File size: 89,728 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 |
"""
fitpack --- curve and surface fitting with splines
fitpack is based on a collection of Fortran routines DIERCKX
by P. Dierckx (see http://www.netlib.org/dierckx/) transformed
to double routines by Pearu Peterson.
"""
# Created by Pearu Peterson, June,August 2003
__all__ = [
'UnivariateSpline',
'InterpolatedUnivariateSpline',
'LSQUnivariateSpline',
'BivariateSpline',
'LSQBivariateSpline',
'SmoothBivariateSpline',
'LSQSphereBivariateSpline',
'SmoothSphereBivariateSpline',
'RectBivariateSpline',
'RectSphereBivariateSpline']
import warnings
from threading import Lock
from numpy import zeros, concatenate, ravel, diff, array
import numpy as np
from . import _fitpack_impl
from . import _dfitpack as dfitpack
dfitpack_int = dfitpack.types.intvar.dtype
FITPACK_LOCK = Lock()
# ############### Univariate spline ####################
_curfit_messages = {1: """
The required storage space exceeds the available storage space, as
specified by the parameter nest: nest too small. If nest is already
large (say nest > m/2), it may also indicate that s is too small.
The approximation returned is the weighted least-squares spline
according to the knots t[0],t[1],...,t[n-1]. (n=nest) the parameter fp
gives the corresponding weighted sum of squared residuals (fp>s).
""",
2: """
A theoretically impossible result was found during the iteration
process for finding a smoothing spline with fp = s: s too small.
There is an approximation returned but the corresponding weighted sum
of squared residuals does not satisfy the condition abs(fp-s)/s < tol.""",
3: """
The maximal number of iterations maxit (set to 20 by the program)
allowed for finding a smoothing spline with fp=s has been reached: s
too small.
There is an approximation returned but the corresponding weighted sum
of squared residuals does not satisfy the condition abs(fp-s)/s < tol.""",
10: """
Error on entry, no approximation returned. The following conditions
must hold:
xb<=x[0]<x[1]<...<x[m-1]<=xe, w[i]>0, i=0..m-1
if iopt=-1:
xb<t[k+1]<t[k+2]<...<t[n-k-2]<xe"""
}
# UnivariateSpline, ext parameter can be an int or a string
_extrap_modes = {0: 0, 'extrapolate': 0,
1: 1, 'zeros': 1,
2: 2, 'raise': 2,
3: 3, 'const': 3}
class UnivariateSpline:
"""
1-D smoothing spline fit to a given set of data points.
.. legacy:: class
Specifically, we recommend using `make_splrep` instead.
Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `s`
specifies the number of knots by specifying a smoothing condition.
Parameters
----------
x : (N,) array_like
1-D array of independent input data. Must be increasing;
must be strictly increasing if `s` is 0.
y : (N,) array_like
1-D array of dependent input data, of the same length as `x`.
w : (N,) array_like, optional
Weights for spline fitting. Must be positive. If `w` is None,
weights are all 1. Default is None.
bbox : (2,) array_like, optional
2-sequence specifying the boundary of the approximation interval. If
`bbox` is None, ``bbox=[x[0], x[-1]]``. Default is None.
k : int, optional
Degree of the smoothing spline. Must be 1 <= `k` <= 5.
``k = 3`` is a cubic spline. Default is 3.
s : float or None, optional
Positive smoothing factor used to choose the number of knots. Number
of knots will be increased until the smoothing condition is satisfied::
sum((w[i] * (y[i]-spl(x[i])))**2, axis=0) <= s
However, because of numerical issues, the actual condition is::
abs(sum((w[i] * (y[i]-spl(x[i])))**2, axis=0) - s) < 0.001 * s
If `s` is None, `s` will be set as `len(w)` for a smoothing spline
that uses all data points.
If 0, spline will interpolate through all data points. This is
equivalent to `InterpolatedUnivariateSpline`.
Default is None.
The user can use the `s` to control the tradeoff between closeness
and smoothness of fit. Larger `s` means more smoothing while smaller
values of `s` indicate less smoothing.
Recommended values of `s` depend on the weights, `w`. If the weights
represent the inverse of the standard-deviation of `y`, then a good
`s` value should be found in the range (m-sqrt(2*m),m+sqrt(2*m))
where m is the number of datapoints in `x`, `y`, and `w`. This means
``s = len(w)`` should be a good value if ``1/w[i]`` is an
estimate of the standard deviation of ``y[i]``.
ext : int or str, optional
Controls the extrapolation mode for elements
not in the interval defined by the knot sequence.
* if ext=0 or 'extrapolate', return the extrapolated value.
* if ext=1 or 'zeros', return 0
* if ext=2 or 'raise', raise a ValueError
* if ext=3 or 'const', return the boundary value.
Default is 0.
check_finite : bool, optional
Whether to check that the input arrays contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination or non-sensical results) if the inputs
do contain infinities or NaNs.
Default is False.
See Also
--------
BivariateSpline :
a base class for bivariate splines.
SmoothBivariateSpline :
a smoothing bivariate spline through the given points
LSQBivariateSpline :
a bivariate spline using weighted least-squares fitting
RectSphereBivariateSpline :
a bivariate spline over a rectangular mesh on a sphere
SmoothSphereBivariateSpline :
a smoothing bivariate spline in spherical coordinates
LSQSphereBivariateSpline :
a bivariate spline in spherical coordinates using weighted
least-squares fitting
RectBivariateSpline :
a bivariate spline over a rectangular mesh
InterpolatedUnivariateSpline :
a interpolating univariate spline for a given set of data points.
bisplrep :
a function to find a bivariate B-spline representation of a surface
bisplev :
a function to evaluate a bivariate B-spline and its derivatives
splrep :
a function to find the B-spline representation of a 1-D curve
splev :
a function to evaluate a B-spline or its derivatives
sproot :
a function to find the roots of a cubic B-spline
splint :
a function to evaluate the definite integral of a B-spline between two
given points
spalde :
a function to evaluate all derivatives of a B-spline
Notes
-----
The number of data points must be larger than the spline degree `k`.
**NaN handling**: If the input arrays contain ``nan`` values, the result
is not useful, since the underlying spline fitting routines cannot deal
with ``nan``. A workaround is to use zero weights for not-a-number
data points:
>>> import numpy as np
>>> from scipy.interpolate import UnivariateSpline
>>> x, y = np.array([1, 2, 3, 4]), np.array([1, np.nan, 3, 4])
>>> w = np.isnan(y)
>>> y[w] = 0.
>>> spl = UnivariateSpline(x, y, w=~w)
Notice the need to replace a ``nan`` by a numerical value (precise value
does not matter as long as the corresponding weight is zero.)
References
----------
Based on algorithms described in [1]_, [2]_, [3]_, and [4]_:
.. [1] P. Dierckx, "An algorithm for smoothing, differentiation and
integration of experimental data using spline functions",
J.Comp.Appl.Maths 1 (1975) 165-184.
.. [2] P. Dierckx, "A fast algorithm for smoothing data on a rectangular
grid while using spline functions", SIAM J.Numer.Anal. 19 (1982)
1286-1304.
.. [3] P. Dierckx, "An improved algorithm for curve fitting with spline
functions", report tw54, Dept. Computer Science,K.U. Leuven, 1981.
.. [4] P. Dierckx, "Curve and surface fitting with splines", Monographs on
Numerical Analysis, Oxford University Press, 1993.
Examples
--------
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import UnivariateSpline
>>> rng = np.random.default_rng()
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50)
>>> plt.plot(x, y, 'ro', ms=5)
Use the default value for the smoothing parameter:
>>> spl = UnivariateSpline(x, y)
>>> xs = np.linspace(-3, 3, 1000)
>>> plt.plot(xs, spl(xs), 'g', lw=3)
Manually change the amount of smoothing:
>>> spl.set_smoothing_factor(0.5)
>>> plt.plot(xs, spl(xs), 'b', lw=3)
>>> plt.show()
"""
def __init__(self, x, y, w=None, bbox=[None]*2, k=3, s=None,
ext=0, check_finite=False):
x, y, w, bbox, self.ext = self.validate_input(x, y, w, bbox, k, s, ext,
check_finite)
# _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
with FITPACK_LOCK:
data = dfitpack.fpcurf0(x, y, k, w=w, xb=bbox[0],
xe=bbox[1], s=s)
if data[-1] == 1:
# nest too small, setting to maximum bound
data = self._reset_nest(data)
self._data = data
self._reset_class()
@staticmethod
def validate_input(x, y, w, bbox, k, s, ext, check_finite):
x, y, bbox = np.asarray(x), np.asarray(y), np.asarray(bbox)
if w is not None:
w = np.asarray(w)
if check_finite:
w_finite = np.isfinite(w).all() if w is not None else True
if (not np.isfinite(x).all() or not np.isfinite(y).all() or
not w_finite):
raise ValueError("x and y array must not contain "
"NaNs or infs.")
