File size: 16,809 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
"""SVD decomposition functions."""
import numpy as np
from numpy import zeros, r_, diag, dot, arccos, arcsin, where, clip

# Local imports.
from ._misc import LinAlgError, _datacopied
from .lapack import get_lapack_funcs, _compute_lwork
from ._decomp import _asarray_validated

__all__ = ['svd', 'svdvals', 'diagsvd', 'orth', 'subspace_angles', 'null_space']


def svd(a, full_matrices=True, compute_uv=True, overwrite_a=False,
        check_finite=True, lapack_driver='gesdd'):
    """
    Singular Value Decomposition.

    Factorizes the matrix `a` into two unitary matrices ``U`` and ``Vh``, and
    a 1-D array ``s`` of singular values (real, non-negative) such that
    ``a == U @ S @ Vh``, where ``S`` is a suitably shaped matrix of zeros with
    main diagonal ``s``.

    Parameters
    ----------
    a : (M, N) array_like
        Matrix to decompose.
    full_matrices : bool, optional
        If True (default), `U` and `Vh` are of shape ``(M, M)``, ``(N, N)``.
        If False, the shapes are ``(M, K)`` and ``(K, N)``, where
        ``K = min(M, N)``.
    compute_uv : bool, optional
        Whether to compute also ``U`` and ``Vh`` in addition to ``s``.
        Default is True.
    overwrite_a : bool, optional
        Whether to overwrite `a`; may improve performance.
        Default is False.
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.
    lapack_driver : {'gesdd', 'gesvd'}, optional
        Whether to use the more efficient divide-and-conquer approach
        (``'gesdd'``) or general rectangular approach (``'gesvd'``)
        to compute the SVD. MATLAB and Octave use the ``'gesvd'`` approach.
        Default is ``'gesdd'``.

    Returns
    -------
    U : ndarray
        Unitary matrix having left singular vectors as columns.
        Of shape ``(M, M)`` or ``(M, K)``, depending on `full_matrices`.
    s : ndarray
        The singular values, sorted in non-increasing order.
        Of shape (K,), with ``K = min(M, N)``.
    Vh : ndarray
        Unitary matrix having right singular vectors as rows.
        Of shape ``(N, N)`` or ``(K, N)`` depending on `full_matrices`.

    For ``compute_uv=False``, only ``s`` is returned.

    Raises
    ------
    LinAlgError
        If SVD computation does not converge.

    See Also
    --------
    svdvals : Compute singular values of a matrix.
    diagsvd : Construct the Sigma matrix, given the vector s.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import linalg
    >>> rng = np.random.default_rng()
    >>> m, n = 9, 6
    >>> a = rng.standard_normal((m, n)) + 1.j*rng.standard_normal((m, n))
    >>> U, s, Vh = linalg.svd(a)
    >>> U.shape,  s.shape, Vh.shape
    ((9, 9), (6,), (6, 6))

    Reconstruct the original matrix from the decomposition:

    >>> sigma = np.zeros((m, n))
    >>> for i in range(min(m, n)):
    ...     sigma[i, i] = s[i]
    >>> a1 = np.dot(U, np.dot(sigma, Vh))
    >>> np.allclose(a, a1)
    True

    Alternatively, use ``full_matrices=False`` (notice that the shape of
    ``U`` is then ``(m, n)`` instead of ``(m, m)``):

    >>> U, s, Vh = linalg.svd(a, full_matrices=False)
    >>> U.shape, s.shape, Vh.shape
    ((9, 6), (6,), (6, 6))
    >>> S = np.diag(s)
    >>> np.allclose(a, np.dot(U, np.dot(S, Vh)))
    True

    >>> s2 = linalg.svd(a, compute_uv=False)
    >>> np.allclose(s, s2)
    True

    """
    a1 = _asarray_validated(a, check_finite=check_finite)
    if len(a1.shape) != 2:
        raise ValueError('expected matrix')
    m, n = a1.shape

