File size: 36,710 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 |
""" Replicate FITPACK's logic for constructing smoothing spline functions and curves.
Currently provides analogs of splrep and splprep python routines, i.e.
curfit.f and parcur.f routines (the drivers are fpcurf.f and fppara.f, respectively)
The Fortran sources are from
https://github.com/scipy/scipy/blob/maintenance/1.11.x/scipy/interpolate/fitpack/
.. [1] P. Dierckx, "Algorithms for smoothing data with periodic and
parametric splines, Computer Graphics and Image Processing",
20 (1982) 171-184.
:doi:`10.1016/0146-664X(82)90043-0`.
.. [2] P. Dierckx, "Curve and surface fitting with splines", Monographs on
Numerical Analysis, Oxford University Press, 1993.
.. [3] P. Dierckx, "An algorithm for smoothing, differentiation and integration
of experimental data using spline functions",
Journal of Computational and Applied Mathematics, vol. I, no 3, p. 165 (1975).
https://doi.org/10.1016/0771-050X(75)90034-0
"""
import warnings
import operator
import numpy as np
from ._bsplines import (
_not_a_knot, make_interp_spline, BSpline, fpcheck, _lsq_solve_qr
)
from . import _dierckx # type: ignore[attr-defined]
# cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
# c part 1: determination of the number of knots and their position c
# c ************************************************************** c
#
# https://github.com/scipy/scipy/blob/maintenance/1.11.x/scipy/interpolate/fitpack/fpcurf.f#L31
# Hardcoded in curfit.f
TOL = 0.001
MAXIT = 20
def _get_residuals(x, y, t, k, w):
# FITPACK has (w*(spl(x)-y))**2; make_lsq_spline has w*(spl(x)-y)**2
w2 = w**2
# inline the relevant part of
# >>> spl = make_lsq_spline(x, y, w=w2, t=t, k=k)
# NB:
# 1. y is assumed to be 2D here. For 1D case (parametric=False),
# the call must have been preceded by y = y[:, None] (cf _validate_inputs)
# 2. We always sum the squares across axis=1:
# * For 1D (parametric=False), the last dimension has size one,
# so the summation is a no-op.
# * For 2D (parametric=True), the summation is actually how the
# 'residuals' are defined, see Eq. (42) in Dierckx1982
# (the reference is in the docstring of `class F`) below.
_, _, c = _lsq_solve_qr(x, y, t, k, w)
c = np.ascontiguousarray(c)
spl = BSpline(t, c, k)
return _compute_residuals(w2, spl(x), y)
def _compute_residuals(w2, splx, y):
delta = ((splx - y)**2).sum(axis=1)
return w2 * delta
def add_knot(x, t, k, residuals):
"""Add a new knot.
(Approximately) replicate FITPACK's logic:
1. split the `x` array into knot intervals, ``t(j+k) <= x(i) <= t(j+k+1)``
2. find the interval with the maximum sum of residuals
3. insert a new knot into the middle of that interval.
NB: a new knot is in fact an `x` value at the middle of the interval.
So *the knots are a subset of `x`*.
This routine is an analog of
https://github.com/scipy/scipy/blob/v1.11.4/scipy/interpolate/fitpack/fpcurf.f#L190-L215
(cf _split function)
and https://github.com/scipy/scipy/blob/v1.11.4/scipy/interpolate/fitpack/fpknot.f
"""
new_knot = _dierckx.fpknot(x, t, k, residuals)
idx_t = np.searchsorted(t, new_knot)
t_new = np.r_[t[:idx_t], new_knot, t[idx_t:]]
return t_new
def _validate_inputs(x, y, w, k, s, xb, xe, parametric):
"""Common input validations for generate_knots and make_splrep.
"""
x = np.asarray(x, dtype=float)
y = np.asarray(y, dtype=float)
if w is None:
w = np.ones_like(x, dtype=float)
else:
w = np.asarray(w, dtype=float)
if w.ndim != 1:
raise ValueError(f"{w.ndim = } not implemented yet.")
if (w < 0).any():
raise ValueError("Weights must be non-negative")
if y.ndim == 0 or y.ndim > 2:
raise ValueError(f"{y.ndim = } not supported (must be 1 or 2.)")
parametric = bool(parametric)
if parametric:
if y.ndim != 2:
raise ValueError(f"{y.ndim = } != 2 not supported with {parametric =}.")
else:
if y.ndim != 1:
raise ValueError(f"{y.ndim = } != 1 not supported with {parametric =}.")
