File size: 37,727 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
"""Interpolation algorithms using piecewise cubic polynomials."""

from typing import Literal

import numpy as np

from scipy.linalg import solve, solve_banded

from . import PPoly
from ._polyint import _isscalar

__all__ = ["CubicHermiteSpline", "PchipInterpolator", "pchip_interpolate",
           "Akima1DInterpolator", "CubicSpline"]


def prepare_input(x, y, axis, dydx=None):
    """Prepare input for cubic spline interpolators.

    All data are converted to numpy arrays and checked for correctness.
    Axes equal to `axis` of arrays `y` and `dydx` are moved to be the 0th
    axis. The value of `axis` is converted to lie in
    [0, number of dimensions of `y`).
    """

    x, y = map(np.asarray, (x, y))
    if np.issubdtype(x.dtype, np.complexfloating):
        raise ValueError("`x` must contain real values.")
    x = x.astype(float)

    if np.issubdtype(y.dtype, np.complexfloating):
        dtype = complex
    else:
        dtype = float

    if dydx is not None:
        dydx = np.asarray(dydx)
        if y.shape != dydx.shape:
            raise ValueError("The shapes of `y` and `dydx` must be identical.")
        if np.issubdtype(dydx.dtype, np.complexfloating):
            dtype = complex
        dydx = dydx.astype(dtype, copy=False)

    y = y.astype(dtype, copy=False)
    axis = axis % y.ndim
    if x.ndim != 1:
        raise ValueError("`x` must be 1-dimensional.")
    if x.shape[0] < 2:
        raise ValueError("`x` must contain at least 2 elements.")
    if x.shape[0] != y.shape[axis]:
        raise ValueError(f"The length of `y` along `axis`={axis} doesn't "
                         "match the length of `x`")

    if not np.all(np.isfinite(x)):
        raise ValueError("`x` must contain only finite values.")
    if not np.all(np.isfinite(y)):
        raise ValueError("`y` must contain only finite values.")

    if dydx is not None and not np.all(np.isfinite(dydx)):
        raise ValueError("`dydx` must contain only finite values.")

    dx = np.diff(x)
    if np.any(dx <= 0):
        raise ValueError("`x` must be strictly increasing sequence.")

    y = np.moveaxis(y, axis, 0)
    if dydx is not None:
        dydx = np.moveaxis(dydx, axis, 0)

    return x, dx, y, axis, dydx


class CubicHermiteSpline(PPoly):
    """Piecewise-cubic interpolator matching values and first derivatives.

    The result is represented as a `PPoly` instance.

    Parameters
    ----------
    x : array_like, shape (n,)
        1-D array containing values of the independent variable.
        Values must be real, finite and in strictly increasing order.
    y : array_like
        Array containing values of the dependent variable. It can have
        arbitrary number of dimensions, but the length along ``axis``
        (see below) must match the length of ``x``. Values must be finite.
    dydx : array_like
        Array containing derivatives of the dependent variable. It can have
        arbitrary number of dimensions, but the length along ``axis``
        (see below) must match the length of ``x``. Values must be finite.
    axis : int, optional
        Axis along which `y` is assumed to be varying. Meaning that for
        ``x[i]`` the corresponding values are ``np.take(y, i, axis=axis)``.
        Default is 0.
    extrapolate : {bool, 'periodic', None}, optional
        If bool, determines whether to extrapolate to out-of-bounds points
        based on first and last intervals, or to return NaNs. If 'periodic',
        periodic extrapolation is used. If None (default), it is set to True.

    Attributes
    ----------
    x : ndarray, shape (n,)
        Breakpoints. The same ``x`` which was passed to the constructor.
    c : ndarray, shape (4, n-1, ...)
        Coefficients of the polynomials on each segment. The trailing
        dimensions match the dimensions of `y`, excluding ``axis``.
        For example, if `y` is 1-D, then ``c[k, i]`` is a coefficient for
        ``(x-x[i])**(3-k)`` on the segment between ``x[i]`` and ``x[i+1]``.
    axis : int
        Interpolation axis. The same axis which was passed to the
        constructor.

    Methods
    -------
    __call__
    derivative
    antiderivative
    integrate
    roots

    See Also
    --------
    Akima1DInterpolator : Akima 1D interpolator.
    PchipInterpolator : PCHIP 1-D monotonic cubic interpolator.
    CubicSpline : Cubic spline data interpolator.
    PPoly : Piecewise polynomial in terms of coefficients and breakpoints

    Notes
    -----
    If you want to create a higher-order spline matching higher-order
    derivatives, use `BPoly.from_derivatives`.

