File size: 11,685 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
"""
Low-level BLAS functions (:mod:`scipy.linalg.blas`)
===================================================

This module contains low-level functions from the BLAS library.

.. versionadded:: 0.12.0

.. note::

   The common ``overwrite_<>`` option in many routines, allows the
   input arrays to be overwritten to avoid extra memory allocation.
   However this requires the array to satisfy two conditions
   which are memory order and the data type to match exactly the
   order and the type expected by the routine.

   As an example, if you pass a double precision float array to any
   ``S....`` routine which expects single precision arguments, f2py
   will create an intermediate array to match the argument types and
   overwriting will be performed on that intermediate array.

   Similarly, if a C-contiguous array is passed, f2py will pass a
   FORTRAN-contiguous array internally. Please make sure that these
   details are satisfied. More information can be found in the f2py
   documentation.

.. warning::

   These functions do little to no error checking.
   It is possible to cause crashes by mis-using them,
   so prefer using the higher-level routines in `scipy.linalg`.

Finding functions
-----------------

.. autosummary::
   :toctree: generated/

   get_blas_funcs
   find_best_blas_type

BLAS Level 1 functions
----------------------

.. autosummary::
   :toctree: generated/

   caxpy
   ccopy
   cdotc
   cdotu
   crotg
   cscal
   csrot
   csscal
   cswap
   dasum
   daxpy
   dcopy
   ddot
   dnrm2
   drot
   drotg
   drotm
   drotmg
   dscal
   dswap
   dzasum
   dznrm2
   icamax
   idamax
   isamax
   izamax
   sasum
   saxpy
   scasum
   scnrm2
   scopy
   sdot
   snrm2
   srot
   srotg
   srotm
   srotmg
   sscal
   sswap
   zaxpy
   zcopy
   zdotc
   zdotu
   zdrot
   zdscal
   zrotg
   zscal
   zswap

BLAS Level 2 functions
----------------------

.. autosummary::
   :toctree: generated/

   sgbmv
   sgemv
   sger
   ssbmv
   sspr
   sspr2
   ssymv
   ssyr
   ssyr2
   stbmv
   stpsv
   strmv
   strsv
   dgbmv
   dgemv
   dger
   dsbmv
   dspr
   dspr2
   dsymv
   dsyr
   dsyr2
   dtbmv
   dtpsv
   dtrmv
   dtrsv
   cgbmv
   cgemv
   cgerc
   cgeru
   chbmv
   chemv
   cher
   cher2
   chpmv
   chpr
   chpr2
   ctbmv
   ctbsv
   ctpmv
   ctpsv
   ctrmv
   ctrsv
   csyr
   zgbmv
   zgemv
   zgerc
   zgeru
   zhbmv
   zhemv
   zher
   zher2
   zhpmv
   zhpr
   zhpr2
   ztbmv
   ztbsv
   ztpmv
   ztrmv
   ztrsv
   zsyr

BLAS Level 3 functions
----------------------

.. autosummary::
   :toctree: generated/

   sgemm
   ssymm
   ssyr2k
   ssyrk
   strmm
   strsm
   dgemm
   dsymm
   dsyr2k
   dsyrk
   dtrmm
   dtrsm
   cgemm
   chemm
   cher2k
   cherk
   csymm
   csyr2k
   csyrk
   ctrmm
   ctrsm
   zgemm
   zhemm
   zher2k
   zherk
   zsymm
   zsyr2k
   zsyrk
   ztrmm
   ztrsm

"""
#
# Author: Pearu Peterson, March 2002
#         refactoring by Fabian Pedregosa, March 2010
#

__all__ = ['get_blas_funcs', 'find_best_blas_type']

import numpy as np
import functools

from scipy.linalg import _fblas
try:
    from scipy.linalg import _cblas
except ImportError:
    _cblas = None

try:
    from scipy.linalg import _fblas_64
    HAS_ILP64 = True
except ImportError:
    HAS_ILP64 = False
    _fblas_64 = None

# Expose all functions (only fblas --- cblas is an implementation detail)
empty_module = None
from scipy.linalg._fblas import *  # noqa: E402, F403
del empty_module

# all numeric dtypes '?bBhHiIlLqQefdgFDGO' that are safe to be converted to

# single precision float   : '?bBhH!!!!!!ef!!!!!!'
# double precision float   : '?bBhHiIlLqQefdg!!!!'
# single precision complex : '?bBhH!!!!!!ef!!F!!!'
# double precision complex : '?bBhHiIlLqQefdgFDG!'