# all _impl functions expect y.ndim = 2
y = y[:, None]
if w.shape[0] != x.shape[0]:
raise ValueError(f"Weights is incompatible: {w.shape =} != {x.shape}.")
if x.shape[0] != y.shape[0]:
raise ValueError(f"Data is incompatible: {x.shape = } and {y.shape = }.")
if x.ndim != 1 or (x[1:] < x[:-1]).any():
raise ValueError("Expect `x` to be an ordered 1D sequence.")
k = operator.index(k)
if s < 0:
raise ValueError(f"`s` must be non-negative. Got {s = }")
if xb is None:
xb = min(x)
if xe is None:
xe = max(x)
return x, y, w, k, s, xb, xe
def generate_knots(x, y, *, w=None, xb=None, xe=None, k=3, s=0, nest=None):
"""Replicate FITPACK's constructing the knot vector.
Parameters
----------
x, y : array_like
The data points defining the curve ``y = f(x)``.
w : array_like, optional
Weights.
xb : float, optional
The boundary of the approximation interval. If None (default),
is set to ``x[0]``.
xe : float, optional
The boundary of the approximation interval. If None (default),
is set to ``x[-1]``.
k : int, optional
The spline degree. Default is cubic, ``k = 3``.
s : float, optional
The smoothing factor. Default is ``s = 0``.
nest : int, optional
Stop when at least this many knots are placed.
Yields
------
t : ndarray
Knot vectors with an increasing number of knots.
The generator is finite: it stops when the smoothing critetion is
satisfied, or when then number of knots exceeds the maximum value:
the user-provided `nest` or `x.size + k + 1` --- which is the knot vector
for the interpolating spline.
Examples
--------
Generate some noisy data and fit a sequence of LSQ splines:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import make_lsq_spline, generate_knots
>>> rng = np.random.default_rng(12345)
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(size=50)
>>> knots = list(generate_knots(x, y, s=1e-10))
>>> for t in knots[::3]:
... spl = make_lsq_spline(x, y, t)
... xs = xs = np.linspace(-3, 3, 201)
... plt.plot(xs, spl(xs), '-', label=f'n = {len(t)}', lw=3, alpha=0.7)
>>> plt.plot(x, y, 'o', label='data')
>>> plt.plot(xs, np.exp(-xs**2), '--')
>>> plt.legend()
Note that increasing the number of knots make the result follow the data
more and more closely.
Also note that a step of the generator may add multiple knots:
>>> [len(t) for t in knots]
[8, 9, 10, 12, 16, 24, 40, 48, 52, 54]
Notes
-----
The routine generates successive knots vectors of increasing length, starting
from ``2*(k+1)`` to ``len(x) + k + 1``, trying to make knots more dense
in the regions where the deviation of the LSQ spline from data is large.
When the maximum number of knots, ``len(x) + k + 1`` is reached
(this happens when ``s`` is small and ``nest`` is large), the generator
stops, and the last output is the knots for the interpolation with the
not-a-knot boundary condition.
Knots are located at data sites, unless ``k`` is even and the number of knots
is ``len(x) + k + 1``. In that case, the last output of the generator
has internal knots at Greville sites, ``(x[1:] + x[:-1]) / 2``.
.. versionadded:: 1.15.0
"""
if s == 0:
if nest is not None or w is not None:
raise ValueError("s == 0 is interpolation only")
t = _not_a_knot(x, k)
yield t
return
x, y, w, k, s, xb, xe = _validate_inputs(
x, y, w, k, s, xb, xe, parametric=np.ndim(y) == 2
)
yield from _generate_knots_impl(x, y, w=w, xb=xb, xe=xe, k=k, s=s, nest=nest)
def _generate_knots_impl(x, y, *, w=None, xb=None, xe=None, k=3, s=0, nest=None):
acc = s * TOL
m = x.size # the number of data points
if nest is None:
# the max number of knots. This is set in _fitpack_impl.py line 274
# and fitpack.pyf line 198
nest = max(m + k + 1, 2*k + 3)
else:
if nest < 2*(k + 1):
raise ValueError(f"`nest` too small: {nest = } < 2*(k+1) = {2*(k+1)}.")
