File size: 3,520 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""
Solve the orthogonal Procrustes problem.

"""
import numpy as np
from ._decomp_svd import svd


__all__ = ['orthogonal_procrustes']


def orthogonal_procrustes(A, B, check_finite=True):
    """
    Compute the matrix solution of the orthogonal (or unitary) Procrustes problem.

    Given matrices `A` and `B` of the same shape, find an orthogonal (or unitary in
    the case of complex input) matrix `R` that most closely maps `A` to `B` using the
    algorithm given in [1]_.

    Parameters
    ----------
    A : (M, N) array_like
        Matrix to be mapped.
    B : (M, N) array_like
        Target matrix.
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    R : (N, N) ndarray
        The matrix solution of the orthogonal Procrustes problem.
        Minimizes the Frobenius norm of ``(A @ R) - B``, subject to
        ``R.conj().T @ R = I``.
    scale : float
        Sum of the singular values of ``A.conj().T @ B``.

    Raises
    ------
    ValueError
        If the input array shapes don't match or if check_finite is True and
        the arrays contain Inf or NaN.

    Notes
    -----
    Note that unlike higher level Procrustes analyses of spatial data, this
    function only uses orthogonal transformations like rotations and
    reflections, and it does not use scaling or translation.

    .. versionadded:: 0.15.0

    References
    ----------
    .. [1] Peter H. Schonemann, "A generalized solution of the orthogonal
           Procrustes problem", Psychometrica -- Vol. 31, No. 1, March, 1966.
           :doi:`10.1007/BF02289451`

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.linalg import orthogonal_procrustes
    >>> A = np.array([[ 2,  0,  1], [-2,  0,  0]])

    Flip the order of columns and check for the anti-diagonal mapping

    >>> R, sca = orthogonal_procrustes(A, np.fliplr(A))
    >>> R
    array([[-5.34384992e-17,  0.00000000e+00,  1.00000000e+00],
           [ 0.00000000e+00,  1.00000000e+00,  0.00000000e+00],
           [ 1.00000000e+00,  0.00000000e+00, -7.85941422e-17]])
    >>> sca
    9.0

    As an example of the unitary Procrustes problem, generate a
    random complex matrix ``A``, a random unitary matrix ``Q``,
    and their product ``B``.

    >>> shape = (4, 4)
    >>> rng = np.random.default_rng(589234981235)
    >>> A = rng.random(shape) + rng.random(shape)*1j
    >>> Q = rng.random(shape) + rng.random(shape)*1j
    >>> Q, _ = np.linalg.qr(Q)
    >>> B = A @ Q

    `orthogonal_procrustes` recovers the unitary matrix ``Q``
    from ``A`` and ``B``.

    >>> R, _ = orthogonal_procrustes(A, B)
    >>> np.allclose(R, Q)
    True

    """
    if check_finite:
        A = np.asarray_chkfinite(A)
        B = np.asarray_chkfinite(B)
    else:
        A = np.asanyarray(A)
        B = np.asanyarray(B)
    if A.ndim != 2:
        raise ValueError(f'expected ndim to be 2, but observed {A.ndim}')
    if A.shape != B.shape:
        raise ValueError(f'the shapes of A and B differ ({A.shape} vs {B.shape})')
    # Be clever with transposes, with the intention to save memory.
    # The conjugate has no effect for real inputs, but gives the correct solution
    # for complex inputs.
    u, w, vt = svd((B.T @ np.conjugate(A)).T)
    R = u @ vt
    scale = w.sum()
    return R, scale