    References
    ----------
    .. [1] `Cubic Hermite spline
            <https://en.wikipedia.org/wiki/Cubic_Hermite_spline>`_
            on Wikipedia.
    """

    def __init__(self, x, y, dydx, axis=0, extrapolate=None):
        if extrapolate is None:
            extrapolate = True

        x, dx, y, axis, dydx = prepare_input(x, y, axis, dydx)

        dxr = dx.reshape([dx.shape[0]] + [1] * (y.ndim - 1))
        slope = np.diff(y, axis=0) / dxr
        t = (dydx[:-1] + dydx[1:] - 2 * slope) / dxr

        c = np.empty((4, len(x) - 1) + y.shape[1:], dtype=t.dtype)
        c[0] = t / dxr
        c[1] = (slope - dydx[:-1]) / dxr - t
        c[2] = dydx[:-1]
        c[3] = y[:-1]

        super().__init__(c, x, extrapolate=extrapolate)
        self.axis = axis


class PchipInterpolator(CubicHermiteSpline):
    r"""PCHIP 1-D monotonic cubic interpolation.

    ``x`` and ``y`` are arrays of values used to approximate some function f,
    with ``y = f(x)``. The interpolant uses monotonic cubic splines
    to find the value of new points. (PCHIP stands for Piecewise Cubic
    Hermite Interpolating Polynomial).

    Parameters
    ----------
    x : ndarray, shape (npoints, )
        A 1-D array of monotonically increasing real values. ``x`` cannot
        include duplicate values (otherwise f is overspecified)
    y : ndarray, shape (..., npoints, ...)
        A N-D array of real values. ``y``'s length along the interpolation
        axis must be equal to the length of ``x``. Use the ``axis``
        parameter to select the interpolation axis.
    axis : int, optional
        Axis in the ``y`` array corresponding to the x-coordinate values. Defaults
        to ``axis=0``.
    extrapolate : bool, optional
        Whether to extrapolate to out-of-bounds points based on first
        and last intervals, or to return NaNs.

    Methods
    -------
    __call__
    derivative
    antiderivative
    roots

    See Also
    --------
    CubicHermiteSpline : Piecewise-cubic interpolator.
    Akima1DInterpolator : Akima 1D interpolator.
    CubicSpline : Cubic spline data interpolator.
    PPoly : Piecewise polynomial in terms of coefficients and breakpoints.

    Notes
    -----
    The interpolator preserves monotonicity in the interpolation data and does
    not overshoot if the data is not smooth.

    The first derivatives are guaranteed to be continuous, but the second
    derivatives may jump at :math:`x_k`.

    Determines the derivatives at the points :math:`x_k`, :math:`f'_k`,
    by using PCHIP algorithm [1]_.

    Let :math:`h_k = x_{k+1} - x_k`, and  :math:`d_k = (y_{k+1} - y_k) / h_k`
    are the slopes at internal points :math:`x_k`.
    If the signs of :math:`d_k` and :math:`d_{k-1}` are different or either of
    them equals zero, then :math:`f'_k = 0`. Otherwise, it is given by the
    weighted harmonic mean

    .. math::

        \frac{w_1 + w_2}{f'_k} = \frac{w_1}{d_{k-1}} + \frac{w_2}{d_k}

    where :math:`w_1 = 2 h_k + h_{k-1}` and :math:`w_2 = h_k + 2 h_{k-1}`.

    The end slopes are set using a one-sided scheme [2]_.


    References
    ----------
    .. [1] F. N. Fritsch and J. Butland,
           A method for constructing local
           monotone piecewise cubic interpolants,
           SIAM J. Sci. Comput., 5(2), 300-304 (1984).
           :doi:`10.1137/0905021`.
    .. [2] see, e.g., C. Moler, Numerical Computing with Matlab, 2004.
           :doi:`10.1137/1.9780898717952`

    """

    def __init__(self, x, y, axis=0, extrapolate=None):
        x, _, y, axis, _ = prepare_input(x, y, axis)
        if np.iscomplexobj(y):
            msg = ("`PchipInterpolator` only works with real values for `y`. "
                   "If you are trying to use the real components of the passed array, "
                   "use `np.real` on the array before passing to `PchipInterpolator`.")
            raise ValueError(msg)
        xp = x.reshape((x.shape[0],) + (1,)*(y.ndim-1))
        dk = self._find_derivatives(xp, y)
        super().__init__(x, y, dk, axis=0, extrapolate=extrapolate)
        self.axis = axis

    @staticmethod
    def _edge_case(h0, h1, m0, m1):
        # one-sided three-point estimate for the derivative
        d = ((2*h0 + h1)*m0 - h0*m1) / (h0 + h1)