nmin = 2*(k + 1) # the number of knots for an LSQ polynomial approximation
nmax = m + k + 1 # the number of knots for the spline interpolation
# start from no internal knots
t = np.asarray([xb]*(k+1) + [xe]*(k+1), dtype=float)
n = t.shape[0]
fp = 0.0
fpold = 0.0
# c main loop for the different sets of knots. m is a safe upper bound
# c for the number of trials.
for _ in range(m):
yield t
# construct the LSQ spline with this set of knots
fpold = fp
residuals = _get_residuals(x, y, t, k, w=w)
fp = residuals.sum()
fpms = fp - s
# c test whether the approximation sinf(x) is an acceptable solution.
# c if f(p=inf) < s accept the choice of knots.
if (abs(fpms) < acc) or (fpms < 0):
return
# ### c increase the number of knots. ###
# c determine the number of knots nplus we are going to add.
if n == nmin:
# the first iteration
nplus = 1
else:
delta = fpold - fp
npl1 = int(nplus * fpms / delta) if delta > acc else nplus*2
nplus = min(nplus*2, max(npl1, nplus//2, 1))
# actually add knots
for j in range(nplus):
t = add_knot(x, t, k, residuals)
# check if we have enough knots already
n = t.shape[0]
# c if n = nmax, sinf(x) is an interpolating spline.
# c if n=nmax we locate the knots as for interpolation.
if n >= nmax:
t = _not_a_knot(x, k)
yield t
return
# c if n=nest we cannot increase the number of knots because of
# c the storage capacity limitation.
if n >= nest:
yield t
return
# recompute if needed
if j < nplus - 1:
residuals = _get_residuals(x, y, t, k, w=w)
# this should never be reached
return
# cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
# c part 2: determination of the smoothing spline sp(x). c
# c *************************************************** c
# c we have determined the number of knots and their position. c
# c we now compute the b-spline coefficients of the smoothing spline c
# c sp(x). the observation matrix a is extended by the rows of matrix c
# c b expressing that the kth derivative discontinuities of sp(x) at c
# c the interior knots t(k+2),...t(n-k-1) must be zero. the corres- c
# c ponding weights of these additional rows are set to 1/p. c
# c iteratively we then have to determine the value of p such that c
# c f(p)=sum((w(i)*(y(i)-sp(x(i))))**2) be = s. we already know that c
# c the least-squares kth degree polynomial corresponds to p=0, and c
# c that the least-squares spline corresponds to p=infinity. the c
# c iteration process which is proposed here, makes use of rational c
# c interpolation. since f(p) is a convex and strictly decreasing c
# c function of p, it can be approximated by a rational function c
# c r(p) = (u*p+v)/(p+w). three values of p(p1,p2,p3) with correspond- c
# c ing values of f(p) (f1=f(p1)-s,f2=f(p2)-s,f3=f(p3)-s) are used c
# c to calculate the new value of p such that r(p)=s. convergence is c
# c guaranteed by taking f1>0 and f3<0. c
# cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
def prodd(t, i, j, k):
res = 1.0
for s in range(k+2):
if i + s != j:
res *= (t[j] - t[i+s])
return res
def disc(t, k):
"""Discontinuity matrix: jumps of k-th derivatives of b-splines at internal knots.
See Eqs. (9)-(10) of Ref. [1], or, equivalently, Eq. (3.43) of Ref. [2].
This routine assumes internal knots are all simple (have multiplicity =1).
Parameters
----------
t : ndarray, 1D, shape(n,)
Knots.
k : int
The spline degree
Returns
-------
disc : ndarray, shape(n-2*k-1, k+2)
The jumps of the k-th derivatives of b-splines at internal knots,
``t[k+1], ...., t[n-k-1]``.
offset : ndarray, shape(2-2*k-1,)
Offsets
nc : int
Notes
-----
The normalization here follows FITPACK:
(https://github.com/scipy/scipy/blob/maintenance/1.11.x/scipy/interpolate/fitpack/fpdisc.f#L36)
The k-th derivative jumps are multiplied by a factor::
(delta / nrint)**k / k!
where ``delta`` is the length of the interval spanned by internal knots, and
``nrint`` is one less the number of internal knots (i.e., the number of
subintervals between them).
References
----------
.. [1] Paul Dierckx, Algorithms for smoothing data with periodic and parametric
splines, Computer Graphics and Image Processing, vol. 20, p. 171 (1982).
