File size: 12,941 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
"""LU decomposition functions."""

from warnings import warn

from numpy import asarray, asarray_chkfinite
import numpy as np
from itertools import product

# Local imports
from ._misc import _datacopied, LinAlgWarning
from .lapack import get_lapack_funcs
from ._decomp_lu_cython import lu_dispatcher

lapack_cast_dict = {x: ''.join([y for y in 'fdFD' if np.can_cast(x, y)])
                    for x in np.typecodes['All']}

__all__ = ['lu', 'lu_solve', 'lu_factor']


def lu_factor(a, overwrite_a=False, check_finite=True):
    """
    Compute pivoted LU decomposition of a matrix.

    The decomposition is::

        A = P L U

    where P is a permutation matrix, L lower triangular with unit
    diagonal elements, and U upper triangular.

    Parameters
    ----------
    a : (M, N) array_like
        Matrix to decompose
    overwrite_a : bool, optional
        Whether to overwrite data in A (may increase performance)
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    lu : (M, N) ndarray
        Matrix containing U in its upper triangle, and L in its lower triangle.
        The unit diagonal elements of L are not stored.
    piv : (K,) ndarray
        Pivot indices representing the permutation matrix P:
        row i of matrix was interchanged with row piv[i].
        Of shape ``(K,)``, with ``K = min(M, N)``.

    See Also
    --------
    lu : gives lu factorization in more user-friendly format
    lu_solve : solve an equation system using the LU factorization of a matrix

    Notes
    -----
    This is a wrapper to the ``*GETRF`` routines from LAPACK. Unlike
    :func:`lu`, it outputs the L and U factors into a single array
    and returns pivot indices instead of a permutation matrix.

    While the underlying ``*GETRF`` routines return 1-based pivot indices, the
    ``piv`` array returned by ``lu_factor`` contains 0-based indices.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import lu_factor
    >>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
    >>> lu, piv = lu_factor(A)
    >>> piv
    array([2, 2, 3, 3], dtype=int32)

    Convert LAPACK's ``piv`` array to NumPy index and test the permutation

    >>> def pivot_to_permutation(piv):
    ...     perm = np.arange(len(piv))
    ...     for i in range(len(piv)):
    ...         perm[i], perm[piv[i]] = perm[piv[i]], perm[i]
    ...     return perm
    ...
    >>> p_inv = pivot_to_permutation(piv)
    >>> p_inv
    array([2, 0, 3, 1])
    >>> L, U = np.tril(lu, k=-1) + np.eye(4), np.triu(lu)
    >>> np.allclose(A[p_inv] - L @ U, np.zeros((4, 4)))
    True

    The P matrix in P L U is defined by the inverse permutation and
    can be recovered using argsort:

    >>> p = np.argsort(p_inv)
    >>> p
    array([1, 3, 0, 2])
    >>> np.allclose(A - L[p] @ U, np.zeros((4, 4)))
    True

    or alternatively:

    >>> P = np.eye(4)[p]
    >>> np.allclose(A - P @ L @ U, np.zeros((4, 4)))
    True
    """
    if check_finite:
        a1 = asarray_chkfinite(a)
    else:
        a1 = asarray(a)

    # accommodate empty arrays
    if a1.size == 0:
        lu = np.empty_like(a1)
        piv = np.arange(0, dtype=np.int32)
        return lu, piv

    overwrite_a = overwrite_a or (_datacopied(a1, a))

    getrf, = get_lapack_funcs(('getrf',), (a1,))
    lu, piv, info = getrf(a1, overwrite_a=overwrite_a)
    if info < 0:
        raise ValueError('illegal value in %dth argument of '
                         'internal getrf (lu_factor)' % -info)
    if info > 0:
        warn("Diagonal number %d is exactly zero. Singular matrix." % info,
             LinAlgWarning, stacklevel=2)
    return lu, piv


def lu_solve(lu_and_piv, b, trans=0, overwrite_b=False, check_finite=True):
    """Solve an equation system, a x = b, given the LU factorization of a

    Parameters
    ----------
    (lu, piv)
        Factorization of the coefficient matrix a, as given by lu_factor.
        In particular piv are 0-indexed pivot indices.
    b : array
        Right-hand side
    trans : {0, 1, 2}, optional
        Type of system to solve:

        =====  =========
        trans  system
        =====  =========
        0      a x   = b
        1      a^T x = b
        2      a^H x = b
        =====  =========
    overwrite_b : bool, optional
        Whether to overwrite data in b (may increase performance)
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    x : array
        Solution to the system

    See Also
    --------
    lu_factor : LU factorize a matrix

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import lu_factor, lu_solve
    >>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
    >>> b = np.array([1, 1, 1, 1])
    >>> lu, piv = lu_factor(A)
    >>> x = lu_solve((lu, piv), b)
    >>> np.allclose(A @ x - b, np.zeros((4,)))
    True

    """
    (lu, piv) = lu_and_piv
    if check_finite:
        b1 = asarray_chkfinite(b)
    else:
        b1 = asarray(b)

    overwrite_b = overwrite_b or _datacopied(b1, b)

    if lu.shape[0] != b1.shape[0]:
        raise ValueError(f"Shapes of lu {lu.shape} and b {b1.shape} are incompatible")

    # accommodate empty arrays
    if b1.size == 0:
        m = lu_solve((np.eye(2, dtype=lu.dtype), [0, 1]), np.ones(2, dtype=b.dtype))
        return np.empty_like(b1, dtype=m.dtype)

    getrs, = get_lapack_funcs(('getrs',), (lu, b1))
    x, info = getrs(lu, piv, b1, trans=trans, overwrite_b=overwrite_b)
    if info == 0:
        return x
    raise ValueError('illegal value in %dth argument of internal gesv|posv'
                     % -info)


def lu(a, permute_l=False, overwrite_a=False, check_finite=True,
       p_indices=False):
    """
    Compute LU decomposition of a matrix with partial pivoting.

    The decomposition satisfies::

        A = P @ L @ U

    where ``P`` is a permutation matrix, ``L`` lower triangular with unit
    diagonal elements, and ``U`` upper triangular. If `permute_l` is set to
    ``True`` then ``L`` is returned already permuted and hence satisfying
    ``A = L @ U``.

    Parameters
    ----------
    a : (M, N) array_like
        Array to decompose
    permute_l : bool, optional
        Perform the multiplication P*L (Default: do not permute)
    overwrite_a : bool, optional
        Whether to overwrite data in a (may improve performance)
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.
    p_indices : bool, optional
        If ``True`` the permutation information is returned as row indices.
        The default is ``False`` for backwards-compatibility reasons.

    Returns
    -------
    **(If `permute_l` is ``False``)**

    p : (..., M, M) ndarray
        Permutation arrays or vectors depending on `p_indices`
    l : (..., M, K) ndarray
        Lower triangular or trapezoidal array with unit diagonal.
        ``K = min(M, N)``
    u : (..., K, N) ndarray
        Upper triangular or trapezoidal array

    **(If `permute_l` is ``True``)**

    pl : (..., M, K) ndarray
        Permuted L matrix.
        ``K = min(M, N)``
    u : (..., K, N) ndarray
        Upper triangular or trapezoidal array

    Notes
    -----
    Permutation matrices are costly since they are nothing but row reorder of
    ``L`` and hence indices are strongly recommended to be used instead if the
    permutation is required. The relation in the 2D case then becomes simply
    ``A = L[P, :] @ U``. In higher dimensions, it is better to use `permute_l`
    to avoid complicated indexing tricks.

    In 2D case, if one has the indices however, for some reason, the
    permutation matrix is still needed then it can be constructed by
    ``np.eye(M)[P, :]``.

    Examples
    --------

    >>> import numpy as np
    >>> from scipy.linalg import lu
    >>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
    >>> p, l, u = lu(A)
    >>> np.allclose(A, p @ l @ u)
    True
    >>> p  # Permutation matrix
    array([[0., 1., 0., 0.],  # Row index 1
           [0., 0., 0., 1.],  # Row index 3
           [1., 0., 0., 0.],  # Row index 0
           [0., 0., 1., 0.]]) # Row index 2
    >>> p, _, _ = lu(A, p_indices=True)
    >>> p
    array([1, 3, 0, 2], dtype=int32)  # as given by row indices above
    >>> np.allclose(A, l[p, :] @ u)
    True

    We can also use nd-arrays, for example, a demonstration with 4D array:

    >>> rng = np.random.default_rng()
    >>> A = rng.uniform(low=-4, high=4, size=[3, 2, 4, 8])
    >>> p, l, u = lu(A)
    >>> p.shape, l.shape, u.shape
    ((3, 2, 4, 4), (3, 2, 4, 4), (3, 2, 4, 8))
    >>> np.allclose(A, p @ l @ u)
    True
    >>> PL, U = lu(A, permute_l=True)
    >>> np.allclose(A, PL @ U)
    True

    """
    a1 = np.asarray_chkfinite(a) if check_finite else np.asarray(a)
    if a1.ndim < 2:
        raise ValueError('The input array must be at least two-dimensional.')