        # try to preserve shape
        mask = np.sign(d) != np.sign(m0)
        mask2 = (np.sign(m0) != np.sign(m1)) & (np.abs(d) > 3.*np.abs(m0))
        mmm = (~mask) & mask2

        d[mask] = 0.
        d[mmm] = 3.*m0[mmm]

        return d

    @staticmethod
    def _find_derivatives(x, y):
        # Determine the derivatives at the points y_k, d_k, by using
        #  PCHIP algorithm is:
        # We choose the derivatives at the point x_k by
        # Let m_k be the slope of the kth segment (between k and k+1)
        # If m_k=0 or m_{k-1}=0 or sgn(m_k) != sgn(m_{k-1}) then d_k == 0
        # else use weighted harmonic mean:
        #   w_1 = 2h_k + h_{k-1}, w_2 = h_k + 2h_{k-1}
        #   1/d_k = 1/(w_1 + w_2)*(w_1 / m_k + w_2 / m_{k-1})
        #   where h_k is the spacing between x_k and x_{k+1}
        y_shape = y.shape
        if y.ndim == 1:
            # So that _edge_case doesn't end up assigning to scalars
            x = x[:, None]
            y = y[:, None]

        hk = x[1:] - x[:-1]
        mk = (y[1:] - y[:-1]) / hk

        if y.shape[0] == 2:
            # edge case: only have two points, use linear interpolation
            dk = np.zeros_like(y)
            dk[0] = mk
            dk[1] = mk
            return dk.reshape(y_shape)

        smk = np.sign(mk)
        condition = (smk[1:] != smk[:-1]) | (mk[1:] == 0) | (mk[:-1] == 0)

        w1 = 2*hk[1:] + hk[:-1]
        w2 = hk[1:] + 2*hk[:-1]

        # values where division by zero occurs will be excluded
        # by 'condition' afterwards
        with np.errstate(divide='ignore', invalid='ignore'):
            whmean = (w1/mk[:-1] + w2/mk[1:]) / (w1 + w2)

        dk = np.zeros_like(y)
        dk[1:-1][condition] = 0.0
        dk[1:-1][~condition] = 1.0 / whmean[~condition]

        # special case endpoints, as suggested in
        # Cleve Moler, Numerical Computing with MATLAB, Chap 3.6 (pchiptx.m)
        dk[0] = PchipInterpolator._edge_case(hk[0], hk[1], mk[0], mk[1])
        dk[-1] = PchipInterpolator._edge_case(hk[-1], hk[-2], mk[-1], mk[-2])

        return dk.reshape(y_shape)


def pchip_interpolate(xi, yi, x, der=0, axis=0):
    """
    Convenience function for pchip interpolation.

    xi and yi are arrays of values used to approximate some function f,
    with ``yi = f(xi)``. The interpolant uses monotonic cubic splines
    to find the value of new points x and the derivatives there.

    See `scipy.interpolate.PchipInterpolator` for details.

    Parameters
    ----------
    xi : array_like
        A sorted list of x-coordinates, of length N.
    yi : array_like
        A 1-D array of real values. `yi`'s length along the interpolation
        axis must be equal to the length of `xi`. If N-D array, use axis
        parameter to select correct axis.

        .. deprecated:: 1.13.0
            Complex data is deprecated and will raise an error in
            SciPy 1.15.0. If you are trying to use the real components of
            the passed array, use ``np.real`` on `yi`.

    x : scalar or array_like
        Of length M.
    der : int or list, optional
        Derivatives to extract. The 0th derivative can be included to
        return the function value.
    axis : int, optional
        Axis in the yi array corresponding to the x-coordinate values.

    Returns
    -------
    y : scalar or array_like
        The result, of length R or length M or M by R.

    See Also
    --------
    PchipInterpolator : PCHIP 1-D monotonic cubic interpolator.

    Examples
    --------
    We can interpolate 2D observed data using pchip interpolation:

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.interpolate import pchip_interpolate
    >>> x_observed = np.linspace(0.0, 10.0, 11)
    >>> y_observed = np.sin(x_observed)
    >>> x = np.linspace(min(x_observed), max(x_observed), num=100)
    >>> y = pchip_interpolate(x_observed, y_observed, x)
    >>> plt.plot(x_observed, y_observed, "o", label="observation")
    >>> plt.plot(x, y, label="pchip interpolation")
    >>> plt.legend()
    >>> plt.show()

    """
    P = PchipInterpolator(xi, yi, axis=axis)

    if der == 0:
        return P(x)
    elif _isscalar(der):
        return P.derivative(der)(x)
    else:
        return [P.derivative(nu)(x) for nu in der]


class Akima1DInterpolator(CubicHermiteSpline):
    r"""
    Akima interpolator

    Fit piecewise cubic polynomials, given vectors x and y. The interpolation
    method by Akima uses a continuously differentiable sub-spline built from
    piecewise cubic polynomials. The resultant curve passes through the given
    data points and will appear smooth and natural.

    Parameters
    ----------
    x : ndarray, shape (npoints, )
        1-D array of monotonically increasing real values.
    y : ndarray, shape (..., npoints, ...)
        N-D array of real values. The length of ``y`` along the interpolation axis
        must be equal to the length of ``x``. Use the ``axis`` parameter to
        select the interpolation axis.
    axis : int, optional
        Axis in the ``y`` array corresponding to the x-coordinate values. Defaults
        to ``axis=0``.
    method : {'akima', 'makima'}, optional
        If ``"makima"``, use the modified Akima interpolation [2]_.
        Defaults to ``"akima"``, use the Akima interpolation [1]_.