if s is None or s > 0:
if not np.all(diff(x) >= 0.0):
raise ValueError("x must be increasing if s > 0")
else:
if not np.all(diff(x) > 0.0):
raise ValueError("x must be strictly increasing if s = 0")
if x.size != y.size:
raise ValueError("x and y should have a same length")
elif w is not None and not x.size == y.size == w.size:
raise ValueError("x, y, and w should have a same length")
elif bbox.shape != (2,):
raise ValueError("bbox shape should be (2,)")
elif not (1 <= k <= 5):
raise ValueError("k should be 1 <= k <= 5")
elif s is not None and not s >= 0.0:
raise ValueError("s should be s >= 0.0")
try:
ext = _extrap_modes[ext]
except KeyError as e:
raise ValueError(f"Unknown extrapolation mode {ext}.") from e
return x, y, w, bbox, ext
@classmethod
def _from_tck(cls, tck, ext=0):
"""Construct a spline object from given tck"""
self = cls.__new__(cls)
t, c, k = tck
self._eval_args = tck
# _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
self._data = (None, None, None, None, None, k, None, len(t), t,
c, None, None, None, None)
self.ext = ext
return self
def _reset_class(self):
data = self._data
n, t, c, k, ier = data[7], data[8], data[9], data[5], data[-1]
self._eval_args = t[:n], c[:n], k
if ier == 0:
# the spline returned has a residual sum of squares fp
# such that abs(fp-s)/s <= tol with tol a relative
# tolerance set to 0.001 by the program
pass
elif ier == -1:
# the spline returned is an interpolating spline
self._set_class(InterpolatedUnivariateSpline)
elif ier == -2:
# the spline returned is the weighted least-squares
# polynomial of degree k. In this extreme case fp gives
# the upper bound fp0 for the smoothing factor s.
self._set_class(LSQUnivariateSpline)
else:
# error
if ier == 1:
self._set_class(LSQUnivariateSpline)
message = _curfit_messages.get(ier, f'ier={ier}')
warnings.warn(message, stacklevel=3)
def _set_class(self, cls):
self._spline_class = cls
if self.__class__ in (UnivariateSpline, InterpolatedUnivariateSpline,
LSQUnivariateSpline):
self.__class__ = cls
else:
# It's an unknown subclass -- don't change class. cf. #731
pass
def _reset_nest(self, data, nest=None):
n = data[10]
if nest is None:
k, m = data[5], len(data[0])
nest = m+k+1 # this is the maximum bound for nest
else:
if not n <= nest:
raise ValueError("`nest` can only be increased")
t, c, fpint, nrdata = (np.resize(data[j], nest) for j in
[8, 9, 11, 12])
args = data[:8] + (t, c, n, fpint, nrdata, data[13])
with FITPACK_LOCK:
data = dfitpack.fpcurf1(*args)
return data
def set_smoothing_factor(self, s):
""" Continue spline computation with the given smoothing
factor s and with the knots found at the last call.
This routine modifies the spline in place.
"""
data = self._data
if data[6] == -1:
warnings.warn('smoothing factor unchanged for'
'LSQ spline with fixed knots',
stacklevel=2)
return
args = data[:6] + (s,) + data[7:]
with FITPACK_LOCK:
data = dfitpack.fpcurf1(*args)
if data[-1] == 1:
# nest too small, setting to maximum bound
data = self._reset_nest(data)
self._data = data
self._reset_class()
def __call__(self, x, nu=0, ext=None):
"""
Evaluate spline (or its nu-th derivative) at positions x.
Parameters
----------
x : array_like
A 1-D array of points at which to return the value of the smoothed
spline or its derivatives. Note: `x` can be unordered but the
evaluation is more efficient if `x` is (partially) ordered.
nu : int
The order of derivative of the spline to compute.
ext : int
Controls the value returned for elements of `x` not in the
interval defined by the knot sequence.
* if ext=0 or 'extrapolate', return the extrapolated value.
* if ext=1 or 'zeros', return 0
* if ext=2 or 'raise', raise a ValueError
* if ext=3 or 'const', return the boundary value.
The default value is 0, passed from the initialization of
UnivariateSpline.
"""
x = np.asarray(x)
# empty input yields empty output
if x.size == 0:
return array([])
if ext is None:
ext = self.ext
else:
try:
ext = _extrap_modes[ext]
except KeyError as e:
raise ValueError(f"Unknown extrapolation mode {ext}.") from e
with FITPACK_LOCK:
return _fitpack_impl.splev(x, self._eval_args, der=nu, ext=ext)
def get_knots(self):
""" Return positions of interior knots of the spline.
Internally, the knot vector contains ``2*k`` additional boundary knots.
"""
data = self._data
k, n = data[5], data[7]
return data[8][k:n-k]
def get_coeffs(self):
"""Return spline coefficients."""
data = self._data
k, n = data[5], data[7]
return data[9][:n-k-1]
def get_residual(self):
"""Return weighted sum of squared residuals of the spline approximation.
This is equivalent to::
sum((w[i] * (y[i]-spl(x[i])))**2, axis=0)
"""
return self._data[10]
def integral(self, a, b):
""" Return definite integral of the spline between two given points.
Parameters
----------
a : float
Lower limit of integration.
b : float
Upper limit of integration.
Returns
-------
integral : float
The value of the definite integral of the spline between limits.
Examples
--------
>>> import numpy as np
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.integral(0, 3)
9.0
which agrees with :math:`\\int x^2 dx = x^3 / 3` between the limits
of 0 and 3.
A caveat is that this routine assumes the spline to be zero outside of
the data limits:
>>> spl.integral(-1, 4)
9.0
>>> spl.integral(-1, 0)
0.0
"""
with FITPACK_LOCK:
return _fitpack_impl.splint(a, b, self._eval_args)
def derivatives(self, x):
""" Return all derivatives of the spline at the point x.
Parameters
----------
x : float
The point to evaluate the derivatives at.
Returns
-------
der : ndarray, shape(k+1,)
Derivatives of the orders 0 to k.
Examples
--------
>>> import numpy as np
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.derivatives(1.5)
array([2.25, 3.0, 2.0, 0])
"""
with FITPACK_LOCK:
return _fitpack_impl.spalde(x, self._eval_args)
def roots(self):
""" Return the zeros of the spline.
Notes
-----
Restriction: only cubic splines are supported by FITPACK. For non-cubic
splines, use `PPoly.root` (see below for an example).
Examples
--------
For some data, this method may miss a root. This happens when one of
the spline knots (which FITPACK places automatically) happens to
coincide with the true root. A workaround is to convert to `PPoly`,
which uses a different root-finding algorithm.
For example,
>>> x = [1.96, 1.97, 1.98, 1.99, 2.00, 2.01, 2.02, 2.03, 2.04, 2.05]
>>> y = [-6.365470e-03, -4.790580e-03, -3.204320e-03, -1.607270e-03,
... 4.440892e-16, 1.616930e-03, 3.243000e-03, 4.877670e-03,
... 6.520430e-03, 8.170770e-03]
>>> from scipy.interpolate import UnivariateSpline
>>> spl = UnivariateSpline(x, y, s=0)
>>> spl.roots()
array([], dtype=float64)
Converting to a PPoly object does find the roots at `x=2`:
>>> from scipy.interpolate import splrep, PPoly
>>> tck = splrep(x, y, s=0)
>>> ppoly = PPoly.from_spline(tck)
>>> ppoly.roots(extrapolate=False)
array([2.])
See Also
--------
sproot
PPoly.roots
"""
k = self._data[5]
if k == 3:
t = self._eval_args[0]
mest = 3 * (len(t) - 7)
with FITPACK_LOCK:
return _fitpack_impl.sproot(self._eval_args, mest=mest)
raise NotImplementedError('finding roots unsupported for '
'non-cubic splines')
def derivative(self, n=1):
"""
Construct a new spline representing the derivative of this spline.
Parameters
----------
n : int, optional
Order of derivative to evaluate. Default: 1
Returns
-------
spline : UnivariateSpline
Spline of order k2=k-n representing the derivative of this
spline.
See Also
--------
splder, antiderivative
Notes
-----
.. versionadded:: 0.13.0
Examples
--------
This can be used for finding maxima of a curve:
>>> import numpy as np
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 10, 70)
>>> y = np.sin(x)
>>> spl = UnivariateSpline(x, y, k=4, s=0)
Now, differentiate the spline and find the zeros of the
derivative. (NB: `sproot` only works for order 3 splines, so we
fit an order 4 spline):
>>> spl.derivative().roots() / np.pi
array([ 0.50000001, 1.5 , 2.49999998])
This agrees well with roots :math:`\\pi/2 + n\\pi` of
:math:`\\cos(x) = \\sin'(x)`.
"""
with FITPACK_LOCK:
tck = _fitpack_impl.splder(self._eval_args, n)
# if self.ext is 'const', derivative.ext will be 'zeros'
ext = 1 if self.ext == 3 else self.ext
return UnivariateSpline._from_tck(tck, ext=ext)
def antiderivative(self, n=1):
"""
Construct a new spline representing the antiderivative of this spline.
Parameters
----------
n : int, optional
Order of antiderivative to evaluate. Default: 1
Returns
-------
spline : UnivariateSpline
Spline of order k2=k+n representing the antiderivative of this
spline.
Notes
-----
.. versionadded:: 0.13.0
See Also
--------
splantider, derivative
Examples
--------
>>> import numpy as np
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, np.pi/2, 70)
>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
>>> spl = UnivariateSpline(x, y, s=0)
The derivative is the inverse operation of the antiderivative,
although some floating point error accumulates:
>>> spl(1.7), spl.antiderivative().derivative()(1.7)
(array(2.1565429877197317), array(2.1565429877201865))
Antiderivative can be used to evaluate definite integrals:
>>> ispl = spl.antiderivative()
>>> ispl(np.pi/2) - ispl(0)
2.2572053588768486
This is indeed an approximation to the complete elliptic integral
:math:`K(m) = \\int_0^{\\pi/2} [1 - m\\sin^2 x]^{-1/2} dx`:
>>> from scipy.special import ellipk
>>> ellipk(0.8)
2.2572053268208538
"""
with FITPACK_LOCK:
tck = _fitpack_impl.splantider(self._eval_args, n)
return UnivariateSpline._from_tck(tck, self.ext)
class InterpolatedUnivariateSpline(UnivariateSpline):
"""
1-D interpolating spline for a given set of data points.
.. legacy:: class
Specifically, we recommend using `make_interp_spline` instead.
Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data.
Spline function passes through all provided points. Equivalent to
`UnivariateSpline` with `s` = 0.
Parameters
----------
x : (N,) array_like
Input dimension of data points -- must be strictly increasing
y : (N,) array_like
input dimension of data points
w : (N,) array_like, optional
Weights for spline fitting. Must be positive. If None (default),
weights are all 1.
bbox : (2,) array_like, optional
2-sequence specifying the boundary of the approximation interval. If
None (default), ``bbox=[x[0], x[-1]]``.
k : int, optional
Degree of the smoothing spline. Must be ``1 <= k <= 5``. Default is
``k = 3``, a cubic spline.
ext : int or str, optional
Controls the extrapolation mode for elements
not in the interval defined by the knot sequence.