    # accommodate empty matrix
    if a1.size == 0:
        u0, s0, v0 = svd(np.eye(2, dtype=a1.dtype))

        s = np.empty_like(a1, shape=(0,), dtype=s0.dtype)
        if full_matrices:
            u = np.empty_like(a1, shape=(m, m), dtype=u0.dtype)
            u[...] = np.identity(m)
            v = np.empty_like(a1, shape=(n, n), dtype=v0.dtype)
            v[...] = np.identity(n)
        else:
            u = np.empty_like(a1, shape=(m, 0), dtype=u0.dtype)
            v = np.empty_like(a1, shape=(0, n), dtype=v0.dtype)
        if compute_uv:
            return u, s, v
        else:
            return s

    overwrite_a = overwrite_a or (_datacopied(a1, a))

    if not isinstance(lapack_driver, str):
        raise TypeError('lapack_driver must be a string')
    if lapack_driver not in ('gesdd', 'gesvd'):
        message = f'lapack_driver must be "gesdd" or "gesvd", not "{lapack_driver}"'
        raise ValueError(message)

    if compute_uv:
        # XXX: revisit int32 when ILP64 lapack becomes a thing
        max_mn, min_mn = (m, n) if m > n else (n, m)
        if full_matrices:
            if max_mn*max_mn > np.iinfo(np.int32).max:
                raise ValueError(f"Indexing a matrix size {max_mn} x {max_mn} "
                                  "would incur integer overflow in LAPACK. "
                                  "Try using numpy.linalg.svd instead.")
        else:
            sz = max(m * min_mn, n * min_mn)
            if max(m * min_mn, n * min_mn) > np.iinfo(np.int32).max:
                raise ValueError(f"Indexing a matrix of {sz} elements would "
                                  "incur an in integer overflow in LAPACK. "
                                  "Try using numpy.linalg.svd instead.")

    funcs = (lapack_driver, lapack_driver + '_lwork')
    # XXX: As of 1.14.1 it isn't possible to build SciPy with ILP64,
    # so the following line always yields a LP64 (32-bit pointer size) variant
    gesXd, gesXd_lwork = get_lapack_funcs(funcs, (a1,), ilp64="preferred")

    # compute optimal lwork
    lwork = _compute_lwork(gesXd_lwork, a1.shape[0], a1.shape[1],
                           compute_uv=compute_uv, full_matrices=full_matrices)

    # perform decomposition
    u, s, v, info = gesXd(a1, compute_uv=compute_uv, lwork=lwork,
                          full_matrices=full_matrices, overwrite_a=overwrite_a)

    if info > 0:
        raise LinAlgError("SVD did not converge")
    if info < 0:
        raise ValueError('illegal value in %dth argument of internal gesdd'
                         % -info)
    if compute_uv:
        return u, s, v
    else:
        return s


def svdvals(a, overwrite_a=False, check_finite=True):
    """
    Compute singular values of a matrix.

    Parameters
    ----------
    a : (M, N) array_like
        Matrix to decompose.
    overwrite_a : bool, optional
        Whether to overwrite `a`; may improve performance.
        Default is False.
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    s : (min(M, N),) ndarray
        The singular values, sorted in decreasing order.

    Raises
    ------
    LinAlgError
        If SVD computation does not converge.

    See Also
    --------
    svd : Compute the full singular value decomposition of a matrix.
    diagsvd : Construct the Sigma matrix, given the vector s.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import svdvals
    >>> m = np.array([[1.0, 0.0],
    ...               [2.0, 3.0],
    ...               [1.0, 1.0],
    ...               [0.0, 2.0],
    ...               [1.0, 0.0]])
    >>> svdvals(m)
    array([ 4.28091555,  1.63516424])

    We can verify the maximum singular value of `m` by computing the maximum
    length of `m.dot(u)` over all the unit vectors `u` in the (x,y) plane.
    We approximate "all" the unit vectors with a large sample. Because
    of linearity, we only need the unit vectors with angles in [0, pi].

    >>> t = np.linspace(0, np.pi, 2000)
    >>> u = np.array([np.cos(t), np.sin(t)])
    >>> np.linalg.norm(m.dot(u), axis=0).max()
    4.2809152422538475

    `p` is a projection matrix with rank 1. With exact arithmetic,
    its singular values would be [1, 0, 0, 0].

    >>> v = np.array([0.1, 0.3, 0.9, 0.3])
    >>> p = np.outer(v, v)
    >>> svdvals(p)
    array([  1.00000000e+00,   2.02021698e-17,   1.56692500e-17,
             8.15115104e-34])

    The singular values of an orthogonal matrix are all 1. Here, we
    create a random orthogonal matrix by using the `rvs()` method of
    `scipy.stats.ortho_group`.