        .. versionadded:: 1.13.0

    extrapolate : {bool, None}, optional
        If bool, determines whether to extrapolate to out-of-bounds points 
        based on first and last intervals, or to return NaNs. If None, 
        ``extrapolate`` is set to False.
        
    Methods
    -------
    __call__
    derivative
    antiderivative
    roots

    See Also
    --------
    PchipInterpolator : PCHIP 1-D monotonic cubic interpolator.
    CubicSpline : Cubic spline data interpolator.
    PPoly : Piecewise polynomial in terms of coefficients and breakpoints

    Notes
    -----
    .. versionadded:: 0.14

    Use only for precise data, as the fitted curve passes through the given
    points exactly. This routine is useful for plotting a pleasingly smooth
    curve through a few given points for purposes of plotting.

    Let :math:`\delta_i = (y_{i+1} - y_i) / (x_{i+1} - x_i)` be the slopes of
    the interval :math:`\left[x_i, x_{i+1}\right)`. Akima's derivative at
    :math:`x_i` is defined as:

    .. math::

        d_i = \frac{w_1}{w_1 + w_2}\delta_{i-1} + \frac{w_2}{w_1 + w_2}\delta_i

    In the Akima interpolation [1]_ (``method="akima"``), the weights are:

    .. math::

        \begin{aligned}
        w_1 &= |\delta_{i+1} - \delta_i| \\
        w_2 &= |\delta_{i-1} - \delta_{i-2}|
        \end{aligned}

    In the modified Akima interpolation [2]_ (``method="makima"``),
    to eliminate overshoot and avoid edge cases of both numerator and
    denominator being equal to 0, the weights are modified as follows:

    .. math::

        \begin{align*}
        w_1 &= |\delta_{i+1} - \delta_i| + |\delta_{i+1} + \delta_i| / 2 \\
        w_2 &= |\delta_{i-1} - \delta_{i-2}| + |\delta_{i-1} + \delta_{i-2}| / 2
        \end{align*}

    Examples
    --------
    Comparison of ``method="akima"`` and ``method="makima"``:

    >>> import numpy as np
    >>> from scipy.interpolate import Akima1DInterpolator
    >>> import matplotlib.pyplot as plt
    >>> x = np.linspace(1, 7, 7)
    >>> y = np.array([-1, -1, -1, 0, 1, 1, 1])
    >>> xs = np.linspace(min(x), max(x), num=100)
    >>> y_akima = Akima1DInterpolator(x, y, method="akima")(xs)
    >>> y_makima = Akima1DInterpolator(x, y, method="makima")(xs)

    >>> fig, ax = plt.subplots()
    >>> ax.plot(x, y, "o", label="data")
    >>> ax.plot(xs, y_akima, label="akima")
    >>> ax.plot(xs, y_makima, label="makima")
    >>> ax.legend()
    >>> fig.show()

    The overshoot that occurred in ``"akima"`` has been avoided in ``"makima"``.

    References
    ----------
    .. [1] A new method of interpolation and smooth curve fitting based
           on local procedures. Hiroshi Akima, J. ACM, October 1970, 17(4),
           589-602. :doi:`10.1145/321607.321609`
    .. [2] Makima Piecewise Cubic Interpolation. Cleve Moler and Cosmin Ionita, 2019.
           https://blogs.mathworks.com/cleve/2019/04/29/makima-piecewise-cubic-interpolation/

    """

    def __init__(self, x, y, axis=0, *, method: Literal["akima", "makima"]="akima", 
                 extrapolate:bool | None = None):
        if method not in {"akima", "makima"}:
            raise NotImplementedError(f"`method`={method} is unsupported.")
        # Original implementation in MATLAB by N. Shamsundar (BSD licensed), see
        # https://www.mathworks.com/matlabcentral/fileexchange/1814-akima-interpolation
        x, dx, y, axis, _ = prepare_input(x, y, axis)

        if np.iscomplexobj(y):
            msg = ("`Akima1DInterpolator` only works with real values for `y`. "
                   "If you are trying to use the real components of the passed array, "
                   "use `np.real` on the array before passing to "
                   "`Akima1DInterpolator`.")
            raise ValueError(msg)

        # Akima extrapolation historically False; parent class defaults to True.
        extrapolate = False if extrapolate is None else extrapolate

        # determine slopes between breakpoints
        m = np.empty((x.size + 3, ) + y.shape[1:])
        dx = dx[(slice(None), ) + (None, ) * (y.ndim - 1)]
        m[2:-2] = np.diff(y, axis=0) / dx