* if ext=0 or 'extrapolate', return the extrapolated value.
* if ext=1 or 'zeros', return 0
* if ext=2 or 'raise', raise a ValueError
* if ext=3 of 'const', return the boundary value.
The default value is 0.
check_finite : bool, optional
Whether to check that the input arrays contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination or non-sensical results) if the inputs
do contain infinities or NaNs.
Default is False.
See Also
--------
UnivariateSpline :
a smooth univariate spline to fit a given set of data points.
LSQUnivariateSpline :
a spline for which knots are user-selected
SmoothBivariateSpline :
a smoothing bivariate spline through the given points
LSQBivariateSpline :
a bivariate spline using weighted least-squares fitting
splrep :
a function to find the B-spline representation of a 1-D curve
splev :
a function to evaluate a B-spline or its derivatives
sproot :
a function to find the roots of a cubic B-spline
splint :
a function to evaluate the definite integral of a B-spline between two
given points
spalde :
a function to evaluate all derivatives of a B-spline
Notes
-----
The number of data points must be larger than the spline degree `k`.
Examples
--------
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import InterpolatedUnivariateSpline
>>> rng = np.random.default_rng()
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50)
>>> spl = InterpolatedUnivariateSpline(x, y)
>>> plt.plot(x, y, 'ro', ms=5)
>>> xs = np.linspace(-3, 3, 1000)
>>> plt.plot(xs, spl(xs), 'g', lw=3, alpha=0.7)
>>> plt.show()
Notice that the ``spl(x)`` interpolates `y`:
>>> spl.get_residual()
0.0
"""
def __init__(self, x, y, w=None, bbox=[None]*2, k=3,
ext=0, check_finite=False):
x, y, w, bbox, self.ext = self.validate_input(x, y, w, bbox, k, None,
ext, check_finite)
if not np.all(diff(x) > 0.0):
raise ValueError('x must be strictly increasing')
# _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
with FITPACK_LOCK:
self._data = dfitpack.fpcurf0(x, y, k, w=w, xb=bbox[0],
xe=bbox[1], s=0)
self._reset_class()
_fpchec_error_string = """The input parameters have been rejected by fpchec. \
This means that at least one of the following conditions is violated:
1) k+1 <= n-k-1 <= m
2) t(1) <= t(2) <= ... <= t(k+1)
t(n-k) <= t(n-k+1) <= ... <= t(n)
3) t(k+1) < t(k+2) < ... < t(n-k)
4) t(k+1) <= x(i) <= t(n-k)
5) The conditions specified by Schoenberg and Whitney must hold
for at least one subset of data points, i.e., there must be a
subset of data points y(j) such that
t(j) < y(j) < t(j+k+1), j=1,2,...,n-k-1
"""
class LSQUnivariateSpline(UnivariateSpline):
"""
1-D spline with explicit internal knots.
.. legacy:: class
Specifically, we recommend using `make_lsq_spline` instead.
Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `t`
specifies the internal knots of the spline
Parameters
----------
x : (N,) array_like
Input dimension of data points -- must be increasing
y : (N,) array_like
Input dimension of data points
t : (M,) array_like
interior knots of the spline. Must be in ascending order and::
bbox[0] < t[0] < ... < t[-1] < bbox[-1]
w : (N,) array_like, optional
weights for spline fitting. Must be positive. If None (default),
weights are all 1.
bbox : (2,) array_like, optional
2-sequence specifying the boundary of the approximation interval. If
None (default), ``bbox = [x[0], x[-1]]``.
k : int, optional
Degree of the smoothing spline. Must be 1 <= `k` <= 5.
Default is `k` = 3, a cubic spline.
ext : int or str, optional
Controls the extrapolation mode for elements
not in the interval defined by the knot sequence.
* if ext=0 or 'extrapolate', return the extrapolated value.
* if ext=1 or 'zeros', return 0
* if ext=2 or 'raise', raise a ValueError
* if ext=3 of 'const', return the boundary value.
The default value is 0.
check_finite : bool, optional
Whether to check that the input arrays contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination or non-sensical results) if the inputs
do contain infinities or NaNs.
Default is False.
Raises
------
ValueError
If the interior knots do not satisfy the Schoenberg-Whitney conditions
See Also
--------
UnivariateSpline :
a smooth univariate spline to fit a given set of data points.
InterpolatedUnivariateSpline :
a interpolating univariate spline for a given set of data points.
splrep :
a function to find the B-spline representation of a 1-D curve
splev :
a function to evaluate a B-spline or its derivatives
sproot :
a function to find the roots of a cubic B-spline
splint :
a function to evaluate the definite integral of a B-spline between two
given points
spalde :
a function to evaluate all derivatives of a B-spline
Notes
-----
The number of data points must be larger than the spline degree `k`.
Knots `t` must satisfy the Schoenberg-Whitney conditions,
i.e., there must be a subset of data points ``x[j]`` such that
``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``.
Examples
--------
>>> import numpy as np
>>> from scipy.interpolate import LSQUnivariateSpline, UnivariateSpline
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50)
Fit a smoothing spline with a pre-defined internal knots:
>>> t = [-1, 0, 1]
>>> spl = LSQUnivariateSpline(x, y, t)
>>> xs = np.linspace(-3, 3, 1000)
>>> plt.plot(x, y, 'ro', ms=5)
>>> plt.plot(xs, spl(xs), 'g-', lw=3)
>>> plt.show()
Check the knot vector:
>>> spl.get_knots()
array([-3., -1., 0., 1., 3.])
Constructing lsq spline using the knots from another spline:
>>> x = np.arange(10)
>>> s = UnivariateSpline(x, x, s=0)
>>> s.get_knots()
array([ 0., 2., 3., 4., 5., 6., 7., 9.])
>>> knt = s.get_knots()
>>> s1 = LSQUnivariateSpline(x, x, knt[1:-1]) # Chop 1st and last knot
>>> s1.get_knots()
array([ 0., 2., 3., 4., 5., 6., 7., 9.])
"""
def __init__(self, x, y, t, w=None, bbox=[None]*2, k=3,
ext=0, check_finite=False):
x, y, w, bbox, self.ext = self.validate_input(x, y, w, bbox, k, None,
ext, check_finite)
if not np.all(diff(x) >= 0.0):
raise ValueError('x must be increasing')
# _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
xb = bbox[0]
xe = bbox[1]
if xb is None:
xb = x[0]
if xe is None:
xe = x[-1]
t = concatenate(([xb]*(k+1), t, [xe]*(k+1)))
n = len(t)
if not np.all(t[k+1:n-k]-t[k:n-k-1] > 0, axis=0):
raise ValueError('Interior knots t must satisfy '
'Schoenberg-Whitney conditions')
with FITPACK_LOCK:
if not dfitpack.fpchec(x, t, k) == 0:
raise ValueError(_fpchec_error_string)
data = dfitpack.fpcurfm1(x, y, k, t, w=w, xb=xb, xe=xe)
self._data = data[:-3] + (None, None, data[-1])
self._reset_class()
# ############### Bivariate spline ####################
class _BivariateSplineBase:
""" Base class for Bivariate spline s(x,y) interpolation on the rectangle
[xb,xe] x [yb, ye] calculated from a given set of data points
(x,y,z).
See Also
--------
bisplrep :
a function to find a bivariate B-spline representation of a surface
bisplev :
a function to evaluate a bivariate B-spline and its derivatives
BivariateSpline :
a base class for bivariate splines.
SphereBivariateSpline :
a bivariate spline on a spherical grid
"""
@classmethod
def _from_tck(cls, tck):
"""Construct a spline object from given tck and degree"""
self = cls.__new__(cls)
if len(tck) != 5:
raise ValueError("tck should be a 5 element tuple of tx,"
" ty, c, kx, ky")
self.tck = tck[:3]
self.degrees = tck[3:]
return self
def get_residual(self):
""" Return weighted sum of squared residuals of the spline
approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0)
"""
return self.fp
def get_knots(self):
""" Return a tuple (tx,ty) where tx,ty contain knots positions
of the spline with respect to x-, y-variable, respectively.
The position of interior and additional knots are given as
t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e, respectively.
"""
return self.tck[:2]
def get_coeffs(self):
""" Return spline coefficients."""
return self.tck[2]
def __call__(self, x, y, dx=0, dy=0, grid=True):
"""
Evaluate the spline or its derivatives at given positions.
Parameters
----------
x, y : array_like
Input coordinates.
If `grid` is False, evaluate the spline at points ``(x[i],
y[i]), i=0, ..., len(x)-1``. Standard Numpy broadcasting
is obeyed.
If `grid` is True: evaluate spline at the grid points
defined by the coordinate arrays x, y. The arrays must be
sorted to increasing order.
The ordering of axes is consistent with
``np.meshgrid(..., indexing="ij")`` and inconsistent with the
default ordering ``np.meshgrid(..., indexing="xy")``.
dx : int
Order of x-derivative
.. versionadded:: 0.14.0
dy : int
Order of y-derivative
.. versionadded:: 0.14.0
grid : bool
Whether to evaluate the results on a grid spanned by the
input arrays, or at points specified by the input arrays.
.. versionadded:: 0.14.0
Examples
--------
Suppose that we want to bilinearly interpolate an exponentially decaying
function in 2 dimensions.
>>> import numpy as np
>>> from scipy.interpolate import RectBivariateSpline
We sample the function on a coarse grid. Note that the default indexing="xy"
of meshgrid would result in an unexpected (transposed) result after
interpolation.
>>> xarr = np.linspace(-3, 3, 100)
>>> yarr = np.linspace(-3, 3, 100)
>>> xgrid, ygrid = np.meshgrid(xarr, yarr, indexing="ij")
The function to interpolate decays faster along one axis than the other.
