4
        p = np.arange(1, 2*n)
        expected = 1/(p + 1)
        got, _ = fixed_quad(lambda x: x**p[:, None], 0, 1, n=n)
        assert_allclose(got, expected, rtol=1e-12)


class TestQuadrature:
    def quad(self, x, a, b, args):
        raise NotImplementedError

    def test_romb(self):
        assert_equal(romb(np.arange(17)), 128)

    def test_romb_gh_3731(self):
        # Check that romb makes maximal use of data points
        x = np.arange(2**4+1)
        y = np.cos(0.2*x)
        val = romb(y)
        val2, err = quad(lambda x: np.cos(0.2*x), x.min(), x.max())
        assert_allclose(val, val2, rtol=1e-8, atol=0)

    def test_newton_cotes(self):
        """Test the first few degrees, for evenly spaced points."""
        n = 1
        wts, errcoff = newton_cotes(n, 1)
        assert_equal(wts, n*np.array([0.5, 0.5]))
        assert_almost_equal(errcoff, -n**3/12.0)

        n = 2
        wts, errcoff = newton_cotes(n, 1)
        assert_almost_equal(wts, n*np.array([1.0, 4.0, 1.0])/6.0)
        assert_almost_equal(errcoff, -n**5/2880.0)

        n = 3
        wts, errcoff = newton_cotes(n, 1)
        assert_almost_equal(wts, n*np.array([1.0, 3.0, 3.0, 1.0])/8.0)
        assert_almost_equal(errcoff, -n**5/6480.0)

        n = 4
        wts, errcoff = newton_cotes(n, 1)
        assert_almost_equal(wts, n*np.array([7.0, 32.0, 12.0, 32.0, 7.0])/90.0)
        assert_almost_equal(errcoff, -n**7/1935360.0)

    def test_newton_cotes2(self):
        """Test newton_cotes with points that are not evenly spaced."""

        x = np.array([0.0, 1.5, 2.0])
        y = x**2
        wts, errcoff = newton_cotes(x)
        exact_integral = 8.0/3
        numeric_integral = np.dot(wts, y)
        assert_almost_equal(numeric_integral, exact_integral)

        x = np.array([0.0, 1.4, 2.1, 3.0])
        y = x**2
        wts, errcoff = newton_cotes(x)
        exact_integral = 9.0
        numeric_integral = np.dot(wts, y)
        assert_almost_equal(numeric_integral, exact_integral)

    def test_simpson(self):
        y = np.arange(17)
        assert_equal(simpson(y), 128)
        assert_equal(simpson(y, dx=0.5), 64)
        assert_equal(simpson(y, x=np.linspace(0, 4, 17)), 32)

        # integral should be exactly 21
        x = np.linspace(1, 4, 4)
        def f(x):
            return x**2

        assert_allclose(simpson(f(x), x=x), 21.0)

        # integral should be exactly 114
        x = np.linspace(1, 7, 4)
        assert_allclose(simpson(f(x), dx=2.0), 114)

        # test multi-axis behaviour
        a = np.arange(16).reshape(4, 4)
        x = np.arange(64.).reshape(4, 4, 4)
        y = f(x)
        for i in range(3):
            r = simpson(y, x=x, axis=i)
            it = np.nditer(a, flags=['multi_index'])
            for _ in it:
                idx = list(it.multi_index)
                idx.insert(i, slice(None))
                integral = x[tuple(idx)][-1]**3 / 3 - x[tuple(idx)][0]**3 / 3
                assert_allclose(r[it.multi_index], integral)

        # test when integration axis only has two points
        x = np.arange(16).reshape(8, 2)
        y = f(x)
        r = simpson(y, x=x, axis=-1)

        integral = 0.5 * (y[:, 1] + y[:, 0]) * (x[:, 1] - x[:, 0])
        assert_allclose(r, integral)

        # odd points, test multi-axis behaviour
        a = np.arange(25).reshape(5, 5)
        x = np.arange(125).reshape(5, 5, 5)
        y = f(x)
        for i in range(3):
            r = simpson(y, x=x, axis=i)
            it = np.nditer(a, flags=['multi_index'])
            for _ in it:
                idx = list(it.multi_index)
                idx.insert(i, slice(None))
                integral = x[tuple(idx)][-1]**3 / 3 - x[tuple(idx)][0]**3 / 3
                assert_allclose(r[it.multi_index], integral)