        # add two additional points on the left ...
        m[1] = 2. * m[2] - m[3]
        m[0] = 2. * m[1] - m[2]
        # ... and on the right
        m[-2] = 2. * m[-3] - m[-4]
        m[-1] = 2. * m[-2] - m[-3]

        # if m1 == m2 != m3 == m4, the slope at the breakpoint is not
        # defined. This is the fill value:
        t = .5 * (m[3:] + m[:-3])
        # get the denominator of the slope t
        dm = np.abs(np.diff(m, axis=0))
        if method == "makima":
            pm = np.abs(m[1:] + m[:-1])
            f1 = dm[2:] + 0.5 * pm[2:]
            f2 = dm[:-2] + 0.5 * pm[:-2]
        else:
            f1 = dm[2:]
            f2 = dm[:-2]
        f12 = f1 + f2
        # These are the mask of where the slope at breakpoint is defined:
        ind = np.nonzero(f12 > 1e-9 * np.max(f12, initial=-np.inf))
        x_ind, y_ind = ind[0], ind[1:]
        # Set the slope at breakpoint
        t[ind] = (f1[ind] * m[(x_ind + 1,) + y_ind] +
                  f2[ind] * m[(x_ind + 2,) + y_ind]) / f12[ind]

        super().__init__(x, y, t, axis=0, extrapolate=extrapolate)
        self.axis = axis

    def extend(self, c, x, right=True):
        raise NotImplementedError("Extending a 1-D Akima interpolator is not "
                                  "yet implemented")

    # These are inherited from PPoly, but they do not produce an Akima
    # interpolator. Hence stub them out.
    @classmethod
    def from_spline(cls, tck, extrapolate=None):
        raise NotImplementedError("This method does not make sense for "
                                  "an Akima interpolator.")

    @classmethod
    def from_bernstein_basis(cls, bp, extrapolate=None):
        raise NotImplementedError("This method does not make sense for "
                                  "an Akima interpolator.")


class CubicSpline(CubicHermiteSpline):
    """Cubic spline data interpolator.

    Interpolate data with a piecewise cubic polynomial which is twice
    continuously differentiable [1]_. The result is represented as a `PPoly`
    instance with breakpoints matching the given data.

    Parameters
    ----------
    x : array_like, shape (n,)
        1-D array containing values of the independent variable.
        Values must be real, finite and in strictly increasing order.
    y : array_like
        Array containing values of the dependent variable. It can have
        arbitrary number of dimensions, but the length along ``axis``
        (see below) must match the length of ``x``. Values must be finite.
    axis : int, optional
        Axis along which `y` is assumed to be varying. Meaning that for
        ``x[i]`` the corresponding values are ``np.take(y, i, axis=axis)``.
        Default is 0.
    bc_type : string or 2-tuple, optional
        Boundary condition type. Two additional equations, given by the
        boundary conditions, are required to determine all coefficients of
        polynomials on each segment [2]_.

        If `bc_type` is a string, then the specified condition will be applied
        at both ends of a spline. Available conditions are:

        * 'not-a-knot' (default): The first and second segment at a curve end
          are the same polynomial. It is a good default when there is no
          information on boundary conditions.
        * 'periodic': The interpolated functions is assumed to be periodic
          of period ``x[-1] - x[0]``. The first and last value of `y` must be
          identical: ``y[0] == y[-1]``. This boundary condition will result in
          ``y'[0] == y'[-1]`` and ``y''[0] == y''[-1]``.
        * 'clamped': The first derivative at curves ends are zero. Assuming
          a 1D `y`, ``bc_type=((1, 0.0), (1, 0.0))`` is the same condition.
        * 'natural': The second derivative at curve ends are zero. Assuming
          a 1D `y`, ``bc_type=((2, 0.0), (2, 0.0))`` is the same condition.

        If `bc_type` is a 2-tuple, the first and the second value will be
        applied at the curve start and end respectively. The tuple values can
        be one of the previously mentioned strings (except 'periodic') or a
        tuple ``(order, deriv_values)`` allowing to specify arbitrary
        derivatives at curve ends:

        * `order`: the derivative order, 1 or 2.
        * `deriv_value`: array_like containing derivative values, shape must
          be the same as `y`, excluding ``axis`` dimension. For example, if
          `y` is 1-D, then `deriv_value` must be a scalar. If `y` is 3-D with
          the shape (n0, n1, n2) and axis=2, then `deriv_value` must be 2-D
          and have the shape (n0, n1).
    extrapolate : {bool, 'periodic', None}, optional
        If bool, determines whether to extrapolate to out-of-bounds points
        based on first and last intervals, or to return NaNs. If 'periodic',
        periodic extrapolation is used. If None (default), ``extrapolate`` is
        set to 'periodic' for ``bc_type='periodic'`` and to True otherwise.