>>> zdata = np.exp(-np.sqrt((xgrid / 2) ** 2 + ygrid**2))
Next we sample on a finer grid using interpolation (kx=ky=1 for bilinear).
>>> rbs = RectBivariateSpline(xarr, yarr, zdata, kx=1, ky=1)
>>> xarr_fine = np.linspace(-3, 3, 200)
>>> yarr_fine = np.linspace(-3, 3, 200)
>>> xgrid_fine, ygrid_fine = np.meshgrid(xarr_fine, yarr_fine, indexing="ij")
>>> zdata_interp = rbs(xgrid_fine, ygrid_fine, grid=False)
And check that the result agrees with the input by plotting both.
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(1, 2, 1, aspect="equal")
>>> ax2 = fig.add_subplot(1, 2, 2, aspect="equal")
>>> ax1.imshow(zdata)
>>> ax2.imshow(zdata_interp)
>>> plt.show()
"""
x = np.asarray(x)
y = np.asarray(y)
tx, ty, c = self.tck[:3]
kx, ky = self.degrees
if grid:
if x.size == 0 or y.size == 0:
return np.zeros((x.size, y.size), dtype=self.tck[2].dtype)
if (x.size >= 2) and (not np.all(np.diff(x) >= 0.0)):
raise ValueError("x must be strictly increasing when `grid` is True")
if (y.size >= 2) and (not np.all(np.diff(y) >= 0.0)):
raise ValueError("y must be strictly increasing when `grid` is True")
if dx or dy:
with FITPACK_LOCK:
z, ier = dfitpack.parder(tx, ty, c, kx, ky, dx, dy, x, y)
if not ier == 0:
raise ValueError(f"Error code returned by parder: {ier}")
else:
with FITPACK_LOCK:
z, ier = dfitpack.bispev(tx, ty, c, kx, ky, x, y)
if not ier == 0:
raise ValueError(f"Error code returned by bispev: {ier}")
else:
# standard Numpy broadcasting
if x.shape != y.shape:
x, y = np.broadcast_arrays(x, y)
shape = x.shape
x = x.ravel()
y = y.ravel()
if x.size == 0 or y.size == 0:
return np.zeros(shape, dtype=self.tck[2].dtype)
if dx or dy:
with FITPACK_LOCK:
z, ier = dfitpack.pardeu(tx, ty, c, kx, ky, dx, dy, x, y)
if not ier == 0:
raise ValueError(f"Error code returned by pardeu: {ier}")
else:
with FITPACK_LOCK:
z, ier = dfitpack.bispeu(tx, ty, c, kx, ky, x, y)
if not ier == 0:
raise ValueError(f"Error code returned by bispeu: {ier}")
z = z.reshape(shape)
return z
def partial_derivative(self, dx, dy):
"""Construct a new spline representing a partial derivative of this
spline.
Parameters
----------
dx, dy : int
Orders of the derivative in x and y respectively. They must be
non-negative integers and less than the respective degree of the
original spline (self) in that direction (``kx``, ``ky``).
Returns
-------
spline :
A new spline of degrees (``kx - dx``, ``ky - dy``) representing the
derivative of this spline.
Notes
-----
.. versionadded:: 1.9.0
"""
if dx == 0 and dy == 0:
return self
else:
kx, ky = self.degrees
if not (dx >= 0 and dy >= 0):
raise ValueError("order of derivative must be positive or"
" zero")
if not (dx < kx and dy < ky):
raise ValueError("order of derivative must be less than"
" degree of spline")
tx, ty, c = self.tck[:3]
with FITPACK_LOCK:
newc, ier = dfitpack.pardtc(tx, ty, c, kx, ky, dx, dy)
if ier != 0:
# This should not happen under normal conditions.
raise ValueError("Unexpected error code returned by"
" pardtc: %d" % ier)
nx = len(tx)
ny = len(ty)
newtx = tx[dx:nx - dx]
newty = ty[dy:ny - dy]
newkx, newky = kx - dx, ky - dy
newclen = (nx - dx - kx - 1) * (ny - dy - ky - 1)
return _DerivedBivariateSpline._from_tck((newtx, newty,
newc[:newclen],
newkx, newky))
_surfit_messages = {1: """
The required storage space exceeds the available storage space: nxest
or nyest too small, or s too small.
The weighted least-squares spline corresponds to the current set of
knots.""",
2: """
A theoretically impossible result was found during the iteration
process for finding a smoothing spline with fp = s: s too small or
badly chosen eps.
Weighted sum of squared residuals does not satisfy abs(fp-s)/s < tol.""",
3: """
the maximal number of iterations maxit (set to 20 by the program)
allowed for finding a smoothing spline with fp=s has been reached:
s too small.
Weighted sum of squared residuals does not satisfy abs(fp-s)/s < tol.""",
4: """
No more knots can be added because the number of b-spline coefficients
(nx-kx-1)*(ny-ky-1) already exceeds the number of data points m:
either s or m too small.
The weighted least-squares spline corresponds to the current set of
knots.""",
5: """
No more knots can be added because the additional knot would (quasi)
coincide with an old one: s too small or too large a weight to an
inaccurate data point.
The weighted least-squares spline corresponds to the current set of
knots.""",
10: """
Error on entry, no approximation returned. The following conditions
must hold:
xb<=x[i]<=xe, yb<=y[i]<=ye, w[i]>0, i=0..m-1
If iopt==-1, then
xb<tx[kx+1]<tx[kx+2]<...<tx[nx-kx-2]<xe
yb<ty[ky+1]<ty[ky+2]<...<ty[ny-ky-2]<ye""",
-3: """
The coefficients of the spline returned have been computed as the
minimal norm least-squares solution of a (numerically) rank deficient
system (deficiency=%i). If deficiency is large, the results may be
inaccurate. Deficiency may strongly depend on the value of eps."""
}
class BivariateSpline(_BivariateSplineBase):
"""
Base class for bivariate splines.
This describes a spline ``s(x, y)`` of degrees ``kx`` and ``ky`` on
the rectangle ``[xb, xe] * [yb, ye]`` calculated from a given set
of data points ``(x, y, z)``.
This class is meant to be subclassed, not instantiated directly.
To construct these splines, call either `SmoothBivariateSpline` or
`LSQBivariateSpline` or `RectBivariateSpline`.
See Also
--------
UnivariateSpline :
a smooth univariate spline to fit a given set of data points.
SmoothBivariateSpline :
a smoothing bivariate spline through the given points
LSQBivariateSpline :
a bivariate spline using weighted least-squares fitting
RectSphereBivariateSpline :
a bivariate spline over a rectangular mesh on a sphere
SmoothSphereBivariateSpline :
a smoothing bivariate spline in spherical coordinates
LSQSphereBivariateSpline :
a bivariate spline in spherical coordinates using weighted
least-squares fitting
RectBivariateSpline :
a bivariate spline over a rectangular mesh.
bisplrep :
a function to find a bivariate B-spline representation of a surface
bisplev :
a function to evaluate a bivariate B-spline and its derivatives
"""
def ev(self, xi, yi, dx=0, dy=0):
"""
Evaluate the spline at points
Returns the interpolated value at ``(xi[i], yi[i]),
i=0,...,len(xi)-1``.
Parameters
----------
xi, yi : array_like
Input coordinates. Standard Numpy broadcasting is obeyed.
The ordering of axes is consistent with
``np.meshgrid(..., indexing="ij")`` and inconsistent with the
default ordering ``np.meshgrid(..., indexing="xy")``.
dx : int, optional
Order of x-derivative
.. versionadded:: 0.14.0
dy : int, optional
Order of y-derivative
.. versionadded:: 0.14.0
Examples
--------
Suppose that we want to bilinearly interpolate an exponentially decaying
function in 2 dimensions.
>>> import numpy as np
>>> from scipy.interpolate import RectBivariateSpline
>>> def f(x, y):
... return np.exp(-np.sqrt((x / 2) ** 2 + y**2))
We sample the function on a coarse grid and set up the interpolator. Note that
the default ``indexing="xy"`` of meshgrid would result in an unexpected
(transposed) result after interpolation.
>>> xarr = np.linspace(-3, 3, 21)
>>> yarr = np.linspace(-3, 3, 21)
>>> xgrid, ygrid = np.meshgrid(xarr, yarr, indexing="ij")
>>> zdata = f(xgrid, ygrid)
>>> rbs = RectBivariateSpline(xarr, yarr, zdata, kx=1, ky=1)
Next we sample the function along a diagonal slice through the coordinate space
on a finer grid using interpolation.
>>> xinterp = np.linspace(-3, 3, 201)
>>> yinterp = np.linspace(3, -3, 201)
>>> zinterp = rbs.ev(xinterp, yinterp)
And check that the interpolation passes through the function evaluations as a
function of the distance from the origin along the slice.
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(1, 1, 1)
>>> ax1.plot(np.sqrt(xarr**2 + yarr**2), np.diag(zdata), "or")
>>> ax1.plot(np.sqrt(xinterp**2 + yinterp**2), zinterp, "-b")
>>> plt.show()
"""
return self.__call__(xi, yi, dx=dx, dy=dy, grid=False)
def integral(self, xa, xb, ya, yb):
"""
Evaluate the integral of the spline over area [xa,xb] x [ya,yb].
Parameters
----------
xa, xb : float
The end-points of the x integration interval.
ya, yb : float
The end-points of the y integration interval.
Returns
-------
integ : float
The value of the resulting integral.