_type_score = {x: 1 for x in '?bBhHef'}
_type_score.update({x: 2 for x in 'iIlLqQd'})

# Handle float128(g) and complex256(G) separately in case non-Windows systems.
# On Windows, the values will be rewritten to the same key with the same value.
_type_score.update({'F': 3, 'D': 4, 'g': 2, 'G': 4})

# Final mapping to the actual prefixes and dtypes
_type_conv = {1: ('s', np.dtype('float32')),
              2: ('d', np.dtype('float64')),
              3: ('c', np.dtype('complex64')),
              4: ('z', np.dtype('complex128'))}

# some convenience alias for complex functions
_blas_alias = {'cnrm2': 'scnrm2', 'znrm2': 'dznrm2',
               'cdot': 'cdotc', 'zdot': 'zdotc',
               'cger': 'cgerc', 'zger': 'zgerc',
               'sdotc': 'sdot', 'sdotu': 'sdot',
               'ddotc': 'ddot', 'ddotu': 'ddot'}


def find_best_blas_type(arrays=(), dtype=None):
    """Find best-matching BLAS/LAPACK type.

    Arrays are used to determine the optimal prefix of BLAS routines.

    Parameters
    ----------
    arrays : sequence of ndarrays, optional
        Arrays can be given to determine optimal prefix of BLAS
        routines. If not given, double-precision routines will be
        used, otherwise the most generic type in arrays will be used.
    dtype : str or dtype, optional
        Data-type specifier. Not used if `arrays` is non-empty.

    Returns
    -------
    prefix : str
        BLAS/LAPACK prefix character.
    dtype : dtype
        Inferred Numpy data type.
    prefer_fortran : bool
        Whether to prefer Fortran order routines over C order.

    Examples
    --------
    >>> import numpy as np
    >>> import scipy.linalg.blas as bla
    >>> rng = np.random.default_rng()
    >>> a = rng.random((10,15))
    >>> b = np.asfortranarray(a)  # Change the memory layout order
    >>> bla.find_best_blas_type((a,))
    ('d', dtype('float64'), False)
    >>> bla.find_best_blas_type((a*1j,))
    ('z', dtype('complex128'), False)
    >>> bla.find_best_blas_type((b,))
    ('d', dtype('float64'), True)

    """
    dtype = np.dtype(dtype)
    max_score = _type_score.get(dtype.char, 5)
    prefer_fortran = False

    if arrays:
        # In most cases, single element is passed through, quicker route
        if len(arrays) == 1:
            max_score = _type_score.get(arrays[0].dtype.char, 5)
            prefer_fortran = arrays[0].flags['FORTRAN']
        else:
            # use the most generic type in arrays
            scores = [_type_score.get(x.dtype.char, 5) for x in arrays]
            max_score = max(scores)
            ind_max_score = scores.index(max_score)
            # safe upcasting for mix of float64 and complex64 --> prefix 'z'
            if max_score == 3 and (2 in scores):
                max_score = 4

            if arrays[ind_max_score].flags['FORTRAN']:
                # prefer Fortran for leading array with column major order
                prefer_fortran = True

    # Get the LAPACK prefix and the corresponding dtype if not fall back
    # to 'd' and double precision float.
    prefix, dtype = _type_conv.get(max_score, ('d', np.dtype('float64')))

    return prefix, dtype, prefer_fortran


def _get_funcs(names, arrays, dtype,
               lib_name, fmodule, cmodule,
               fmodule_name, cmodule_name, alias,
               ilp64=False):
    """
    Return available BLAS/LAPACK functions.