    Attributes
    ----------
    x : ndarray, shape (n,)
        Breakpoints. The same ``x`` which was passed to the constructor.
    c : ndarray, shape (4, n-1, ...)
        Coefficients of the polynomials on each segment. The trailing
        dimensions match the dimensions of `y`, excluding ``axis``.
        For example, if `y` is 1-d, then ``c[k, i]`` is a coefficient for
        ``(x-x[i])**(3-k)`` on the segment between ``x[i]`` and ``x[i+1]``.
    axis : int
        Interpolation axis. The same axis which was passed to the
        constructor.

    Methods
    -------
    __call__
    derivative
    antiderivative
    integrate
    roots

    See Also
    --------
    Akima1DInterpolator : Akima 1D interpolator.
    PchipInterpolator : PCHIP 1-D monotonic cubic interpolator.
    PPoly : Piecewise polynomial in terms of coefficients and breakpoints.

    Notes
    -----
    Parameters `bc_type` and ``extrapolate`` work independently, i.e. the
    former controls only construction of a spline, and the latter only
    evaluation.

    When a boundary condition is 'not-a-knot' and n = 2, it is replaced by
    a condition that the first derivative is equal to the linear interpolant
    slope. When both boundary conditions are 'not-a-knot' and n = 3, the
    solution is sought as a parabola passing through given points.

    When 'not-a-knot' boundary conditions is applied to both ends, the
    resulting spline will be the same as returned by `splrep` (with ``s=0``)
    and `InterpolatedUnivariateSpline`, but these two methods use a
    representation in B-spline basis.

    .. versionadded:: 0.18.0

    Examples
    --------
    In this example the cubic spline is used to interpolate a sampled sinusoid.
    You can see that the spline continuity property holds for the first and
    second derivatives and violates only for the third derivative.

    >>> import numpy as np
    >>> from scipy.interpolate import CubicSpline
    >>> import matplotlib.pyplot as plt
    >>> x = np.arange(10)
    >>> y = np.sin(x)
    >>> cs = CubicSpline(x, y)
    >>> xs = np.arange(-0.5, 9.6, 0.1)
    >>> fig, ax = plt.subplots(figsize=(6.5, 4))
    >>> ax.plot(x, y, 'o', label='data')
    >>> ax.plot(xs, np.sin(xs), label='true')
    >>> ax.plot(xs, cs(xs), label="S")
    >>> ax.plot(xs, cs(xs, 1), label="S'")
    >>> ax.plot(xs, cs(xs, 2), label="S''")
    >>> ax.plot(xs, cs(xs, 3), label="S'''")
    >>> ax.set_xlim(-0.5, 9.5)
    >>> ax.legend(loc='lower left', ncol=2)
    >>> plt.show()

    In the second example, the unit circle is interpolated with a spline. A
    periodic boundary condition is used. You can see that the first derivative
    values, ds/dx=0, ds/dy=1 at the periodic point (1, 0) are correctly
    computed. Note that a circle cannot be exactly represented by a cubic
    spline. To increase precision, more breakpoints would be required.

    >>> theta = 2 * np.pi * np.linspace(0, 1, 5)
    >>> y = np.c_[np.cos(theta), np.sin(theta)]
    >>> cs = CubicSpline(theta, y, bc_type='periodic')
    >>> print("ds/dx={:.1f} ds/dy={:.1f}".format(cs(0, 1)[0], cs(0, 1)[1]))
    ds/dx=0.0 ds/dy=1.0
    >>> xs = 2 * np.pi * np.linspace(0, 1, 100)
    >>> fig, ax = plt.subplots(figsize=(6.5, 4))
    >>> ax.plot(y[:, 0], y[:, 1], 'o', label='data')
    >>> ax.plot(np.cos(xs), np.sin(xs), label='true')
    >>> ax.plot(cs(xs)[:, 0], cs(xs)[:, 1], label='spline')
    >>> ax.axes.set_aspect('equal')
    >>> ax.legend(loc='center')
    >>> plt.show()

    The third example is the interpolation of a polynomial y = x**3 on the
    interval 0 <= x<= 1. A cubic spline can represent this function exactly.
    To achieve that we need to specify values and first derivatives at
    endpoints of the interval. Note that y' = 3 * x**2 and thus y'(0) = 0 and
    y'(1) = 3.