:doi:`10.1016/0146-664X(82)90043-0`
.. [2] Tom Lyche and Knut Morken, Spline methods,
http://www.uio.no/studier/emner/matnat/ifi/INF-MAT5340/v05/undervisningsmateriale/
"""
n = t.shape[0]
# the length of the base interval spanned by internal knots & the number
# of subintervas between these internal knots
delta = t[n - k - 1] - t[k]
nrint = n - 2*k - 1
matr = np.empty((nrint - 1, k + 2), dtype=float)
for jj in range(nrint - 1):
j = jj + k + 1
for ii in range(k + 2):
i = jj + ii
matr[jj, ii] = (t[i + k + 1] - t[i]) / prodd(t, i, j, k)
# NB: equivalent to
# row = [(t[i + k + 1] - t[i]) / prodd(t, i, j, k) for i in range(j-k-1, j+1)]
# assert (matr[j-k-1, :] == row).all()
# follow FITPACK
matr *= (delta/ nrint)**k
# make it packed
offset = np.array([i for i in range(nrint-1)], dtype=np.int64)
nc = n - k - 1
return matr, offset, nc
class F:
""" The r.h.s. of ``f(p) = s``.
Given scalar `p`, we solve the system of equations in the LSQ sense:
| A | @ | c | = | y |
| B / p | | 0 | | 0 |
where `A` is the matrix of b-splines and `b` is the discontinuity matrix
(the jumps of the k-th derivatives of b-spline basis elements at knots).
Since we do that repeatedly while minimizing over `p`, we QR-factorize
`A` only once and update the QR factorization only of the `B` rows of the
augmented matrix |A, B/p|.
The system of equations is Eq. (15) Ref. [1]_, the strategy and implementation
follows that of FITPACK, see specific links below.
References
----------
[1] P. Dierckx, Algorithms for Smoothing Data with Periodic and Parametric Splines,
COMPUTER GRAPHICS AND IMAGE PROCESSING vol. 20, pp 171-184 (1982.)
https://doi.org/10.1016/0146-664X(82)90043-0
"""
def __init__(self, x, y, t, k, s, w=None, *, R=None, Y=None):
self.x = x
self.y = y
self.t = t
self.k = k
w = np.ones_like(x, dtype=float) if w is None else w
if w.ndim != 1:
raise ValueError(f"{w.ndim = } != 1.")
self.w = w
self.s = s
if y.ndim != 2:
raise ValueError(f"F: expected y.ndim == 2, got {y.ndim = } instead.")
# ### precompute what we can ###
# https://github.com/scipy/scipy/blob/maintenance/1.11.x/scipy/interpolate/fitpack/fpcurf.f#L250
# c evaluate the discontinuity jump of the kth derivative of the
# c b-splines at the knots t(l),l=k+2,...n-k-1 and store in b.
b, b_offset, b_nc = disc(t, k)
# the QR factorization of the data matrix, if not provided
# NB: otherwise, must be consistent with x,y & s, but this is not checked
if R is None and Y is None:
R, Y, _ = _lsq_solve_qr(x, y, t, k, w)
# prepare to combine R and the discontinuity matrix (AB); also r.h.s. (YY)
# https://github.com/scipy/scipy/blob/maintenance/1.11.x/scipy/interpolate/fitpack/fpcurf.f#L269
# c the rows of matrix b with weight 1/p are rotated into the
# c triangularised observation matrix a which is stored in g.
nc = t.shape[0] - k - 1
nz = k + 1
if R.shape[1] != nz:
raise ValueError(f"Internal error: {R.shape[1] =} != {k+1 =}.")
# r.h.s. of the augmented system
z = np.zeros((b.shape[0], Y.shape[1]), dtype=float)
self.YY = np.r_[Y[:nc], z]
# l.h.s. of the augmented system
AA = np.zeros((nc + b.shape[0], self.k+2), dtype=float)
AA[:nc, :nz] = R[:nc, :]
# AA[nc:, :] = b.a / p # done in __call__(self, p)
self.AA = AA
self.offset = np.r_[np.arange(nc, dtype=np.int64), b_offset]
self.nc = nc
self.b = b
def __call__(self, p):
# https://github.com/scipy/scipy/blob/maintenance/1.11.x/scipy/interpolate/fitpack/fpcurf.f#L279
# c the row of matrix b is rotated into triangle by givens transformation
# copy the precomputed matrices over for in-place work
# R = PackedMatrix(self.AB.a.copy(), self.AB.offset.copy(), nc)
AB = self.AA.copy()
offset = self.offset.copy()
nc = self.nc
AB[nc:, :] = self.b / p
QY = self.YY.copy()
# heavy lifting happens here, in-place
_dierckx.qr_reduce(AB, offset, nc, QY, startrow=nc)
# solve for the coefficients
c = _dierckx.fpback(AB, nc, QY)
spl = BSpline(self.t, c, self.k)
residuals = _compute_residuals(self.w**2, spl(self.x), self.y)
fp = residuals.sum()
self.spl = spl # store it
return fp - self.s
def fprati(p1, f1, p2, f2, p3, f3):
"""The root of r(p) = (u*p + v) / (p + w) given three points and values,
(p1, f2), (p2, f2) and (p3, f3).