        # Tests for checking base case
        x = np.array([3])
        y = np.power(x, 2)
        assert_allclose(simpson(y, x=x, axis=0), 0.0)
        assert_allclose(simpson(y, x=x, axis=-1), 0.0)

        x = np.array([3, 3, 3, 3])
        y = np.power(x, 2)
        assert_allclose(simpson(y, x=x, axis=0), 0.0)
        assert_allclose(simpson(y, x=x, axis=-1), 0.0)

        x = np.array([[1, 2, 4, 8], [1, 2, 4, 8], [1, 2, 4, 8]])
        y = np.power(x, 2)
        zero_axis = [0.0, 0.0, 0.0, 0.0]
        default_axis = [170 + 1/3] * 3   # 8**3 / 3 - 1/3
        assert_allclose(simpson(y, x=x, axis=0), zero_axis)
        # the following should be exact
        assert_allclose(simpson(y, x=x, axis=-1), default_axis)

        x = np.array([[1, 2, 4, 8], [1, 2, 4, 8], [1, 8, 16, 32]])
        y = np.power(x, 2)
        zero_axis = [0.0, 136.0, 1088.0, 8704.0]
        default_axis = [170 + 1/3, 170 + 1/3, 32**3 / 3 - 1/3]
        assert_allclose(simpson(y, x=x, axis=0), zero_axis)
        assert_allclose(simpson(y, x=x, axis=-1), default_axis)


    @pytest.mark.parametrize('droplast', [False, True])
    def test_simpson_2d_integer_no_x(self, droplast):
        # The inputs are 2d integer arrays.  The results should be
        # identical to the results when the inputs are floating point.
        y = np.array([[2, 2, 4, 4, 8, 8, -4, 5],
                      [4, 4, 2, -4, 10, 22, -2, 10]])
        if droplast:
            y = y[:, :-1]
        result = simpson(y, axis=-1)
        expected = simpson(np.array(y, dtype=np.float64), axis=-1)
        assert_equal(result, expected)


class TestCumulative_trapezoid:
    def test_1d(self):
        x = np.linspace(-2, 2, num=5)
        y = x
        y_int = cumulative_trapezoid(y, x, initial=0)
        y_expected = [0., -1.5, -2., -1.5, 0.]
        assert_allclose(y_int, y_expected)

        y_int = cumulative_trapezoid(y, x, initial=None)
        assert_allclose(y_int, y_expected[1:])

    def test_y_nd_x_nd(self):
        x = np.arange(3 * 2 * 4).reshape(3, 2, 4)
        y = x
        y_int = cumulative_trapezoid(y, x, initial=0)
        y_expected = np.array([[[0., 0.5, 2., 4.5],
                                [0., 4.5, 10., 16.5]],
                               [[0., 8.5, 18., 28.5],
                                [0., 12.5, 26., 40.5]],
                               [[0., 16.5, 34., 52.5],
                                [0., 20.5, 42., 64.5]]])

        assert_allclose(y_int, y_expected)

        # Try with all axes
        shapes = [(2, 2, 4), (3, 1, 4), (3, 2, 3)]
        for axis, shape in zip([0, 1, 2], shapes):
            y_int = cumulative_trapezoid(y, x, initial=0, axis=axis)
            assert_equal(y_int.shape, (3, 2, 4))
            y_int = cumulative_trapezoid(y, x, initial=None, axis=axis)
            assert_equal(y_int.shape, shape)

    def test_y_nd_x_1d(self):
        y = np.arange(3 * 2 * 4).reshape(3, 2, 4)
        x = np.arange(4)**2
        # Try with all axes
        ys_expected = (
            np.array([[[4., 5., 6., 7.],
                       [8., 9., 10., 11.]],
                      [[40., 44., 48., 52.],
                       [56., 60., 64., 68.]]]),
            np.array([[[2., 3., 4., 5.]],
                      [[10., 11., 12., 13.]],
                      [[18., 19., 20., 21.]]]),
            np.array([[[0.5, 5., 17.5],
                       [4.5, 21., 53.5]],
                      [[8.5, 37., 89.5],
                       [12.5, 53., 125.5]],
                      [[16.5, 69., 161.5],
                       [20.5, 85., 197.5]]]))