    >>> cs = CubicSpline([0, 1], [0, 1], bc_type=((1, 0), (1, 3)))
    >>> x = np.linspace(0, 1)
    >>> np.allclose(x**3, cs(x))
    True

    References
    ----------
    .. [1] `Cubic Spline Interpolation
            <https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation>`_
            on Wikiversity.
    .. [2] Carl de Boor, "A Practical Guide to Splines", Springer-Verlag, 1978.
    """

    def __init__(self, x, y, axis=0, bc_type='not-a-knot', extrapolate=None):
        x, dx, y, axis, _ = prepare_input(x, y, axis)
        n = len(x)

        bc, y = self._validate_bc(bc_type, y, y.shape[1:], axis)

        if extrapolate is None:
            if bc[0] == 'periodic':
                extrapolate = 'periodic'
            else:
                extrapolate = True

        if y.size == 0:
            # bail out early for zero-sized arrays
            s = np.zeros_like(y)
        else:
            dxr = dx.reshape([dx.shape[0]] + [1] * (y.ndim - 1))
            slope = np.diff(y, axis=0) / dxr

            # If bc is 'not-a-knot' this change is just a convention.
            # If bc is 'periodic' then we already checked that y[0] == y[-1],
            # and the spline is just a constant, we handle this case in the
            # same way by setting the first derivatives to slope, which is 0.
            if n == 2:
                if bc[0] in ['not-a-knot', 'periodic']:
                    bc[0] = (1, slope[0])
                if bc[1] in ['not-a-knot', 'periodic']:
                    bc[1] = (1, slope[0])

            # This is a special case, when both conditions are 'not-a-knot'
            # and n == 3. In this case 'not-a-knot' can't be handled regularly
            # as the both conditions are identical. We handle this case by
            # constructing a parabola passing through given points.
            if n == 3 and bc[0] == 'not-a-knot' and bc[1] == 'not-a-knot':
                A = np.zeros((3, 3))  # This is a standard matrix.
                b = np.empty((3,) + y.shape[1:], dtype=y.dtype)

                A[0, 0] = 1
                A[0, 1] = 1
                A[1, 0] = dx[1]
                A[1, 1] = 2 * (dx[0] + dx[1])
                A[1, 2] = dx[0]
                A[2, 1] = 1
                A[2, 2] = 1

                b[0] = 2 * slope[0]
                b[1] = 3 * (dxr[0] * slope[1] + dxr[1] * slope[0])
                b[2] = 2 * slope[1]

                s = solve(A, b, overwrite_a=True, overwrite_b=True,
                          check_finite=False)
            elif n == 3 and bc[0] == 'periodic':
                # In case when number of points is 3 we compute the derivatives
                # manually
                t = (slope / dxr).sum(0) / (1. / dxr).sum(0)
                s = np.broadcast_to(t, (n,) + y.shape[1:])
            else:
                # Find derivative values at each x[i] by solving a tridiagonal
                # system.
                A = np.zeros((3, n))  # This is a banded matrix representation.
                b = np.empty((n,) + y.shape[1:], dtype=y.dtype)

                # Filling the system for i=1..n-2
                #                         (x[i-1] - x[i]) * s[i-1] +\
                # 2 * ((x[i] - x[i-1]) + (x[i+1] - x[i])) * s[i]   +\
                #                         (x[i] - x[i-1]) * s[i+1] =\
                #       3 * ((x[i+1] - x[i])*(y[i] - y[i-1])/(x[i] - x[i-1]) +\
                #           (x[i] - x[i-1])*(y[i+1] - y[i])/(x[i+1] - x[i]))

                A[1, 1:-1] = 2 * (dx[:-1] + dx[1:])  # The diagonal
                A[0, 2:] = dx[:-1]                   # The upper diagonal
                A[-1, :-2] = dx[1:]                  # The lower diagonal

                b[1:-1] = 3 * (dxr[1:] * slope[:-1] + dxr[:-1] * slope[1:])

                bc_start, bc_end = bc

                if bc_start == 'periodic':
                    # Due to the periodicity, and because y[-1] = y[0], the
                    # linear system has (n-1) unknowns/equations instead of n:
                    A = A[:, 0:-1]
                    A[1, 0] = 2 * (dx[-1] + dx[0])
                    A[0, 1] = dx[-1]

                    b = b[:-1]

                    # Also, due to the periodicity, the system is not tri-diagonal.
                    # We need to compute a "condensed" matrix of shape (n-2, n-2).
                    # See https://web.archive.org/web/20151220180652/http://www.cfm.brown.edu/people/gk/chap6/node14.html
                    # for more explanations.
                    # The condensed matrix is obtained by removing the last column
                    # and last row of the (n-1, n-1) system matrix. The removed
                    # values are saved in scalar variables with the (n-1, n-1)
                    # system matrix indices forming their names:
                    a_m1_0 = dx[-2]  # lower left corner value: A[-1, 0]
                    a_m1_m2 = dx[-1]
                    a_m1_m1 = 2 * (dx[-1] + dx[-2])
                    a_m2_m1 = dx[-3]
                    a_0_m1 = dx[0]

                    b[0] = 3 * (dxr[0] * slope[-1] + dxr[-1] * slope[0])
                    b[-1] = 3 * (dxr[-1] * slope[-2] + dxr[-2] * slope[-1])

                    Ac = A[:, :-1]
                    b1 = b[:-1]
                    b2 = np.zeros_like(b1)
                    b2[0] = -a_0_m1
                    b2[-1] = -a_m2_m1