    # Also check if dtype is LAPACK compatible
    if a1.dtype.char not in 'fdFD':
        dtype_char = lapack_cast_dict[a1.dtype.char]
        if not dtype_char:  # No casting possible
            raise TypeError(f'The dtype {a1.dtype} cannot be cast '
                            'to float(32, 64) or complex(64, 128).')

        a1 = a1.astype(dtype_char[0])  # makes a copy, free to scratch
        overwrite_a = True

    *nd, m, n = a1.shape
    k = min(m, n)
    real_dchar = 'f' if a1.dtype.char in 'fF' else 'd'

    # Empty input
    if min(*a1.shape) == 0:
        if permute_l:
            PL = np.empty(shape=[*nd, m, k], dtype=a1.dtype)
            U = np.empty(shape=[*nd, k, n], dtype=a1.dtype)
            return PL, U
        else:
            P = (np.empty([*nd, 0], dtype=np.int32) if p_indices else
                 np.empty([*nd, 0, 0], dtype=real_dchar))
            L = np.empty(shape=[*nd, m, k], dtype=a1.dtype)
            U = np.empty(shape=[*nd, k, n], dtype=a1.dtype)
            return P, L, U

    # Scalar case
    if a1.shape[-2:] == (1, 1):
        if permute_l:
            return np.ones_like(a1), (a1 if overwrite_a else a1.copy())
        else:
            P = (np.zeros(shape=[*nd, m], dtype=int) if p_indices
                 else np.ones_like(a1))
            return P, np.ones_like(a1), (a1 if overwrite_a else a1.copy())

    # Then check overwrite permission
    if not _datacopied(a1, a):  # "a"  still alive through "a1"
        if not overwrite_a:
            # Data belongs to "a" so make a copy
            a1 = a1.copy(order='C')
        #  else: Do nothing we'll use "a" if possible
    # else:  a1 has its own data thus free to scratch

    # Then layout checks, might happen that overwrite is allowed but original
    # array was read-only or non-contiguous.

    if not (a1.flags['C_CONTIGUOUS'] and a1.flags['WRITEABLE']):
        a1 = a1.copy(order='C')

    if not nd:  # 2D array

        p = np.empty(m, dtype=np.int32)
        u = np.zeros([k, k], dtype=a1.dtype)
        lu_dispatcher(a1, u, p, permute_l)
        P, L, U = (p, a1, u) if m > n else (p, u, a1)

    else:  # Stacked array

        # Prepare the contiguous data holders
        P = np.empty([*nd, m], dtype=np.int32)  # perm vecs

        if m > n:  # Tall arrays, U will be created
            U = np.zeros([*nd, k, k], dtype=a1.dtype)
            for ind in product(*[range(x) for x in a1.shape[:-2]]):
                lu_dispatcher(a1[ind], U[ind], P[ind], permute_l)
            L = a1

        else:  # Fat arrays, L will be created
            L = np.zeros([*nd, k, k], dtype=a1.dtype)
            for ind in product(*[range(x) for x in a1.shape[:-2]]):
                lu_dispatcher(a1[ind], L[ind], P[ind], permute_l)
            U = a1

    # Convert permutation vecs to permutation arrays
    # permute_l=False needed to enter here to avoid wasted efforts
    if (not p_indices) and (not permute_l):
        if nd:
            Pa = np.zeros([*nd, m, m], dtype=real_dchar)
            # An unreadable index hack - One-hot encoding for perm matrices
            nd_ix = np.ix_(*([np.arange(x) for x in nd]+[np.arange(m)]))
            Pa[(*nd_ix, P)] = 1
            P = Pa
        else:  # 2D case
            Pa = np.zeros([m, m], dtype=real_dchar)
            Pa[np.arange(m), P] = 1
            P = Pa

    return (L, U) if permute_l else (P, L, U)