        for axis, y_expected in zip([0, 1, 2], ys_expected):
            y_int = cumulative_trapezoid(y, x=x[:y.shape[axis]], axis=axis,
                                         initial=None)
            assert_allclose(y_int, y_expected)

    def test_x_none(self):
        y = np.linspace(-2, 2, num=5)

        y_int = cumulative_trapezoid(y)
        y_expected = [-1.5, -2., -1.5, 0.]
        assert_allclose(y_int, y_expected)

        y_int = cumulative_trapezoid(y, initial=0)
        y_expected = [0, -1.5, -2., -1.5, 0.]
        assert_allclose(y_int, y_expected)

        y_int = cumulative_trapezoid(y, dx=3)
        y_expected = [-4.5, -6., -4.5, 0.]
        assert_allclose(y_int, y_expected)

        y_int = cumulative_trapezoid(y, dx=3, initial=0)
        y_expected = [0, -4.5, -6., -4.5, 0.]
        assert_allclose(y_int, y_expected)

    @pytest.mark.parametrize(
        "initial", [1, 0.5]
    )
    def test_initial_error(self, initial):
        """If initial is not None or 0, a ValueError is raised."""
        y = np.linspace(0, 10, num=10)
        with pytest.raises(ValueError, match="`initial`"):
            cumulative_trapezoid(y, initial=initial)

    def test_zero_len_y(self):
        with pytest.raises(ValueError, match="At least one point is required"):
            cumulative_trapezoid(y=[])


@array_api_compatible
class TestTrapezoid:
    def test_simple(self, xp):
        x = xp.arange(-10, 10, .1)
        r = trapezoid(xp.exp(-.5 * x ** 2) / xp.sqrt(2 * xp.asarray(xp.pi)), dx=0.1)
        # check integral of normal equals 1
        xp_assert_close(r, xp.asarray(1.0))

    @skip_xp_backends('jax.numpy',
                      reasons=["JAX arrays do not support item assignment"])
    @pytest.mark.usefixtures("skip_xp_backends")
    def test_ndim(self, xp):
        x = xp.linspace(0, 1, 3)
        y = xp.linspace(0, 2, 8)
        z = xp.linspace(0, 3, 13)

        wx = xp.ones_like(x) * (x[1] - x[0])
        wx[0] /= 2
        wx[-1] /= 2
        wy = xp.ones_like(y) * (y[1] - y[0])
        wy[0] /= 2
        wy[-1] /= 2
        wz = xp.ones_like(z) * (z[1] - z[0])
        wz[0] /= 2
        wz[-1] /= 2

        q = x[:, None, None] + y[None,:, None] + z[None, None,:]

        qx = xp.sum(q * wx[:, None, None], axis=0)
        qy = xp.sum(q * wy[None, :, None], axis=1)
        qz = xp.sum(q * wz[None, None, :], axis=2)

        # n-d `x`
        r = trapezoid(q, x=x[:, None, None], axis=0)
        xp_assert_close(r, qx)
        r = trapezoid(q, x=y[None,:, None], axis=1)
        xp_assert_close(r, qy)
        r = trapezoid(q, x=z[None, None,:], axis=2)
        xp_assert_close(r, qz)

        # 1-d `x`
        r = trapezoid(q, x=x, axis=0)
        xp_assert_close(r, qx)
        r = trapezoid(q, x=y, axis=1)
        xp_assert_close(r, qy)
        r = trapezoid(q, x=z, axis=2)
        xp_assert_close(r, qz)

    @skip_xp_backends('jax.numpy',
                      reasons=["JAX arrays do not support item assignment"])
    @pytest.mark.usefixtures("skip_xp_backends")
    def test_gh21908(self, xp):
        # extended testing for n-dim arrays
        x = xp.reshape(xp.linspace(0, 29, 30), (3, 10))
        y = xp.reshape(xp.linspace(0, 29, 30), (3, 10))

        out0 = xp.linspace(200, 380, 10)
        xp_assert_close(trapezoid(y, x=x, axis=0), out0)
        xp_assert_close(trapezoid(y, x=xp.asarray([0, 10., 20.]), axis=0), out0)
        # x needs to be broadcastable against y
        xp_assert_close(
            trapezoid(y, x=xp.asarray([0, 10., 20.])[:, None], axis=0),
            out0
        )
        with pytest.raises(Exception):
            # x is not broadcastable against y
            trapezoid(y, x=xp.asarray([0, 10., 20.])[None, :], axis=0)

        out1 = xp.asarray([ 40.5, 130.5, 220.5])
        xp_assert_close(trapezoid(y, x=x, axis=1), out1)
        xp_assert_close(
            trapezoid(y, x=xp.linspace(0, 9, 10), axis=1),
            out1
        )