"""
tx, ty, c = self.tck[:3]
kx, ky = self.degrees
with FITPACK_LOCK:
return dfitpack.dblint(tx, ty, c, kx, ky, xa, xb, ya, yb)
@staticmethod
def _validate_input(x, y, z, w, kx, ky, eps):
x, y, z = np.asarray(x), np.asarray(y), np.asarray(z)
if not x.size == y.size == z.size:
raise ValueError('x, y, and z should have a same length')
if w is not None:
w = np.asarray(w)
if x.size != w.size:
raise ValueError('x, y, z, and w should have a same length')
elif not np.all(w >= 0.0):
raise ValueError('w should be positive')
if (eps is not None) and (not 0.0 < eps < 1.0):
raise ValueError('eps should be between (0, 1)')
if not x.size >= (kx + 1) * (ky + 1):
raise ValueError('The length of x, y and z should be at least'
' (kx+1) * (ky+1)')
return x, y, z, w
class _DerivedBivariateSpline(_BivariateSplineBase):
"""Bivariate spline constructed from the coefficients and knots of another
spline.
Notes
-----
The class is not meant to be instantiated directly from the data to be
interpolated or smoothed. As a result, its ``fp`` attribute and
``get_residual`` method are inherited but overridden; ``AttributeError`` is
raised when they are accessed.
The other inherited attributes can be used as usual.
"""
_invalid_why = ("is unavailable, because _DerivedBivariateSpline"
" instance is not constructed from data that are to be"
" interpolated or smoothed, but derived from the"
" underlying knots and coefficients of another spline"
" object")
@property
def fp(self):
raise AttributeError(f"attribute \"fp\" {self._invalid_why}")
def get_residual(self):
raise AttributeError(f"method \"get_residual\" {self._invalid_why}")
class SmoothBivariateSpline(BivariateSpline):
"""
Smooth bivariate spline approximation.
Parameters
----------
x, y, z : array_like
1-D sequences of data points (order is not important).
w : array_like, optional
Positive 1-D sequence of weights, of same length as `x`, `y` and `z`.
bbox : array_like, optional
Sequence of length 4 specifying the boundary of the rectangular
approximation domain. By default,
``bbox=[min(x), max(x), min(y), max(y)]``.
kx, ky : ints, optional
Degrees of the bivariate spline. Default is 3.
s : float, optional
Positive smoothing factor defined for estimation condition:
``sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s``
Default ``s=len(w)`` which should be a good value if ``1/w[i]`` is an
estimate of the standard deviation of ``z[i]``.
eps : float, optional
A threshold for determining the effective rank of an over-determined
linear system of equations. `eps` should have a value within the open
interval ``(0, 1)``, the default is 1e-16.
See Also
--------
BivariateSpline :
a base class for bivariate splines.
UnivariateSpline :
a smooth univariate spline to fit a given set of data points.
LSQBivariateSpline :
a bivariate spline using weighted least-squares fitting
RectSphereBivariateSpline :
a bivariate spline over a rectangular mesh on a sphere
SmoothSphereBivariateSpline :
a smoothing bivariate spline in spherical coordinates
LSQSphereBivariateSpline :
a bivariate spline in spherical coordinates using weighted
least-squares fitting
RectBivariateSpline :
a bivariate spline over a rectangular mesh
bisplrep :
a function to find a bivariate B-spline representation of a surface
bisplev :
a function to evaluate a bivariate B-spline and its derivatives
Notes
-----
The length of `x`, `y` and `z` should be at least ``(kx+1) * (ky+1)``.
If the input data is such that input dimensions have incommensurate
units and differ by many orders of magnitude, the interpolant may have
numerical artifacts. Consider rescaling the data before interpolating.
This routine constructs spline knot vectors automatically via the FITPACK
algorithm. The spline knots may be placed away from the data points. For
some data sets, this routine may fail to construct an interpolating spline,
even if one is requested via ``s=0`` parameter. In such situations, it is
recommended to use `bisplrep` / `bisplev` directly instead of this routine
and, if needed, increase the values of ``nxest`` and ``nyest`` parameters
of `bisplrep`.
For linear interpolation, prefer `LinearNDInterpolator`.
See ``https://gist.github.com/ev-br/8544371b40f414b7eaf3fe6217209bff``
for discussion.
"""
def __init__(self, x, y, z, w=None, bbox=[None] * 4, kx=3, ky=3, s=None,
eps=1e-16):
x, y, z, w = self._validate_input(x, y, z, w, kx, ky, eps)
bbox = ravel(bbox)
if not bbox.shape == (4,):
raise ValueError('bbox shape should be (4,)')
if s is not None and not s >= 0.0:
raise ValueError("s should be s >= 0.0")
xb, xe, yb, ye = bbox
with FITPACK_LOCK:
nx, tx, ny, ty, c, fp, wrk1, ier = dfitpack.surfit_smth(
x, y, z, w, xb, xe, yb, ye, kx, ky, s=s, eps=eps, lwrk2=1)
if ier > 10: # lwrk2 was to small, re-run
nx, tx, ny, ty, c, fp, wrk1, ier = dfitpack.surfit_smth(
x, y, z, w, xb, xe, yb, ye, kx, ky, s=s, eps=eps,
lwrk2=ier)
if ier in [0, -1, -2]: # normal return
pass
else:
message = _surfit_messages.get(ier, f'ier={ier}')
warnings.warn(message, stacklevel=2)
self.fp = fp
self.tck = tx[:nx], ty[:ny], c[:(nx-kx-1)*(ny-ky-1)]
self.degrees = kx, ky
class LSQBivariateSpline(BivariateSpline):
"""
Weighted least-squares bivariate spline approximation.
Parameters
----------
x, y, z : array_like
1-D sequences of data points (order is not important).
tx, ty : array_like
Strictly ordered 1-D sequences of knots coordinates.
w : array_like, optional
Positive 1-D array of weights, of the same length as `x`, `y` and `z`.
bbox : (4,) array_like, optional
Sequence of length 4 specifying the boundary of the rectangular
approximation domain. By default,
``bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)]``.
kx, ky : ints, optional
Degrees of the bivariate spline. Default is 3.
eps : float, optional
A threshold for determining the effective rank of an over-determined
linear system of equations. `eps` should have a value within the open
interval ``(0, 1)``, the default is 1e-16.
See Also
--------
BivariateSpline :
a base class for bivariate splines.
UnivariateSpline :
a smooth univariate spline to fit a given set of data points.
SmoothBivariateSpline :
a smoothing bivariate spline through the given points
RectSphereBivariateSpline :
a bivariate spline over a rectangular mesh on a sphere
SmoothSphereBivariateSpline :
a smoothing bivariate spline in spherical coordinates
LSQSphereBivariateSpline :
a bivariate spline in spherical coordinates using weighted
least-squares fitting
RectBivariateSpline :
a bivariate spline over a rectangular mesh.
bisplrep :
a function to find a bivariate B-spline representation of a surface
bisplev :
a function to evaluate a bivariate B-spline and its derivatives
Notes
-----
The length of `x`, `y` and `z` should be at least ``(kx+1) * (ky+1)``.
If the input data is such that input dimensions have incommensurate
units and differ by many orders of magnitude, the interpolant may have
numerical artifacts. Consider rescaling the data before interpolating.
"""
def __init__(self, x, y, z, tx, ty, w=None, bbox=[None]*4, kx=3, ky=3,
eps=None):
x, y, z, w = self._validate_input(x, y, z, w, kx, ky, eps)
bbox = ravel(bbox)
if not bbox.shape == (4,):
raise ValueError('bbox shape should be (4,)')
nx = 2*kx+2+len(tx)
ny = 2*ky+2+len(ty)
# The Fortran subroutine "surfit" (called as dfitpack.surfit_lsq)
# requires that the knot arrays passed as input should be "real
# array(s) of dimension nmax" where "nmax" refers to the greater of nx
# and ny. We pad the tx1/ty1 arrays here so that this is satisfied, and
# slice them to the desired sizes upon return.
nmax = max(nx, ny)
tx1 = zeros((nmax,), float)
ty1 = zeros((nmax,), float)
tx1[kx+1:nx-kx-1] = tx
ty1[ky+1:ny-ky-1] = ty
xb, xe, yb, ye = bbox
with FITPACK_LOCK:
tx1, ty1, c, fp, ier = dfitpack.surfit_lsq(x, y, z, nx, tx1, ny, ty1,
w, xb, xe, yb, ye,
kx, ky, eps, lwrk2=1)
if ier > 10:
tx1, ty1, c, fp, ier = dfitpack.surfit_lsq(x, y, z,
nx, tx1, ny, ty1, w,
xb, xe, yb, ye,
kx, ky, eps, lwrk2=ier)
if ier in [0, -1, -2]: # normal return
pass
else:
if ier < -2:
deficiency = (nx-kx-1)*(ny-ky-1)+ier
message = _surfit_messages.get(-3) % (deficiency)
else:
message = _surfit_messages.get(ier, f'ier={ier}')
warnings.warn(message, stacklevel=2)
self.fp = fp
self.tck = tx1[:nx], ty1[:ny], c
self.degrees = kx, ky
class RectBivariateSpline(BivariateSpline):
"""
Bivariate spline approximation over a rectangular mesh.
Can be used for both smoothing and interpolating data.
Parameters
----------
x,y : array_like
1-D arrays of coordinates in strictly ascending order.
Evaluated points outside the data range will be extrapolated.
z : array_like
2-D array of data with shape (x.size,y.size).
bbox : array_like, optional
Sequence of length 4 specifying the boundary of the rectangular
approximation domain, which means the start and end spline knots of
each dimension are set by these values. By default,
``bbox=[min(x), max(x), min(y), max(y)]``.
kx, ky : ints, optional
Degrees of the bivariate spline. Default is 3.
s : float, optional
Positive smoothing factor defined for estimation condition:
``sum((z[i]-f(x[i], y[i]))**2, axis=0) <= s`` where f is a spline
function. Default is ``s=0``, which is for interpolation.
See Also
--------
BivariateSpline :
a base class for bivariate splines.
UnivariateSpline :
a smooth univariate spline to fit a given set of data points.