The FITPACK analog adjusts the bounds, and we do not
https://github.com/scipy/scipy/blob/maintenance/1.11.x/scipy/interpolate/fitpack/fprati.f
NB: FITPACK uses p < 0 to encode p=infinity. We just use the infinity itself.
Since the bracket is ``p1 <= p2 <= p3``, ``p3`` can be infinite (in fact,
this is what the minimizer starts with, ``p3=inf``).
"""
h1 = f1 * (f2 - f3)
h2 = f2 * (f3 - f1)
h3 = f3 * (f1 - f2)
if p3 == np.inf:
return -(p2*h1 + p1*h2) / h3
return -(p1*p2*h3 + p2*p3*h1 + p1*p3*h2) / (p1*h1 + p2*h2 + p3*h3)
class Bunch:
def __init__(self, **kwargs):
self.__dict__.update(**kwargs)
_iermesg = {
2: """error. a theoretically impossible result was found during
the iteration process for finding a smoothing spline with
fp = s. probably causes : s too small.
there is an approximation returned but the corresponding
weighted sum of squared residuals does not satisfy the
condition abs(fp-s)/s < tol.
""",
3: """error. the maximal number of iterations maxit (set to 20
by the program) allowed for finding a smoothing spline
with fp=s has been reached. probably causes : s too small
there is an approximation returned but the corresponding
weighted sum of squared residuals does not satisfy the
condition abs(fp-s)/s < tol.
"""
}
def root_rati(f, p0, bracket, acc):
"""Solve `f(p) = 0` using a rational function approximation.
In a nutshell, since the function f(p) is known to be monotonically decreasing, we
- maintain the bracket (p1, f1), (p2, f2) and (p3, f3)
- at each iteration step, approximate f(p) by a rational function
r(p) = (u*p + v) / (p + w)
and make a step to p_new to the root of f(p): r(p_new) = 0.
The coefficients u, v and w are found from the bracket values p1..3 and f1...3
The algorithm and implementation follows
https://github.com/scipy/scipy/blob/maintenance/1.11.x/scipy/interpolate/fitpack/fpcurf.f#L229
and
https://github.com/scipy/scipy/blob/maintenance/1.11.x/scipy/interpolate/fitpack/fppara.f#L290
Note that the latter is for parametric splines and the former is for 1D spline
functions. The minimization is indentical though [modulo a summation over the
dimensions in the computation of f(p)], so we reuse the minimizer for both
d=1 and d>1.
"""
# Magic values from
# https://github.com/scipy/scipy/blob/maintenance/1.11.x/scipy/interpolate/fitpack/fpcurf.f#L27
con1 = 0.1
con9 = 0.9
con4 = 0.04
# bracketing flags (follow FITPACK)
# https://github.com/scipy/scipy/blob/maintenance/1.11.x/scipy/interpolate/fitpack/fppara.f#L365
ich1, ich3 = 0, 0
(p1, f1), (p3, f3) = bracket
p = p0
for it in range(MAXIT):
p2, f2 = p, f(p)
# c test whether the approximation sp(x) is an acceptable solution.
if abs(f2) < acc:
ier, converged = 0, True
break
# c carry out one more step of the iteration process.
if ich3 == 0:
if f2 - f3 <= acc:
# c our initial choice of p is too large.
p3 = p2
f3 = f2
p = p*con4
if p <= p1:
p = p1*con9 + p2*con1
continue
else:
if f2 < 0:
ich3 = 1
if ich1 == 0:
if f1 - f2 <= acc:
# c our initial choice of p is too small
p1 = p2
f1 = f2
p = p/con4
if p3 != np.inf and p <= p3:
p = p2*con1 + p3*con9
continue
else:
if f2 > 0:
ich1 = 1
# c test whether the iteration process proceeds as theoretically expected.
# [f(p) should be monotonically decreasing]
if f1 <= f2 or f2 <= f3:
ier, converged = 2, False
break
# actually make the iteration step
p = fprati(p1, f1, p2, f2, p3, f3)
# c adjust the value of p1,f1,p3 and f3 such that f1 > 0 and f3 < 0.
if f2 < 0:
p3, f3 = p2, f2
else:
p1, f1 = p2, f2
else:
# not converged in MAXIT iterations
ier, converged = 3, False
if ier != 0:
warnings.warn(RuntimeWarning(_iermesg[ier]), stacklevel=2)
return Bunch(converged=converged, root=p, iterations=it, ier=ier)
def _make_splrep_impl(x, y, *, w=None, xb=None, xe=None, k=3, s=0, t=None, nest=None):
"""Shared infra for make_splrep and make_splprep.