    @skip_xp_invalid_arg
    def test_masked(self, xp):
        # Testing that masked arrays behave as if the function is 0 where
        # masked
        x = np.arange(5)
        y = x * x
        mask = x == 2
        ym = np.ma.array(y, mask=mask)
        r = 13.0  # sum(0.5 * (0 + 1) * 1.0 + 0.5 * (9 + 16))
        assert_allclose(trapezoid(ym, x), r)

        xm = np.ma.array(x, mask=mask)
        assert_allclose(trapezoid(ym, xm), r)

        xm = np.ma.array(x, mask=mask)
        assert_allclose(trapezoid(y, xm), r)

    @skip_xp_backends(np_only=True,
                      reasons=['array-likes only supported for NumPy backend'])
    @pytest.mark.usefixtures("skip_xp_backends")
    def test_array_like(self, xp):
        x = list(range(5))
        y = [t * t for t in x]
        xarr = xp.asarray(x, dtype=xp.float64)
        yarr = xp.asarray(y, dtype=xp.float64)
        res = trapezoid(y, x)
        resarr = trapezoid(yarr, xarr)
        xp_assert_close(res, resarr)


class TestQMCQuad:
    @pytest.mark.thread_unsafe
    def test_input_validation(self):
        message = "`func` must be callable."
        with pytest.raises(TypeError, match=message):
            qmc_quad("a duck", [0, 0], [1, 1])

        message = "`func` must evaluate the integrand at points..."
        with pytest.raises(ValueError, match=message):
            qmc_quad(lambda: 1, [0, 0], [1, 1])

        def func(x):
            assert x.ndim == 1
            return np.sum(x)
        message = "Exception encountered when attempting vectorized call..."
        with pytest.warns(UserWarning, match=message):
            qmc_quad(func, [0, 0], [1, 1])

        message = "`n_points` must be an integer."
        with pytest.raises(TypeError, match=message):
            qmc_quad(lambda x: 1, [0, 0], [1, 1], n_points=1024.5)

        message = "`n_estimates` must be an integer."
        with pytest.raises(TypeError, match=message):
            qmc_quad(lambda x: 1, [0, 0], [1, 1], n_estimates=8.5)

        message = "`qrng` must be an instance of scipy.stats.qmc.QMCEngine."
        with pytest.raises(TypeError, match=message):
            qmc_quad(lambda x: 1, [0, 0], [1, 1], qrng="a duck")

        message = "`qrng` must be initialized with dimensionality equal to "
        with pytest.raises(ValueError, match=message):
            qmc_quad(lambda x: 1, [0, 0], [1, 1], qrng=stats.qmc.Sobol(1))

        message = r"`log` must be boolean \(`True` or `False`\)."
        with pytest.raises(TypeError, match=message):
            qmc_quad(lambda x: 1, [0, 0], [1, 1], log=10)

    def basic_test(self, n_points=2**8, n_estimates=8, signs=None):
        if signs is None:
            signs = np.ones(2)
        ndim = 2
        mean = np.zeros(ndim)
        cov = np.eye(ndim)

        def func(x):
            return stats.multivariate_normal.pdf(x.T, mean, cov)

        rng = np.random.default_rng(2879434385674690281)
        qrng = stats.qmc.Sobol(ndim, seed=rng)
        a = np.zeros(ndim)
        b = np.ones(ndim) * signs
        res = qmc_quad(func, a, b, n_points=n_points,
                       n_estimates=n_estimates, qrng=qrng)
        ref = stats.multivariate_normal.cdf(b, mean, cov, lower_limit=a)
        atol = special.stdtrit(n_estimates-1, 0.995) * res.standard_error  # 99% CI
        assert_allclose(res.integral, ref, atol=atol)
        assert np.prod(signs)*res.integral > 0

        rng = np.random.default_rng(2879434385674690281)
        qrng = stats.qmc.Sobol(ndim, seed=rng)
        logres = qmc_quad(lambda *args: np.log(func(*args)), a, b,
                          n_points=n_points, n_estimates=n_estimates,
                          log=True, qrng=qrng)
        assert_allclose(np.exp(logres.integral), res.integral, rtol=1e-14)
        assert np.imag(logres.integral) == (np.pi if np.prod(signs) < 0 else 0)
        assert_allclose(np.exp(logres.standard_error),
                        res.standard_error, rtol=1e-14, atol=1e-16)