SmoothBivariateSpline :
a smoothing bivariate spline through the given points
LSQBivariateSpline :
a bivariate spline using weighted least-squares fitting
RectSphereBivariateSpline :
a bivariate spline over a rectangular mesh on a sphere
SmoothSphereBivariateSpline :
a smoothing bivariate spline in spherical coordinates
LSQSphereBivariateSpline :
a bivariate spline in spherical coordinates using weighted
least-squares fitting
bisplrep :
a function to find a bivariate B-spline representation of a surface
bisplev :
a function to evaluate a bivariate B-spline and its derivatives
Notes
-----
If the input data is such that input dimensions have incommensurate
units and differ by many orders of magnitude, the interpolant may have
numerical artifacts. Consider rescaling the data before interpolating.
"""
def __init__(self, x, y, z, bbox=[None] * 4, kx=3, ky=3, s=0):
x, y, bbox = ravel(x), ravel(y), ravel(bbox)
z = np.asarray(z)
if not np.all(diff(x) > 0.0):
raise ValueError('x must be strictly increasing')
if not np.all(diff(y) > 0.0):
raise ValueError('y must be strictly increasing')
if not x.size == z.shape[0]:
raise ValueError('x dimension of z must have same number of '
'elements as x')
if not y.size == z.shape[1]:
raise ValueError('y dimension of z must have same number of '
'elements as y')
if not bbox.shape == (4,):
raise ValueError('bbox shape should be (4,)')
if s is not None and not s >= 0.0:
raise ValueError("s should be s >= 0.0")
z = ravel(z)
xb, xe, yb, ye = bbox
with FITPACK_LOCK:
nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth(x, y, z, xb, xe, yb,
ye, kx, ky, s)
if ier not in [0, -1, -2]:
msg = _surfit_messages.get(ier, f'ier={ier}')
raise ValueError(msg)
self.fp = fp
self.tck = tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)]
self.degrees = kx, ky
_spherefit_messages = _surfit_messages.copy()
_spherefit_messages[10] = """
ERROR. On entry, the input data are controlled on validity. The following
restrictions must be satisfied:
-1<=iopt<=1, m>=2, ntest>=8 ,npest >=8, 0<eps<1,
0<=teta(i)<=pi, 0<=phi(i)<=2*pi, w(i)>0, i=1,...,m
lwrk1 >= 185+52*v+10*u+14*u*v+8*(u-1)*v**2+8*m
kwrk >= m+(ntest-7)*(npest-7)
if iopt=-1: 8<=nt<=ntest , 9<=np<=npest
0<tt(5)<tt(6)<...<tt(nt-4)<pi
0<tp(5)<tp(6)<...<tp(np-4)<2*pi
if iopt>=0: s>=0
if one of these conditions is found to be violated,control
is immediately repassed to the calling program. in that
case there is no approximation returned."""
_spherefit_messages[-3] = """
WARNING. The coefficients of the spline returned have been computed as the
minimal norm least-squares solution of a (numerically) rank
deficient system (deficiency=%i, rank=%i). Especially if the rank
deficiency, which is computed by 6+(nt-8)*(np-7)+ier, is large,
the results may be inaccurate. They could also seriously depend on
the value of eps."""
class SphereBivariateSpline(_BivariateSplineBase):
"""
Bivariate spline s(x,y) of degrees 3 on a sphere, calculated from a
given set of data points (theta,phi,r).
.. versionadded:: 0.11.0
See Also
--------
bisplrep :
a function to find a bivariate B-spline representation of a surface
bisplev :
a function to evaluate a bivariate B-spline and its derivatives
UnivariateSpline :
a smooth univariate spline to fit a given set of data points.
SmoothBivariateSpline :
a smoothing bivariate spline through the given points
LSQUnivariateSpline :
a univariate spline using weighted least-squares fitting
"""
def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True):
"""
Evaluate the spline or its derivatives at given positions.
Parameters
----------
theta, phi : array_like
Input coordinates.
If `grid` is False, evaluate the spline at points
``(theta[i], phi[i]), i=0, ..., len(x)-1``. Standard
Numpy broadcasting is obeyed.
If `grid` is True: evaluate spline at the grid points
defined by the coordinate arrays theta, phi. The arrays
must be sorted to increasing order.
The ordering of axes is consistent with
``np.meshgrid(..., indexing="ij")`` and inconsistent with the
default ordering ``np.meshgrid(..., indexing="xy")``.
dtheta : int, optional
Order of theta-derivative
.. versionadded:: 0.14.0
dphi : int
Order of phi-derivative
.. versionadded:: 0.14.0
grid : bool
Whether to evaluate the results on a grid spanned by the
input arrays, or at points specified by the input arrays.
.. versionadded:: 0.14.0
Examples
--------
Suppose that we want to use splines to interpolate a bivariate function on a
sphere. The value of the function is known on a grid of longitudes and
colatitudes.
>>> import numpy as np
>>> from scipy.interpolate import RectSphereBivariateSpline
>>> def f(theta, phi):
... return np.sin(theta) * np.cos(phi)
We evaluate the function on the grid. Note that the default indexing="xy"
of meshgrid would result in an unexpected (transposed) result after
interpolation.
>>> thetaarr = np.linspace(0, np.pi, 22)[1:-1]
>>> phiarr = np.linspace(0, 2 * np.pi, 21)[:-1]
>>> thetagrid, phigrid = np.meshgrid(thetaarr, phiarr, indexing="ij")
>>> zdata = f(thetagrid, phigrid)
We next set up the interpolator and use it to evaluate the function
on a finer grid.
>>> rsbs = RectSphereBivariateSpline(thetaarr, phiarr, zdata)
>>> thetaarr_fine = np.linspace(0, np.pi, 200)
>>> phiarr_fine = np.linspace(0, 2 * np.pi, 200)
>>> zdata_fine = rsbs(thetaarr_fine, phiarr_fine)
Finally we plot the coarsly-sampled input data alongside the
finely-sampled interpolated data to check that they agree.
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(1, 2, 1)
>>> ax2 = fig.add_subplot(1, 2, 2)
>>> ax1.imshow(zdata)
>>> ax2.imshow(zdata_fine)
>>> plt.show()
"""
theta = np.asarray(theta)
phi = np.asarray(phi)
if theta.size > 0 and (theta.min() < 0. or theta.max() > np.pi):
raise ValueError("requested theta out of bounds.")
return _BivariateSplineBase.__call__(self, theta, phi,
dx=dtheta, dy=dphi, grid=grid)
def ev(self, theta, phi, dtheta=0, dphi=0):
"""
Evaluate the spline at points
Returns the interpolated value at ``(theta[i], phi[i]),
i=0,...,len(theta)-1``.
Parameters
----------
theta, phi : array_like
Input coordinates. Standard Numpy broadcasting is obeyed.
The ordering of axes is consistent with
np.meshgrid(..., indexing="ij") and inconsistent with the
default ordering np.meshgrid(..., indexing="xy").
dtheta : int, optional
Order of theta-derivative
.. versionadded:: 0.14.0
dphi : int, optional
Order of phi-derivative
.. versionadded:: 0.14.0
Examples
--------
Suppose that we want to use splines to interpolate a bivariate function on a
sphere. The value of the function is known on a grid of longitudes and
colatitudes.
>>> import numpy as np
>>> from scipy.interpolate import RectSphereBivariateSpline
>>> def f(theta, phi):
... return np.sin(theta) * np.cos(phi)
We evaluate the function on the grid. Note that the default indexing="xy"
of meshgrid would result in an unexpected (transposed) result after
interpolation.
>>> thetaarr = np.linspace(0, np.pi, 22)[1:-1]
>>> phiarr = np.linspace(0, 2 * np.pi, 21)[:-1]
>>> thetagrid, phigrid = np.meshgrid(thetaarr, phiarr, indexing="ij")
>>> zdata = f(thetagrid, phigrid)
We next set up the interpolator and use it to evaluate the function
at points not on the original grid.
>>> rsbs = RectSphereBivariateSpline(thetaarr, phiarr, zdata)
>>> thetainterp = np.linspace(thetaarr[0], thetaarr[-1], 200)
>>> phiinterp = np.linspace(phiarr[0], phiarr[-1], 200)
>>> zinterp = rsbs.ev(thetainterp, phiinterp)
Finally we plot the original data for a diagonal slice through the
initial grid, and the spline approximation along the same slice.
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(1, 1, 1)
>>> ax1.plot(np.sin(thetaarr) * np.sin(phiarr), np.diag(zdata), "or")
>>> ax1.plot(np.sin(thetainterp) * np.sin(phiinterp), zinterp, "-b")
>>> plt.show()
"""
return self.__call__(theta, phi, dtheta=dtheta, dphi=dphi, grid=False)
class SmoothSphereBivariateSpline(SphereBivariateSpline):
"""
Smooth bivariate spline approximation in spherical coordinates.
.. versionadded:: 0.11.0
Parameters
----------
theta, phi, r : array_like
1-D sequences of data points (order is not important). Coordinates
must be given in radians. Theta must lie within the interval
``[0, pi]``, and phi must lie within the interval ``[0, 2pi]``.
w : array_like, optional
Positive 1-D sequence of weights.
s : float, optional
Positive smoothing factor defined for estimation condition:
``sum((w(i)*(r(i) - s(theta(i), phi(i))))**2, axis=0) <= s``
Default ``s=len(w)`` which should be a good value if ``1/w[i]`` is an
estimate of the standard deviation of ``r[i]``.
eps : float, optional
A threshold for determining the effective rank of an over-determined
linear system of equations. `eps` should have a value within the open
interval ``(0, 1)``, the default is 1e-16.
See Also
--------
BivariateSpline :
a base class for bivariate splines.
UnivariateSpline :
a smooth univariate spline to fit a given set of data points.
SmoothBivariateSpline :
a smoothing bivariate spline through the given points
LSQBivariateSpline :
a bivariate spline using weighted least-squares fitting
RectSphereBivariateSpline :
a bivariate spline over a rectangular mesh on a sphere
LSQSphereBivariateSpline :
a bivariate spline in spherical coordinates using weighted
least-squares fitting
RectBivariateSpline :
a bivariate spline over a rectangular mesh.
bisplrep :
a function to find a bivariate B-spline representation of a surface
bisplev :
a function to evaluate a bivariate B-spline and its derivatives
Notes
-----
For more information, see the FITPACK_ site about this function.