    Used also in lapack.py. See get_blas_funcs for docstring.
    """

    funcs = []
    unpack = False
    dtype = np.dtype(dtype)
    module1 = (cmodule, cmodule_name)
    module2 = (fmodule, fmodule_name)

    if isinstance(names, str):
        names = (names,)
        unpack = True

    prefix, dtype, prefer_fortran = find_best_blas_type(arrays, dtype)

    if prefer_fortran:
        module1, module2 = module2, module1

    for name in names:
        func_name = prefix + name
        func_name = alias.get(func_name, func_name)
        func = getattr(module1[0], func_name, None)
        module_name = module1[1]
        if func is None:
            func = getattr(module2[0], func_name, None)
            module_name = module2[1]
        if func is None:
            raise ValueError(
                f'{lib_name} function {func_name} could not be found')
        func.module_name, func.typecode = module_name, prefix
        func.dtype = dtype
        if not ilp64:
            func.int_dtype = np.dtype(np.intc)
        else:
            func.int_dtype = np.dtype(np.int64)
        func.prefix = prefix  # Backward compatibility
        funcs.append(func)

    if unpack:
        return funcs[0]
    else:
        return funcs


def _memoize_get_funcs(func):
    """
    Memoized fast path for _get_funcs instances
    """
    memo = {}
    func.memo = memo

    @functools.wraps(func)
    def getter(names, arrays=(), dtype=None, ilp64=False):
        key = (names, dtype, ilp64)
        for array in arrays:
            # cf. find_blas_funcs
            key += (array.dtype.char, array.flags.fortran)

        try:
            value = memo.get(key)
        except TypeError:
            # unhashable key etc.
            key = None
            value = None

        if value is not None:
            return value

        value = func(names, arrays, dtype, ilp64)

        if key is not None:
            memo[key] = value

        return value

    return getter


@_memoize_get_funcs
def get_blas_funcs(names, arrays=(), dtype=None, ilp64=False):
    """Return available BLAS function objects from names.

    Arrays are used to determine the optimal prefix of BLAS routines.

    Parameters
    ----------
    names : str or sequence of str
        Name(s) of BLAS functions without type prefix.

    arrays : sequence of ndarrays, optional
        Arrays can be given to determine optimal prefix of BLAS
        routines. If not given, double-precision routines will be
        used, otherwise the most generic type in arrays will be used.

    dtype : str or dtype, optional
        Data-type specifier. Not used if `arrays` is non-empty.

    ilp64 : {True, False, 'preferred'}, optional
        Whether to return ILP64 routine variant.
        Choosing 'preferred' returns ILP64 routine if available,
        and otherwise the 32-bit routine. Default: False

    Returns
    -------
    funcs : list
        List containing the found function(s).


    Notes
    -----
    This routine automatically chooses between Fortran/C
    interfaces. Fortran code is used whenever possible for arrays with
    column major order. In all other cases, C code is preferred.

    In BLAS, the naming convention is that all functions start with a
    type prefix, which depends on the type of the principal
    matrix. These can be one of {'s', 'd', 'c', 'z'} for the NumPy
    types {float32, float64, complex64, complex128} respectively.
    The code and the dtype are stored in attributes `typecode` and `dtype`
    of the returned functions.

    Examples
    --------
    >>> import numpy as np
    >>> import scipy.linalg as LA
    >>> rng = np.random.default_rng()
    >>> a = rng.random((3,2))
    >>> x_gemv = LA.get_blas_funcs('gemv', (a,))
    >>> x_gemv.typecode
    'd'
    >>> x_gemv = LA.get_blas_funcs('gemv',(a*1j,))
    >>> x_gemv.typecode
    'z'

    """
    if isinstance(ilp64, str):
        if ilp64 == 'preferred':
            ilp64 = HAS_ILP64
        else:
            raise ValueError("Invalid value for 'ilp64'")

    if not ilp64:
        return _get_funcs(names, arrays, dtype,
                          "BLAS", _fblas, _cblas, "fblas", "cblas",
                          _blas_alias, ilp64=False)
    else:
        if not HAS_ILP64:
            raise RuntimeError("BLAS ILP64 routine requested, but Scipy "
                               "compiled only with 32-bit BLAS")
        return _get_funcs(names, arrays, dtype,
                          "BLAS", _fblas_64, None, "fblas_64", None,
                          _blas_alias, ilp64=True)