    @pytest.mark.parametrize("n_points", [2**8, 2**12])
    @pytest.mark.parametrize("n_estimates", [8, 16])
    def test_basic(self, n_points, n_estimates):
        self.basic_test(n_points, n_estimates)

    @pytest.mark.parametrize("signs", [[1, 1], [-1, -1], [-1, 1], [1, -1]])
    def test_sign(self, signs):
        self.basic_test(signs=signs)

    @pytest.mark.thread_unsafe
    @pytest.mark.parametrize("log", [False, True])
    def test_zero(self, log):
        message = "A lower limit was equal to an upper limit, so"
        with pytest.warns(UserWarning, match=message):
            res = qmc_quad(lambda x: 1, [0, 0], [0, 1], log=log)
        assert res.integral == (-np.inf if log else 0)
        assert res.standard_error == 0

    def test_flexible_input(self):
        # check that qrng is not required
        # also checks that for 1d problems, a and b can be scalars
        def func(x):
            return stats.norm.pdf(x, scale=2)

        res = qmc_quad(func, 0, 1)
        ref = stats.norm.cdf(1, scale=2) - stats.norm.cdf(0, scale=2)
        assert_allclose(res.integral, ref, 1e-2)


def cumulative_simpson_nd_reference(y, *, x=None, dx=None, initial=None, axis=-1):
    # Use cumulative_trapezoid if length of y < 3
    if y.shape[axis] < 3:
        if initial is None:
            return cumulative_trapezoid(y, x=x, dx=dx, axis=axis, initial=None)
        else:
            return initial + cumulative_trapezoid(y, x=x, dx=dx, axis=axis, initial=0)

    # Ensure that working axis is last axis
    y = np.moveaxis(y, axis, -1)
    x = np.moveaxis(x, axis, -1) if np.ndim(x) > 1 else x
    dx = np.moveaxis(dx, axis, -1) if np.ndim(dx) > 1 else dx
    initial = np.moveaxis(initial, axis, -1) if np.ndim(initial) > 1 else initial

    # If `x` is not present, create it from `dx`
    n = y.shape[-1]
    x = dx * np.arange(n) if dx is not None else x
    # Similarly, if `initial` is not present, set it to 0
    initial_was_none = initial is None
    initial = 0 if initial_was_none else initial

    # `np.apply_along_axis` accepts only one array, so concatenate arguments
    x = np.broadcast_to(x, y.shape)
    initial = np.broadcast_to(initial, y.shape[:-1] + (1,))
    z = np.concatenate((y, x, initial), axis=-1)

    # Use `np.apply_along_axis` to compute result
    def f(z):
        return cumulative_simpson(z[:n], x=z[n:2*n], initial=z[2*n:])
    res = np.apply_along_axis(f, -1, z)

    # Remove `initial` and undo axis move as needed
    res = res[..., 1:] if initial_was_none else res
    res = np.moveaxis(res, -1, axis)
    return res


class TestCumulativeSimpson:
    x0 = np.arange(4)
    y0 = x0**2

    @pytest.mark.parametrize('use_dx', (False, True))
    @pytest.mark.parametrize('use_initial', (False, True))
    def test_1d(self, use_dx, use_initial):
        # Test for exact agreement with polynomial of highest
        # possible order (3 if `dx` is constant, 2 otherwise).
        rng = np.random.default_rng(82456839535679456794)
        n = 10

        # Generate random polynomials and ground truth
        # integral of appropriate order
        order = 3 if use_dx else 2
        dx = rng.random()
        x = (np.sort(rng.random(n)) if order == 2
             else np.arange(n)*dx + rng.random())
        i = np.arange(order + 1)[:, np.newaxis]
        c = rng.random(order + 1)[:, np.newaxis]
        y = np.sum(c*x**i, axis=0)
        Y = np.sum(c*x**(i + 1)/(i + 1), axis=0)
        ref = Y if use_initial else (Y-Y[0])[1:]