"""
acc = s * TOL
m = x.size # the number of data points
if nest is None:
# the max number of knots. This is set in _fitpack_impl.py line 274
# and fitpack.pyf line 198
nest = max(m + k + 1, 2*k + 3)
else:
if nest < 2*(k + 1):
raise ValueError(f"`nest` too small: {nest = } < 2*(k+1) = {2*(k+1)}.")
if t is not None:
raise ValueError("Either supply `t` or `nest`.")
if t is None:
gen = _generate_knots_impl(x, y, w=w, k=k, s=s, xb=xb, xe=xe, nest=nest)
t = list(gen)[-1]
else:
fpcheck(x, t, k)
if t.shape[0] == 2 * (k + 1):
# nothing to optimize
_, _, c = _lsq_solve_qr(x, y, t, k, w)
return BSpline(t, c, k)
### solve ###
# c initial value for p.
# https://github.com/scipy/scipy/blob/maintenance/1.11.x/scipy/interpolate/fitpack/fpcurf.f#L253
R, Y, _ = _lsq_solve_qr(x, y, t, k, w)
nc = t.shape[0] -k -1
p = nc / R[:, 0].sum()
# ### bespoke solver ####
# initial conditions
# f(p=inf) : LSQ spline with knots t (XXX: reuse R, c)
residuals = _get_residuals(x, y, t, k, w=w)
fp = residuals.sum()
fpinf = fp - s
# f(p=0): LSQ spline without internal knots
residuals = _get_residuals(x, y, np.array([xb]*(k+1) + [xe]*(k+1)), k, w)
fp0 = residuals.sum()
fp0 = fp0 - s
# solve
bracket = (0, fp0), (np.inf, fpinf)
f = F(x, y, t, k=k, s=s, w=w, R=R, Y=Y)
_ = root_rati(f, p, bracket, acc)
# solve ALTERNATIVE: is roughly equivalent, gives slightly different results
# starting from scratch, that would have probably been tolerable;
# backwards compatibility dictates that we replicate the FITPACK minimizer though.
# f = F(x, y, t, k=k, s=s, w=w, R=R, Y=Y)
# from scipy.optimize import root_scalar
# res_ = root_scalar(f, x0=p, rtol=acc)
# assert res_.converged
# f.spl is the spline corresponding to the found `p` value
return f.spl
def make_splrep(x, y, *, w=None, xb=None, xe=None, k=3, s=0, t=None, nest=None):
r"""Find the B-spline representation of a 1D function.
Given the set of data points ``(x[i], y[i])``, determine a smooth spline
approximation of degree ``k`` on the interval ``xb <= x <= xe``.
Parameters
----------
x, y : array_like, shape (m,)
The data points defining a curve ``y = f(x)``.
w : array_like, shape (m,), optional
Strictly positive 1D array of weights, of the same length as `x` and `y`.
The weights are used in computing the weighted least-squares spline
fit. If the errors in the y values have standard-deviation given by the
vector ``d``, then `w` should be ``1/d``.
Default is ``np.ones(m)``.
xb, xe : float, optional
The interval to fit. If None, these default to ``x[0]`` and ``x[-1]``,
respectively.
k : int, optional
The degree of the spline fit. It is recommended to use cubic splines,
``k=3``, which is the default. Even values of `k` should be avoided,
especially with small `s` values.
s : float, optional
The smoothing condition. The amount of smoothness is determined by
satisfying the conditions::
sum((w * (g(x) - y))**2 ) <= s
where ``g(x)`` is the smoothed fit to ``(x, y)``. The user can use `s`
to control the tradeoff between closeness to data and smoothness of fit.
Larger `s` means more smoothing while smaller values of `s` indicate less
smoothing.
Recommended values of `s` depend on the weights, `w`. If the weights
represent the inverse of the standard deviation of `y`, then a good `s`
value should be found in the range ``(m-sqrt(2*m), m+sqrt(2*m))`` where
``m`` is the number of datapoints in `x`, `y`, and `w`.
Default is ``s = 0.0``, i.e. interpolation.
t : array_like, optional
The spline knots. If None (default), the knots will be constructed
automatically.