    >>> from scipy.stats import ortho_group
    >>> orth = ortho_group.rvs(4)
    >>> svdvals(orth)
    array([ 1.,  1.,  1.,  1.])

    """
    return svd(a, compute_uv=0, overwrite_a=overwrite_a,
               check_finite=check_finite)


def diagsvd(s, M, N):
    """
    Construct the sigma matrix in SVD from singular values and size M, N.

    Parameters
    ----------
    s : (M,) or (N,) array_like
        Singular values
    M : int
        Size of the matrix whose singular values are `s`.
    N : int
        Size of the matrix whose singular values are `s`.

    Returns
    -------
    S : (M, N) ndarray
        The S-matrix in the singular value decomposition

    See Also
    --------
    svd : Singular value decomposition of a matrix
    svdvals : Compute singular values of a matrix.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import diagsvd
    >>> vals = np.array([1, 2, 3])  # The array representing the computed svd
    >>> diagsvd(vals, 3, 4)
    array([[1, 0, 0, 0],
           [0, 2, 0, 0],
           [0, 0, 3, 0]])
    >>> diagsvd(vals, 4, 3)
    array([[1, 0, 0],
           [0, 2, 0],
           [0, 0, 3],
           [0, 0, 0]])

    """
    part = diag(s)
    typ = part.dtype.char
    MorN = len(s)
    if MorN == M:
        return np.hstack((part, zeros((M, N - M), dtype=typ)))
    elif MorN == N:
        return r_[part, zeros((M - N, N), dtype=typ)]
    else:
        raise ValueError("Length of s must be M or N.")


# Orthonormal decomposition

def orth(A, rcond=None):
    """
    Construct an orthonormal basis for the range of A using SVD

    Parameters
    ----------
    A : (M, N) array_like
        Input array
    rcond : float, optional
        Relative condition number. Singular values ``s`` smaller than
        ``rcond * max(s)`` are considered zero.
        Default: floating point eps * max(M,N).

    Returns
    -------
    Q : (M, K) ndarray
        Orthonormal basis for the range of A.
        K = effective rank of A, as determined by rcond

    See Also
    --------
    svd : Singular value decomposition of a matrix
    null_space : Matrix null space

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import orth
    >>> A = np.array([[2, 0, 0], [0, 5, 0]])  # rank 2 array
    >>> orth(A)
    array([[0., 1.],
           [1., 0.]])
    >>> orth(A.T)
    array([[0., 1.],
           [1., 0.],
           [0., 0.]])

    """
    u, s, vh = svd(A, full_matrices=False)
    M, N = u.shape[0], vh.shape[1]
    if rcond is None:
        rcond = np.finfo(s.dtype).eps * max(M, N)
    tol = np.amax(s, initial=0.) * rcond
    num = np.sum(s > tol, dtype=int)
    Q = u[:, :num]
    return Q


def null_space(A, rcond=None, *, overwrite_a=False, check_finite=True,
               lapack_driver='gesdd'):
    """
    Construct an orthonormal basis for the null space of A using SVD

    Parameters
    ----------
    A : (M, N) array_like
        Input array
    rcond : float, optional
        Relative condition number. Singular values ``s`` smaller than
        ``rcond * max(s)`` are considered zero.
        Default: floating point eps * max(M,N).
    overwrite_a : bool, optional
        Whether to overwrite `a`; may improve performance.
        Default is False.
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.
    lapack_driver : {'gesdd', 'gesvd'}, optional
        Whether to use the more efficient divide-and-conquer approach
        (``'gesdd'``) or general rectangular approach (``'gesvd'``)
        to compute the SVD. MATLAB and Octave use the ``'gesvd'`` approach.
        Default is ``'gesdd'``.

    Returns
    -------
    Z : (N, K) ndarray
        Orthonormal basis for the null space of A.
        K = dimension of effective null space, as determined by rcond

    See Also
    --------
    svd : Singular value decomposition of a matrix
    orth : Matrix range

    Examples
    --------
    1-D null space:

    >>> import numpy as np
    >>> from scipy.linalg import null_space
    >>> A = np.array([[1, 1], [1, 1]])
    >>> ns = null_space(A)
    >>> ns * np.copysign(1, ns[0,0])  # Remove the sign ambiguity of the vector
    array([[ 0.70710678],
           [-0.70710678]])

    2-D null space:

    >>> from numpy.random import default_rng
    >>> rng = default_rng()
    >>> B = rng.random((3, 5))
    >>> Z = null_space(B)
    >>> Z.shape
    (5, 2)
    >>> np.allclose(B.dot(Z), 0)
    True

    The basis vectors are orthonormal (up to rounding error):

    >>> Z.T.dot(Z)
    array([[  1.00000000e+00,   6.92087741e-17],
           [  6.92087741e-17,   1.00000000e+00]])

    """
    u, s, vh = svd(A, full_matrices=True, overwrite_a=overwrite_a,
                   check_finite=check_finite, lapack_driver=lapack_driver)
    M, N = u.shape[0], vh.shape[1]
    if rcond is None:
        rcond = np.finfo(s.dtype).eps * max(M, N)
    tol = np.amax(s, initial=0.) * rcond
    num = np.sum(s > tol, dtype=int)
    Q = vh[num:,:].T.conj()
    return Q


def subspace_angles(A, B):
    r"""
    Compute the subspace angles between two matrices.

    Parameters
    ----------
    A : (M, N) array_like
        The first input array.
    B : (M, K) array_like
        The second input array.

    Returns
    -------
    angles : ndarray, shape (min(N, K),)
        The subspace angles between the column spaces of `A` and `B` in
        descending order.

    See Also
    --------
    orth
    svd

    Notes
    -----
    This computes the subspace angles according to the formula
    provided in [1]_. For equivalence with MATLAB and Octave behavior,
    use ``angles[0]``.

    .. versionadded:: 1.0

    References
    ----------
    .. [1] Knyazev A, Argentati M (2002) Principal Angles between Subspaces
           in an A-Based Scalar Product: Algorithms and Perturbation
           Estimates. SIAM J. Sci. Comput. 23:2008-2040.

    Examples
    --------
    An Hadamard matrix, which has orthogonal columns, so we expect that
    the suspace angle to be :math:`\frac{\pi}{2}`:

    >>> import numpy as np
    >>> from scipy.linalg import hadamard, subspace_angles
    >>> rng = np.random.default_rng()
    >>> H = hadamard(4)
    >>> print(H)
    [[ 1  1  1  1]
     [ 1 -1  1 -1]
     [ 1  1 -1 -1]
     [ 1 -1 -1  1]]
    >>> np.rad2deg(subspace_angles(H[:, :2], H[:, 2:]))
    array([ 90.,  90.])

    And the subspace angle of a matrix to itself should be zero:

    >>> subspace_angles(H[:, :2], H[:, :2]) <= 2 * np.finfo(float).eps
    array([ True,  True], dtype=bool)

    The angles between non-orthogonal subspaces are in between these extremes:

    >>> x = rng.standard_normal((4, 3))
    >>> np.rad2deg(subspace_angles(x[:, :2], x[:, [2]]))
    array([ 55.832])  # random
    """
    # Steps here omit the U and V calculation steps from the paper

    # 1. Compute orthonormal bases of column-spaces
    A = _asarray_validated(A, check_finite=True)
    if len(A.shape) != 2:
        raise ValueError(f'expected 2D array, got shape {A.shape}')
    QA = orth(A)
    del A

    B = _asarray_validated(B, check_finite=True)
    if len(B.shape) != 2:
        raise ValueError(f'expected 2D array, got shape {B.shape}')
    if len(B) != len(QA):
        raise ValueError('A and B must have the same number of rows, got '
                         f'{QA.shape[0]} and {B.shape[0]}')
    QB = orth(B)
    del B

    # 2. Compute SVD for cosine
    QA_H_QB = dot(QA.T.conj(), QB)
    sigma = svdvals(QA_H_QB)

    # 3. Compute matrix B
    if QA.shape[1] >= QB.shape[1]:
        B = QB - dot(QA, QA_H_QB)
    else:
        B = QA - dot(QB, QA_H_QB.T.conj())
    del QA, QB, QA_H_QB

    # 4. Compute SVD for sine
    mask = sigma ** 2 >= 0.5
    if mask.any():
        mu_arcsin = arcsin(clip(svdvals(B, overwrite_a=True), -1., 1.))
    else:
        mu_arcsin = 0.

    # 5. Compute the principal angles
    # with reverse ordering of sigma because smallest sigma belongs to largest
    # angle theta
    theta = where(mask, mu_arcsin, arccos(clip(sigma[::-1], -1., 1.)))
    return theta