        # Integrate with `cumulative_simpson`
        initial = Y[0] if use_initial else None
        kwarg = {'dx': dx} if use_dx else {'x': x}
        res = cumulative_simpson(y, **kwarg, initial=initial)

        # Compare result against reference
        if not use_dx:
            assert_allclose(res, ref, rtol=2e-15)
        else:
            i0 = 0 if use_initial else 1
            # all terms are "close"
            assert_allclose(res, ref, rtol=0.0025)
            # only even-interval terms are "exact"
            assert_allclose(res[i0::2], ref[i0::2], rtol=2e-15)

    @pytest.mark.parametrize('axis', np.arange(-3, 3))
    @pytest.mark.parametrize('x_ndim', (1, 3))
    @pytest.mark.parametrize('x_len', (1, 2, 7))
    @pytest.mark.parametrize('i_ndim', (None, 0, 3,))
    @pytest.mark.parametrize('dx', (None, True))
    def test_nd(self, axis, x_ndim, x_len, i_ndim, dx):
        # Test behavior of `cumulative_simpson` with N-D `y`
        rng = np.random.default_rng(82456839535679456794)

        # determine shapes
        shape = [5, 6, x_len]
        shape[axis], shape[-1] = shape[-1], shape[axis]
        shape_len_1 = shape.copy()
        shape_len_1[axis] = 1
        i_shape = shape_len_1 if i_ndim == 3 else ()

        # initialize arguments
        y = rng.random(size=shape)
        x, dx = None, None
        if dx:
            dx = rng.random(size=shape_len_1) if x_ndim > 1 else rng.random()
        else:
            x = (np.sort(rng.random(size=shape), axis=axis) if x_ndim > 1
                 else np.sort(rng.random(size=shape[axis])))
        initial = None if i_ndim is None else rng.random(size=i_shape)

        # compare results
        res = cumulative_simpson(y, x=x, dx=dx, initial=initial, axis=axis)
        ref = cumulative_simpson_nd_reference(y, x=x, dx=dx, initial=initial, axis=axis)
        np.testing.assert_allclose(res, ref, rtol=1e-15)

    @pytest.mark.parametrize(('message', 'kwarg_update'), [
        ("x must be strictly increasing", dict(x=[2, 2, 3, 4])),
        ("x must be strictly increasing", dict(x=[x0, [2, 2, 4, 8]], y=[y0, y0])),
        ("x must be strictly increasing", dict(x=[x0, x0, x0], y=[y0, y0, y0], axis=0)),
        ("At least one point is required", dict(x=[], y=[])),
        ("`axis=4` is not valid for `y` with `y.ndim=1`", dict(axis=4)),
        ("shape of `x` must be the same as `y` or 1-D", dict(x=np.arange(5))),
        ("`initial` must either be a scalar or...", dict(initial=np.arange(5))),
        ("`dx` must either be a scalar or...", dict(x=None, dx=np.arange(5))),
    ])
    def test_simpson_exceptions(self, message, kwarg_update):
        kwargs0 = dict(y=self.y0, x=self.x0, dx=None, initial=None, axis=-1)
        with pytest.raises(ValueError, match=message):
            cumulative_simpson(**dict(kwargs0, **kwarg_update))

    def test_special_cases(self):
        # Test special cases not checked elsewhere
        rng = np.random.default_rng(82456839535679456794)
        y = rng.random(size=10)
        res = cumulative_simpson(y, dx=0)
        assert_equal(res, 0)

        # Should add tests of:
        # - all elements of `x` identical
        # These should work as they do for `simpson`

    def _get_theoretical_diff_between_simps_and_cum_simps(self, y, x):
        """`cumulative_simpson` and `simpson` can be tested against other to verify
        they give consistent results. `simpson` will iteratively be called with
        successively higher upper limits of integration. This function calculates
        the theoretical correction required to `simpson` at even intervals to match
        with `cumulative_simpson`.
        """
        d = np.diff(x, axis=-1)
        sub_integrals_h1 = _cumulative_simpson_unequal_intervals(y, d)
        sub_integrals_h2 = _cumulative_simpson_unequal_intervals(
            y[..., ::-1], d[..., ::-1]
        )[..., ::-1]