                    # s1 and s2 are the solutions of (n-2, n-2) system
                    s1 = solve_banded((1, 1), Ac, b1, overwrite_ab=False,
                                      overwrite_b=False, check_finite=False)

                    s2 = solve_banded((1, 1), Ac, b2, overwrite_ab=False,
                                      overwrite_b=False, check_finite=False)

                    # computing the s[n-2] solution:
                    s_m1 = ((b[-1] - a_m1_0 * s1[0] - a_m1_m2 * s1[-1]) /
                            (a_m1_m1 + a_m1_0 * s2[0] + a_m1_m2 * s2[-1]))

                    # s is the solution of the (n, n) system:
                    s = np.empty((n,) + y.shape[1:], dtype=y.dtype)
                    s[:-2] = s1 + s_m1 * s2
                    s[-2] = s_m1
                    s[-1] = s[0]
                else:
                    if bc_start == 'not-a-knot':
                        A[1, 0] = dx[1]
                        A[0, 1] = x[2] - x[0]
                        d = x[2] - x[0]
                        b[0] = ((dxr[0] + 2*d) * dxr[1] * slope[0] +
                                dxr[0]**2 * slope[1]) / d
                    elif bc_start[0] == 1:
                        A[1, 0] = 1
                        A[0, 1] = 0
                        b[0] = bc_start[1]
                    elif bc_start[0] == 2:
                        A[1, 0] = 2 * dx[0]
                        A[0, 1] = dx[0]
                        b[0] = -0.5 * bc_start[1] * dx[0]**2 + 3 * (y[1] - y[0])

                    if bc_end == 'not-a-knot':
                        A[1, -1] = dx[-2]
                        A[-1, -2] = x[-1] - x[-3]
                        d = x[-1] - x[-3]
                        b[-1] = ((dxr[-1]**2*slope[-2] +
                                 (2*d + dxr[-1])*dxr[-2]*slope[-1]) / d)
                    elif bc_end[0] == 1:
                        A[1, -1] = 1
                        A[-1, -2] = 0
                        b[-1] = bc_end[1]
                    elif bc_end[0] == 2:
                        A[1, -1] = 2 * dx[-1]
                        A[-1, -2] = dx[-1]
                        b[-1] = 0.5 * bc_end[1] * dx[-1]**2 + 3 * (y[-1] - y[-2])

                    s = solve_banded((1, 1), A, b, overwrite_ab=True,
                                     overwrite_b=True, check_finite=False)

        super().__init__(x, y, s, axis=0, extrapolate=extrapolate)
        self.axis = axis

    @staticmethod
    def _validate_bc(bc_type, y, expected_deriv_shape, axis):
        """Validate and prepare boundary conditions.

        Returns
        -------
        validated_bc : 2-tuple
            Boundary conditions for a curve start and end.
        y : ndarray
            y casted to complex dtype if one of the boundary conditions has
            complex dtype.
        """
        if isinstance(bc_type, str):
            if bc_type == 'periodic':
                if not np.allclose(y[0], y[-1], rtol=1e-15, atol=1e-15):
                    raise ValueError(
                        f"The first and last `y` point along axis {axis} must "
                        "be identical (within machine precision) when "
                        "bc_type='periodic'.")

            bc_type = (bc_type, bc_type)

        else:
            if len(bc_type) != 2:
                raise ValueError("`bc_type` must contain 2 elements to "
                                 "specify start and end conditions.")

            if 'periodic' in bc_type:
                raise ValueError("'periodic' `bc_type` is defined for both "
                                 "curve ends and cannot be used with other "
                                 "boundary conditions.")

        validated_bc = []
        for bc in bc_type:
            if isinstance(bc, str):
                if bc == 'clamped':
                    validated_bc.append((1, np.zeros(expected_deriv_shape)))
                elif bc == 'natural':
                    validated_bc.append((2, np.zeros(expected_deriv_shape)))
                elif bc in ['not-a-knot', 'periodic']:
                    validated_bc.append(bc)
                else:
                    raise ValueError(f"bc_type={bc} is not allowed.")
            else:
                try:
                    deriv_order, deriv_value = bc
                except Exception as e:
                    raise ValueError(
                        "A specified derivative value must be "
                        "given in the form (order, value)."
                    ) from e

                if deriv_order not in [1, 2]:
                    raise ValueError("The specified derivative order must "
                                     "be 1 or 2.")

                deriv_value = np.asarray(deriv_value)
                if deriv_value.shape != expected_deriv_shape:
                    raise ValueError(
                        f"`deriv_value` shape {deriv_value.shape} is not "
                        f"the expected one {expected_deriv_shape}."
                    )

                if np.issubdtype(deriv_value.dtype, np.complexfloating):
                    y = y.astype(complex, copy=False)

                validated_bc.append((deriv_order, deriv_value))

        return validated_bc, y