.. _FITPACK: http://www.netlib.org/dierckx/sphere.f
Examples
--------
Suppose we have global data on a coarse grid (the input data does not
have to be on a grid):
>>> import numpy as np
>>> theta = np.linspace(0., np.pi, 7)
>>> phi = np.linspace(0., 2*np.pi, 9)
>>> data = np.empty((theta.shape[0], phi.shape[0]))
>>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0.
>>> data[1:-1,1], data[1:-1,-1] = 1., 1.
>>> data[1,1:-1], data[-2,1:-1] = 1., 1.
>>> data[2:-2,2], data[2:-2,-2] = 2., 2.
>>> data[2,2:-2], data[-3,2:-2] = 2., 2.
>>> data[3,3:-2] = 3.
>>> data = np.roll(data, 4, 1)
We need to set up the interpolator object
>>> lats, lons = np.meshgrid(theta, phi)
>>> from scipy.interpolate import SmoothSphereBivariateSpline
>>> lut = SmoothSphereBivariateSpline(lats.ravel(), lons.ravel(),
... data.T.ravel(), s=3.5)
As a first test, we'll see what the algorithm returns when run on the
input coordinates
>>> data_orig = lut(theta, phi)
Finally we interpolate the data to a finer grid
>>> fine_lats = np.linspace(0., np.pi, 70)
>>> fine_lons = np.linspace(0., 2 * np.pi, 90)
>>> data_smth = lut(fine_lats, fine_lons)
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(131)
>>> ax1.imshow(data, interpolation='nearest')
>>> ax2 = fig.add_subplot(132)
>>> ax2.imshow(data_orig, interpolation='nearest')
>>> ax3 = fig.add_subplot(133)
>>> ax3.imshow(data_smth, interpolation='nearest')
>>> plt.show()
"""
def __init__(self, theta, phi, r, w=None, s=0., eps=1E-16):
theta, phi, r = np.asarray(theta), np.asarray(phi), np.asarray(r)
# input validation
if not ((0.0 <= theta).all() and (theta <= np.pi).all()):
raise ValueError('theta should be between [0, pi]')
if not ((0.0 <= phi).all() and (phi <= 2.0 * np.pi).all()):
raise ValueError('phi should be between [0, 2pi]')
if w is not None:
w = np.asarray(w)
if not (w >= 0.0).all():
raise ValueError('w should be positive')
if not s >= 0.0:
raise ValueError('s should be positive')
if not 0.0 < eps < 1.0:
raise ValueError('eps should be between (0, 1)')
with FITPACK_LOCK:
nt_, tt_, np_, tp_, c, fp, ier = dfitpack.spherfit_smth(theta, phi,
r, w=w, s=s,
eps=eps)
if ier not in [0, -1, -2]:
message = _spherefit_messages.get(ier, f'ier={ier}')
raise ValueError(message)
self.fp = fp
self.tck = tt_[:nt_], tp_[:np_], c[:(nt_ - 4) * (np_ - 4)]
self.degrees = (3, 3)
def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True):
theta = np.asarray(theta)
phi = np.asarray(phi)
if phi.size > 0 and (phi.min() < 0. or phi.max() > 2. * np.pi):
raise ValueError("requested phi out of bounds.")
return SphereBivariateSpline.__call__(self, theta, phi, dtheta=dtheta,
dphi=dphi, grid=grid)
class LSQSphereBivariateSpline(SphereBivariateSpline):
"""
Weighted least-squares bivariate spline approximation in spherical
coordinates.
Determines a smoothing bicubic spline according to a given
set of knots in the `theta` and `phi` directions.
.. versionadded:: 0.11.0
Parameters
----------
theta, phi, r : array_like
1-D sequences of data points (order is not important). Coordinates
must be given in radians. Theta must lie within the interval
``[0, pi]``, and phi must lie within the interval ``[0, 2pi]``.
tt, tp : array_like
Strictly ordered 1-D sequences of knots coordinates.
Coordinates must satisfy ``0 < tt[i] < pi``, ``0 < tp[i] < 2*pi``.
w : array_like, optional
Positive 1-D sequence of weights, of the same length as `theta`, `phi`
and `r`.
eps : float, optional
A threshold for determining the effective rank of an over-determined
linear system of equations. `eps` should have a value within the
open interval ``(0, 1)``, the default is 1e-16.
See Also
--------
BivariateSpline :
a base class for bivariate splines.
UnivariateSpline :
a smooth univariate spline to fit a given set of data points.
SmoothBivariateSpline :
a smoothing bivariate spline through the given points
LSQBivariateSpline :
a bivariate spline using weighted least-squares fitting
RectSphereBivariateSpline :
a bivariate spline over a rectangular mesh on a sphere
SmoothSphereBivariateSpline :
a smoothing bivariate spline in spherical coordinates
RectBivariateSpline :
a bivariate spline over a rectangular mesh.
bisplrep :
a function to find a bivariate B-spline representation of a surface
bisplev :
a function to evaluate a bivariate B-spline and its derivatives
Notes
-----
For more information, see the FITPACK_ site about this function.
.. _FITPACK: http://www.netlib.org/dierckx/sphere.f
Examples
--------
Suppose we have global data on a coarse grid (the input data does not
have to be on a grid):
>>> from scipy.interpolate import LSQSphereBivariateSpline
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> theta = np.linspace(0, np.pi, num=7)
>>> phi = np.linspace(0, 2*np.pi, num=9)
>>> data = np.empty((theta.shape[0], phi.shape[0]))
>>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0.
>>> data[1:-1,1], data[1:-1,-1] = 1., 1.
>>> data[1,1:-1], data[-2,1:-1] = 1., 1.
>>> data[2:-2,2], data[2:-2,-2] = 2., 2.
>>> data[2,2:-2], data[-3,2:-2] = 2., 2.
>>> data[3,3:-2] = 3.
>>> data = np.roll(data, 4, 1)
We need to set up the interpolator object. Here, we must also specify the
coordinates of the knots to use.
>>> lats, lons = np.meshgrid(theta, phi)
>>> knotst, knotsp = theta.copy(), phi.copy()
>>> knotst[0] += .0001
>>> knotst[-1] -= .0001
>>> knotsp[0] += .0001
>>> knotsp[-1] -= .0001
>>> lut = LSQSphereBivariateSpline(lats.ravel(), lons.ravel(),
... data.T.ravel(), knotst, knotsp)
As a first test, we'll see what the algorithm returns when run on the
input coordinates
>>> data_orig = lut(theta, phi)
Finally we interpolate the data to a finer grid
>>> fine_lats = np.linspace(0., np.pi, 70)
>>> fine_lons = np.linspace(0., 2*np.pi, 90)
>>> data_lsq = lut(fine_lats, fine_lons)
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(131)
>>> ax1.imshow(data, interpolation='nearest')
>>> ax2 = fig.add_subplot(132)
>>> ax2.imshow(data_orig, interpolation='nearest')
>>> ax3 = fig.add_subplot(133)
>>> ax3.imshow(data_lsq, interpolation='nearest')
>>> plt.show()
"""
def __init__(self, theta, phi, r, tt, tp, w=None, eps=1E-16):
theta, phi, r = np.asarray(theta), np.asarray(phi), np.asarray(r)
tt, tp = np.asarray(tt), np.asarray(tp)
if not ((0.0 <= theta).all() and (theta <= np.pi).all()):
raise ValueError('theta should be between [0, pi]')
if not ((0.0 <= phi).all() and (phi <= 2*np.pi).all()):
raise ValueError('phi should be between [0, 2pi]')
if not ((0.0 < tt).all() and (tt < np.pi).all()):
raise ValueError('tt should be between (0, pi)')
if not ((0.0 < tp).all() and (tp < 2*np.pi).all()):
raise ValueError('tp should be between (0, 2pi)')
if w is not None:
w = np.asarray(w)
if not (w >= 0.0).all():
raise ValueError('w should be positive')
if not 0.0 < eps < 1.0:
raise ValueError('eps should be between (0, 1)')
nt_, np_ = 8 + len(tt), 8 + len(tp)
tt_, tp_ = zeros((nt_,), float), zeros((np_,), float)
tt_[4:-4], tp_[4:-4] = tt, tp
tt_[-4:], tp_[-4:] = np.pi, 2. * np.pi
with FITPACK_LOCK:
tt_, tp_, c, fp, ier = dfitpack.spherfit_lsq(theta, phi, r, tt_, tp_,
w=w, eps=eps)
if ier > 0:
message = _spherefit_messages.get(ier, f'ier={ier}')
raise ValueError(message)
self.fp = fp
self.tck = tt_, tp_, c
self.degrees = (3, 3)
def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True):
theta = np.asarray(theta)
phi = np.asarray(phi)
if phi.size > 0 and (phi.min() < 0. or phi.max() > 2. * np.pi):
raise ValueError("requested phi out of bounds.")
return SphereBivariateSpline.__call__(self, theta, phi, dtheta=dtheta,
dphi=dphi, grid=grid)
_spfit_messages = _surfit_messages.copy()
_spfit_messages[10] = """
ERROR: on entry, the input data are controlled on validity
the following restrictions must be satisfied.
-1<=iopt(1)<=1, 0<=iopt(2)<=1, 0<=iopt(3)<=1,
-1<=ider(1)<=1, 0<=ider(2)<=1, ider(2)=0 if iopt(2)=0.