        # Concatenate to build difference array
        zeros_shape = (*y.shape[:-1], 1)
        theoretical_difference = np.concatenate(
            [
                np.zeros(zeros_shape),
                (sub_integrals_h1[..., 1:] - sub_integrals_h2[..., :-1]),
                np.zeros(zeros_shape),
            ],
            axis=-1,
        )
        # Differences only expected at even intervals. Odd intervals will
        # match exactly so there is no correction
        theoretical_difference[..., 1::2] = 0.0
        # Note: the first interval will not match from this correction as
        # `simpson` uses the trapezoidal rule
        return theoretical_difference

    @pytest.mark.thread_unsafe
    @pytest.mark.slow
    @given(
        y=hyp_num.arrays(
            np.float64,
            hyp_num.array_shapes(max_dims=4, min_side=3, max_side=10),
            elements=st.floats(-10, 10, allow_nan=False).filter(lambda x: abs(x) > 1e-7)
        )
    )
    def test_cumulative_simpson_against_simpson_with_default_dx(
        self, y
    ):
        """Theoretically, the output of `cumulative_simpson` will be identical
        to `simpson` at all even indices and in the last index. The first index
        will not match as `simpson` uses the trapezoidal rule when there are only two
        data points. Odd indices after the first index are shown to match with
        a mathematically-derived correction."""
        def simpson_reference(y):
            return np.stack(
                [simpson(y[..., :i], dx=1.0) for i in range(2, y.shape[-1]+1)], axis=-1,
            )

        res = cumulative_simpson(y, dx=1.0)
        ref = simpson_reference(y)
        theoretical_difference = self._get_theoretical_diff_between_simps_and_cum_simps(
            y, x=np.arange(y.shape[-1])
        )
        np.testing.assert_allclose(
            res[..., 1:], ref[..., 1:] + theoretical_difference[..., 1:], atol=1e-16
        )

    @pytest.mark.thread_unsafe
    @pytest.mark.slow
    @given(
        y=hyp_num.arrays(
            np.float64,
            hyp_num.array_shapes(max_dims=4, min_side=3, max_side=10),
            elements=st.floats(-10, 10, allow_nan=False).filter(lambda x: abs(x) > 1e-7)
        )
    )
    def test_cumulative_simpson_against_simpson(
        self, y
    ):
        """Theoretically, the output of `cumulative_simpson` will be identical
        to `simpson` at all even indices and in the last index. The first index
        will not match as `simpson` uses the trapezoidal rule when there are only two
        data points. Odd indices after the first index are shown to match with
        a mathematically-derived correction."""
        interval = 10/(y.shape[-1] - 1)
        x = np.linspace(0, 10, num=y.shape[-1])
        x[1:] = x[1:] + 0.2*interval*np.random.uniform(-1, 1, len(x) - 1)

        def simpson_reference(y, x):
            return np.stack(
                [simpson(y[..., :i], x=x[..., :i]) for i in range(2, y.shape[-1]+1)],
                axis=-1,
            )

        res = cumulative_simpson(y, x=x)
        ref = simpson_reference(y, x)
        theoretical_difference = self._get_theoretical_diff_between_simps_and_cum_simps(
            y, x
        )
        np.testing.assert_allclose(
            res[..., 1:], ref[..., 1:] + theoretical_difference[..., 1:]
        )

class TestLebedev:
    def test_input_validation(self):
        # only certain rules are available
        message = "Order n=-1 not available..."
        with pytest.raises(NotImplementedError, match=message):
            integrate.lebedev_rule(-1)

    def test_quadrature(self):
        # Test points/weights to integrate an example function

        def f(x):
            return np.exp(x[0])

        x, w = integrate.lebedev_rule(15)
        res = w @ f(x)
        ref = 14.7680137457653  # lebedev_rule reference [3]
        assert_allclose(res, ref, rtol=1e-14)
        assert_allclose(np.sum(w), 4 * np.pi)

    @pytest.mark.parametrize('order', list(range(3, 32, 2)) + list(range(35, 132, 6)))
    def test_properties(self, order):
        x, w = integrate.lebedev_rule(order)
        # dispersion should be maximal; no clear spherical mean
        with np.errstate(divide='ignore', invalid='ignore'):
            res = stats.directional_stats(x.T, axis=0)
            assert_allclose(res.mean_resultant_length, 0, atol=1e-15)
        # weights should sum to 4*pi (surface area of unit sphere)
        assert_allclose(np.sum(w), 4*np.pi)