There must be at least ``2*k + 2`` and at most ``m + k + 1`` knots.
nest : int, optional
The target length of the knot vector. Should be between ``2*(k + 1)``
(the minimum number of knots for a degree-``k`` spline), and
``m + k + 1`` (the number of knots of the interpolating spline).
The actual number of knots returned by this routine may be slightly
larger than `nest`.
Default is None (no limit, add up to ``m + k + 1`` knots).
Returns
-------
spl : a `BSpline` instance
For `s=0`, ``spl(x) == y``.
For non-zero values of `s` the `spl` represents the smoothed approximation
to `(x, y)`, generally with fewer knots.
See Also
--------
generate_knots : is used under the hood for generating the knots
make_splprep : the analog of this routine for parametric curves
make_interp_spline : construct an interpolating spline (``s = 0``)
make_lsq_spline : construct the least-squares spline given the knot vector
splrep : a FITPACK analog of this routine
References
----------
.. [1] P. Dierckx, "Algorithms for smoothing data with periodic and
parametric splines, Computer Graphics and Image Processing",
20 (1982) 171-184.
.. [2] P. Dierckx, "Curve and surface fitting with splines", Monographs on
Numerical Analysis, Oxford University Press, 1993.
Notes
-----
This routine constructs the smoothing spline function, :math:`g(x)`, to
minimize the sum of jumps, :math:`D_j`, of the ``k``-th derivative at the
internal knots (:math:`x_b < t_i < x_e`), where
.. math::
D_i = g^{(k)}(t_i + 0) - g^{(k)}(t_i - 0)
Specifically, the routine constructs the spline function :math:`g(x)` which
minimizes
.. math::
\sum_i | D_i |^2 \to \mathrm{min}
provided that
.. math::
\sum_{j=1}^m (w_j \times (g(x_j) - y_j))^2 \leqslant s ,
where :math:`s > 0` is the input parameter.
In other words, we balance maximizing the smoothness (measured as the jumps
of the derivative, the first criterion), and the deviation of :math:`g(x_j)`
from the data :math:`y_j` (the second criterion).
Note that the summation in the second criterion is over all data points,
and in the first criterion it is over the internal spline knots (i.e.
those with ``xb < t[i] < xe``). The spline knots are in general a subset
of data, see `generate_knots` for details.
Also note the difference of this routine to `make_lsq_spline`: the latter
routine does not consider smoothness and simply solves a least-squares
problem
.. math::
\sum w_j \times (g(x_j) - y_j)^2 \to \mathrm{min}
for a spline function :math:`g(x)` with a _fixed_ knot vector ``t``.
.. versionadded:: 1.15.0
"""
if s == 0:
if t is not None or w is not None or nest is not None:
raise ValueError("s==0 is for interpolation only")
return make_interp_spline(x, y, k=k)
x, y, w, k, s, xb, xe = _validate_inputs(x, y, w, k, s, xb, xe, parametric=False)
spl = _make_splrep_impl(x, y, w=w, xb=xb, xe=xe, k=k, s=s, t=t, nest=nest)
# postprocess: squeeze out the last dimension: was added to simplify the internals.
spl.c = spl.c[:, 0]
return spl
def make_splprep(x, *, w=None, u=None, ub=None, ue=None, k=3, s=0, t=None, nest=None):
r"""
Find a smoothed B-spline representation of a parametric N-D curve.
Given a list of N 1D arrays, `x`, which represent a curve in
N-dimensional space parametrized by `u`, find a smooth approximating
spline curve ``g(u)``.
Parameters
----------
x : array_like, shape (m, ndim)
Sampled data points representing the curve in ``ndim`` dimensions.
The typical use is a list of 1D arrays, each of length ``m``.
w : array_like, shape(m,), optional
Strictly positive 1D array of weights.
The weights are used in computing the weighted least-squares spline
fit. If the errors in the `x` values have standard deviation given by
the vector d, then `w` should be 1/d. Default is ``np.ones(m)``.
u : array_like, optional
An array of parameter values for the curve in the parametric form.
If not given, these values are calculated automatically, according to::
v[0] = 0
v[i] = v[i-1] + distance(x[i], x[i-1])
u[i] = v[i] / v[-1]
ub, ue : float, optional
The end-points of the parameters interval. Default to ``u[0]`` and ``u[-1]``.
k : int, optional
Degree of the spline. Cubic splines, ``k=3``, are recommended.
Even values of `k` should be avoided especially with a small ``s`` value.