-1<=ider(3)<=1, 0<=ider(4)<=1, ider(4)=0 if iopt(3)=0.
mu >= mumin (see above), mv >= 4, nuest >=8, nvest >= 8,
kwrk>=5+mu+mv+nuest+nvest,
lwrk >= 12+nuest*(mv+nvest+3)+nvest*24+4*mu+8*mv+max(nuest,mv+nvest)
0< u(i-1)<u(i)< pi,i=2,..,mu,
-pi<=v(1)< pi, v(1)<v(i-1)<v(i)<v(1)+2*pi, i=3,...,mv
if iopt(1)=-1: 8<=nu<=min(nuest,mu+6+iopt(2)+iopt(3))
0<tu(5)<tu(6)<...<tu(nu-4)< pi
8<=nv<=min(nvest,mv+7)
v(1)<tv(5)<tv(6)<...<tv(nv-4)<v(1)+2*pi
the schoenberg-whitney conditions, i.e. there must be
subset of grid coordinates uu(p) and vv(q) such that
tu(p) < uu(p) < tu(p+4) ,p=1,...,nu-4
(iopt(2)=1 and iopt(3)=1 also count for a uu-value
tv(q) < vv(q) < tv(q+4) ,q=1,...,nv-4
(vv(q) is either a value v(j) or v(j)+2*pi)
if iopt(1)>=0: s>=0
if s=0: nuest>=mu+6+iopt(2)+iopt(3), nvest>=mv+7
if one of these conditions is found to be violated,control is
immediately repassed to the calling program. in that case there is no
approximation returned."""
class RectSphereBivariateSpline(SphereBivariateSpline):
"""
Bivariate spline approximation over a rectangular mesh on a sphere.
Can be used for smoothing data.
.. versionadded:: 0.11.0
Parameters
----------
u : array_like
1-D array of colatitude coordinates in strictly ascending order.
Coordinates must be given in radians and lie within the open interval
``(0, pi)``.
v : array_like
1-D array of longitude coordinates in strictly ascending order.
Coordinates must be given in radians. First element (``v[0]``) must lie
within the interval ``[-pi, pi)``. Last element (``v[-1]``) must satisfy
``v[-1] <= v[0] + 2*pi``.
r : array_like
2-D array of data with shape ``(u.size, v.size)``.
s : float, optional
Positive smoothing factor defined for estimation condition
(``s=0`` is for interpolation).
pole_continuity : bool or (bool, bool), optional
Order of continuity at the poles ``u=0`` (``pole_continuity[0]``) and
``u=pi`` (``pole_continuity[1]``). The order of continuity at the pole
will be 1 or 0 when this is True or False, respectively.
Defaults to False.
pole_values : float or (float, float), optional
Data values at the poles ``u=0`` and ``u=pi``. Either the whole
parameter or each individual element can be None. Defaults to None.
pole_exact : bool or (bool, bool), optional
Data value exactness at the poles ``u=0`` and ``u=pi``. If True, the
value is considered to be the right function value, and it will be
fitted exactly. If False, the value will be considered to be a data
value just like the other data values. Defaults to False.
pole_flat : bool or (bool, bool), optional
For the poles at ``u=0`` and ``u=pi``, specify whether or not the
approximation has vanishing derivatives. Defaults to False.
See Also
--------
BivariateSpline :
a base class for bivariate splines.
UnivariateSpline :
a smooth univariate spline to fit a given set of data points.
SmoothBivariateSpline :
a smoothing bivariate spline through the given points
LSQBivariateSpline :
a bivariate spline using weighted least-squares fitting
SmoothSphereBivariateSpline :
a smoothing bivariate spline in spherical coordinates
LSQSphereBivariateSpline :
a bivariate spline in spherical coordinates using weighted
least-squares fitting
RectBivariateSpline :
a bivariate spline over a rectangular mesh.
bisplrep :
a function to find a bivariate B-spline representation of a surface
bisplev :
a function to evaluate a bivariate B-spline and its derivatives
Notes
-----
Currently, only the smoothing spline approximation (``iopt[0] = 0`` and
``iopt[0] = 1`` in the FITPACK routine) is supported. The exact
least-squares spline approximation is not implemented yet.
When actually performing the interpolation, the requested `v` values must
lie within the same length 2pi interval that the original `v` values were
chosen from.
For more information, see the FITPACK_ site about this function.
.. _FITPACK: http://www.netlib.org/dierckx/spgrid.f
Examples
--------
Suppose we have global data on a coarse grid
>>> import numpy as np
>>> lats = np.linspace(10, 170, 9) * np.pi / 180.
>>> lons = np.linspace(0, 350, 18) * np.pi / 180.
>>> data = np.dot(np.atleast_2d(90. - np.linspace(-80., 80., 18)).T,
... np.atleast_2d(180. - np.abs(np.linspace(0., 350., 9)))).T
We want to interpolate it to a global one-degree grid
>>> new_lats = np.linspace(1, 180, 180) * np.pi / 180
>>> new_lons = np.linspace(1, 360, 360) * np.pi / 180
>>> new_lats, new_lons = np.meshgrid(new_lats, new_lons)
We need to set up the interpolator object
>>> from scipy.interpolate import RectSphereBivariateSpline
>>> lut = RectSphereBivariateSpline(lats, lons, data)
Finally we interpolate the data. The `RectSphereBivariateSpline` object
only takes 1-D arrays as input, therefore we need to do some reshaping.
>>> data_interp = lut.ev(new_lats.ravel(),
... new_lons.ravel()).reshape((360, 180)).T
Looking at the original and the interpolated data, one can see that the
interpolant reproduces the original data very well:
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(211)
>>> ax1.imshow(data, interpolation='nearest')
>>> ax2 = fig.add_subplot(212)
>>> ax2.imshow(data_interp, interpolation='nearest')
>>> plt.show()
Choosing the optimal value of ``s`` can be a delicate task. Recommended
values for ``s`` depend on the accuracy of the data values. If the user
has an idea of the statistical errors on the data, she can also find a
proper estimate for ``s``. By assuming that, if she specifies the
right ``s``, the interpolator will use a spline ``f(u,v)`` which exactly
reproduces the function underlying the data, she can evaluate
``sum((r(i,j)-s(u(i),v(j)))**2)`` to find a good estimate for this ``s``.
For example, if she knows that the statistical errors on her
``r(i,j)``-values are not greater than 0.1, she may expect that a good
``s`` should have a value not larger than ``u.size * v.size * (0.1)**2``.
If nothing is known about the statistical error in ``r(i,j)``, ``s`` must
be determined by trial and error. The best is then to start with a very
large value of ``s`` (to determine the least-squares polynomial and the
corresponding upper bound ``fp0`` for ``s``) and then to progressively
decrease the value of ``s`` (say by a factor 10 in the beginning, i.e.
``s = fp0 / 10, fp0 / 100, ...`` and more carefully as the approximation
shows more detail) to obtain closer fits.
The interpolation results for different values of ``s`` give some insight
into this process:
>>> fig2 = plt.figure()
>>> s = [3e9, 2e9, 1e9, 1e8]
>>> for idx, sval in enumerate(s, 1):
... lut = RectSphereBivariateSpline(lats, lons, data, s=sval)
... data_interp = lut.ev(new_lats.ravel(),
... new_lons.ravel()).reshape((360, 180)).T
... ax = fig2.add_subplot(2, 2, idx)
... ax.imshow(data_interp, interpolation='nearest')
... ax.set_title(f"s = {sval:g}")
>>> plt.show()
"""
def __init__(self, u, v, r, s=0., pole_continuity=False, pole_values=None,
pole_exact=False, pole_flat=False):
iopt = np.array([0, 0, 0], dtype=dfitpack_int)
ider = np.array([-1, 0, -1, 0], dtype=dfitpack_int)
if pole_values is None:
pole_values = (None, None)
elif isinstance(pole_values, (float, np.float32, np.float64)):
pole_values = (pole_values, pole_values)
if isinstance(pole_continuity, bool):
pole_continuity = (pole_continuity, pole_continuity)
if isinstance(pole_exact, bool):
pole_exact = (pole_exact, pole_exact)
if isinstance(pole_flat, bool):
pole_flat = (pole_flat, pole_flat)
r0, r1 = pole_values
iopt[1:] = pole_continuity
if r0 is None:
ider[0] = -1
else:
ider[0] = pole_exact[0]
if r1 is None:
ider[2] = -1
else:
ider[2] = pole_exact[1]
ider[1], ider[3] = pole_flat
u, v = np.ravel(u), np.ravel(v)
r = np.asarray(r)
if not (0.0 < u[0] and u[-1] < np.pi):
raise ValueError('u should be between (0, pi)')
if not -np.pi <= v[0] < np.pi:
raise ValueError('v[0] should be between [-pi, pi)')
if not v[-1] <= v[0] + 2*np.pi:
raise ValueError('v[-1] should be v[0] + 2pi or less ')
if not np.all(np.diff(u) > 0.0):
raise ValueError('u must be strictly increasing')
if not np.all(np.diff(v) > 0.0):
raise ValueError('v must be strictly increasing')
if not u.size == r.shape[0]:
raise ValueError('u dimension of r must have same number of '
'elements as u')
if not v.size == r.shape[1]:
raise ValueError('v dimension of r must have same number of '
'elements as v')
if pole_continuity[1] is False and pole_flat[1] is True:
raise ValueError('if pole_continuity is False, so must be '
'pole_flat')
if pole_continuity[0] is False and pole_flat[0] is True:
raise ValueError('if pole_continuity is False, so must be '
'pole_flat')
if not s >= 0.0:
raise ValueError('s should be positive')
r = np.ravel(r)
with FITPACK_LOCK:
nu, tu, nv, tv, c, fp, ier = dfitpack.regrid_smth_spher(iopt, ider,
u.copy(),
v.copy(),
r.copy(),
r0, r1, s)
if ier not in [0, -1, -2]:
msg = _spfit_messages.get(ier, f'ier={ier}')
raise ValueError(msg)
self.fp = fp
self.tck = tu[:nu], tv[:nv], c[:(nu - 4) * (nv-4)]
self.degrees = (3, 3)
self.v0 = v[0]
def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True):
theta = np.asarray(theta)
phi = np.asarray(phi)
return SphereBivariateSpline.__call__(self, theta, phi, dtheta=dtheta,
dphi=dphi, grid=grid)
|