Default is ``k=3``
s : float, optional
A smoothing condition. The amount of smoothness is determined by
satisfying the conditions::
sum((w * (g(u) - x))**2) <= s,
where ``g(u)`` is the smoothed approximation to ``x``. The user can
use `s` to control the trade-off between closeness and smoothness
of fit. Larger ``s`` means more smoothing while smaller values of ``s``
indicate less smoothing.
Recommended values of ``s`` depend on the weights, ``w``. If the weights
represent the inverse of the standard deviation of ``x``, then a good
``s`` value should be found in the range ``(m - sqrt(2*m), m + sqrt(2*m))``,
where ``m`` is the number of data points in ``x`` and ``w``.
t : array_like, optional
The spline knots. If None (default), the knots will be constructed
automatically.
There must be at least ``2*k + 2`` and at most ``m + k + 1`` knots.
nest : int, optional
The target length of the knot vector. Should be between ``2*(k + 1)``
(the minimum number of knots for a degree-``k`` spline), and
``m + k + 1`` (the number of knots of the interpolating spline).
The actual number of knots returned by this routine may be slightly
larger than `nest`.
Default is None (no limit, add up to ``m + k + 1`` knots).
Returns
-------
spl : a `BSpline` instance
For `s=0`, ``spl(u) == x``.
For non-zero values of ``s``, `spl` represents the smoothed approximation
to ``x``, generally with fewer knots.
u : ndarray
The values of the parameters
See Also
--------
generate_knots : is used under the hood for generating the knots
make_splrep : the analog of this routine 1D functions
make_interp_spline : construct an interpolating spline (``s = 0``)
make_lsq_spline : construct the least-squares spline given the knot vector
splprep : a FITPACK analog of this routine
Notes
-----
Given a set of :math:`m` data points in :math:`D` dimensions, :math:`\vec{x}_j`,
with :math:`j=1, ..., m` and :math:`\vec{x}_j = (x_{j; 1}, ..., x_{j; D})`,
this routine constructs the parametric spline curve :math:`g_a(u)` with
:math:`a=1, ..., D`, to minimize the sum of jumps, :math:`D_{i; a}`, of the
``k``-th derivative at the internal knots (:math:`u_b < t_i < u_e`), where
.. math::
D_{i; a} = g_a^{(k)}(t_i + 0) - g_a^{(k)}(t_i - 0)
Specifically, the routine constructs the spline function :math:`g(u)` which
minimizes
.. math::
\sum_i \sum_{a=1}^D | D_{i; a} |^2 \to \mathrm{min}
provided that
.. math::
\sum_{j=1}^m \sum_{a=1}^D (w_j \times (g_a(u_j) - x_{j; a}))^2 \leqslant s
where :math:`u_j` is the value of the parameter corresponding to the data point
:math:`(x_{j; 1}, ..., x_{j; D})`, and :math:`s > 0` is the input parameter.
In other words, we balance maximizing the smoothness (measured as the jumps
of the derivative, the first criterion), and the deviation of :math:`g(u_j)`
from the data :math:`x_j` (the second criterion).
Note that the summation in the second criterion is over all data points,
and in the first criterion it is over the internal spline knots (i.e.
those with ``ub < t[i] < ue``). The spline knots are in general a subset
of data, see `generate_knots` for details.
.. versionadded:: 1.15.0
References
----------
.. [1] P. Dierckx, "Algorithms for smoothing data with periodic and
parametric splines, Computer Graphics and Image Processing",
20 (1982) 171-184.
.. [2] P. Dierckx, "Curve and surface fitting with splines", Monographs on
Numerical Analysis, Oxford University Press, 1993.
"""
x = np.stack(x, axis=1)
# construct the default parametrization of the curve
if u is None:
dp = (x[1:, :] - x[:-1, :])**2
u = np.sqrt((dp).sum(axis=1)).cumsum()
u = np.r_[0, u / u[-1]]
if s == 0:
if t is not None or w is not None or nest is not None:
raise ValueError("s==0 is for interpolation only")
return make_interp_spline(u, x.T, k=k, axis=1), u
u, x, w, k, s, ub, ue = _validate_inputs(u, x, w, k, s, ub, ue, parametric=True)
spl = _make_splrep_impl(u, x, w=w, xb=ub, xe=ue, k=k, s=s, t=t, nest=nest)
# posprocess: `axis=1` so that spl(u).shape == np.shape(x)
# when `x` is a list of 1D arrays (cf original splPrep)
cc = spl.c.T
spl1 = BSpline(spl.t, cc, spl.k, axis=1)
return spl1, u
|