File size: 24,639 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
import math
import numpy as np
import scipy._lib._elementwise_iterative_method as eim
from scipy._lib._util import _RichResult
from scipy._lib._array_api import xp_sign, xp_copy, xp_take_along_axis
# TODO:
# - (maybe?) don't use fancy indexing assignment
# - figure out how to replace the new `try`/`except`s
def _chandrupatla(func, a, b, *, args=(), xatol=None, xrtol=None,
fatol=None, frtol=0, maxiter=None, callback=None):
"""Find the root of an elementwise function using Chandrupatla's algorithm.
For each element of the output of `func`, `chandrupatla` seeks the scalar
root that makes the element 0. This function allows for `a`, `b`, and the
output of `func` to be of any broadcastable shapes.
Parameters
----------
func : callable
The function whose root is desired. The signature must be::
func(x: ndarray, *args) -> ndarray
where each element of ``x`` is a finite real and ``args`` is a tuple,
which may contain an arbitrary number of components of any type(s).
``func`` must be an elementwise function: each element ``func(x)[i]``
must equal ``func(x[i])`` for all indices ``i``. `_chandrupatla`
seeks an array ``x`` such that ``func(x)`` is an array of zeros.
a, b : array_like
The lower and upper bounds of the root of the function. Must be
broadcastable with one another.
args : tuple, optional
Additional positional arguments to be passed to `func`.
xatol, xrtol, fatol, frtol : float, optional
Absolute and relative tolerances on the root and function value.
See Notes for details.
maxiter : int, optional
The maximum number of iterations of the algorithm to perform.
The default is the maximum possible number of bisections within
the (normal) floating point numbers of the relevant dtype.
callback : callable, optional
An optional user-supplied function to be called before the first
iteration and after each iteration.
Called as ``callback(res)``, where ``res`` is a ``_RichResult``
similar to that returned by `_chandrupatla` (but containing the current
iterate's values of all variables). If `callback` raises a
``StopIteration``, the algorithm will terminate immediately and
`_chandrupatla` will return a result.
Returns
-------
res : _RichResult
An instance of `scipy._lib._util._RichResult` with the following
attributes. The descriptions are written as though the values will be
scalars; however, if `func` returns an array, the outputs will be
arrays of the same shape.
x : float
The root of the function, if the algorithm terminated successfully.
nfev : int
The number of times the function was called to find the root.
nit : int
The number of iterations of Chandrupatla's algorithm performed.
status : int
An integer representing the exit status of the algorithm.
``0`` : The algorithm converged to the specified tolerances.
``-1`` : The algorithm encountered an invalid bracket.
``-2`` : The maximum number of iterations was reached.
``-3`` : A non-finite value was encountered.
``-4`` : Iteration was terminated by `callback`.
``1`` : The algorithm is proceeding normally (in `callback` only).
success : bool
``True`` when the algorithm terminated successfully (status ``0``).
fun : float
The value of `func` evaluated at `x`.
xl, xr : float
The lower and upper ends of the bracket.
fl, fr : float
The function value at the lower and upper ends of the bracket.
Notes
-----
Implemented based on Chandrupatla's original paper [1]_.
If ``xl`` and ``xr`` are the left and right ends of the bracket,
``xmin = xl if abs(func(xl)) <= abs(func(xr)) else xr``,
and ``fmin0 = min(func(a), func(b))``, then the algorithm is considered to
have converged when ``abs(xr - xl) < xatol + abs(xmin) * xrtol`` or
``fun(xmin) <= fatol + abs(fmin0) * frtol``. This is equivalent to the
termination condition described in [1]_ with ``xrtol = 4e-10``,
``xatol = 1e-5``, and ``fatol = frtol = 0``. The default values are
``xatol = 4*tiny``, ``xrtol = 4*eps``, ``frtol = 0``, and ``fatol = tiny``,
where ``eps`` and ``tiny`` are the precision and smallest normal number
of the result ``dtype`` of function inputs and outputs.
References
----------
.. [1] Chandrupatla, Tirupathi R.
"A new hybrid quadratic/bisection algorithm for finding the zero of a
nonlinear function without using derivatives".
Advances in Engineering Software, 28(3), 145-149.
https://doi.org/10.1016/s0965-9978(96)00051-8
See Also
--------
brentq, brenth, ridder, bisect, newton
Examples
--------
>>> from scipy import optimize
>>> def f(x, c):
... return x**3 - 2*x - c
>>> c = 5
>>> res = optimize._chandrupatla._chandrupatla(f, 0, 3, args=(c,))
>>> res.x
2.0945514818937463
>>> c = [3, 4, 5]
>>> res = optimize._chandrupatla._chandrupatla(f, 0, 3, args=(c,))
>>> res.x
array([1.8932892 , 2. , 2.09455148])
"""
res = _chandrupatla_iv(func, args, xatol, xrtol,
fatol, frtol, maxiter, callback)
func, args, xatol, xrtol, fatol, frtol, maxiter, callback = res
# Initialization
temp = eim._initialize(func, (a, b), args)
func, xs, fs, args, shape, dtype, xp = temp
x1, x2 = xs
f1, f2 = fs
status = xp.full_like(x1, xp.asarray(eim._EINPROGRESS),
dtype=xp.int32) # in progress
nit, nfev = 0, 2 # two function evaluations performed above
finfo = xp.finfo(dtype)
xatol = 4*finfo.smallest_normal if xatol is None else xatol
xrtol = 4*finfo.eps if xrtol is None else xrtol
fatol = finfo.smallest_normal if fatol is None else fatol
frtol = frtol * xp.minimum(xp.abs(f1), xp.abs(f2))
maxiter = (math.log2(finfo.max) - math.log2(finfo.smallest_normal)
if maxiter is None else maxiter)
work = _RichResult(x1=x1, f1=f1, x2=x2, f2=f2, x3=None, f3=None, t=0.5,
xatol=xatol, xrtol=xrtol, fatol=fatol, frtol=frtol,
nit=nit, nfev=nfev, status=status)
res_work_pairs = [('status', 'status'), ('x', 'xmin'), ('fun', 'fmin'),
('nit', 'nit'), ('nfev', 'nfev'), ('xl', 'x1'),
('fl', 'f1'), ('xr', 'x2'), ('fr', 'f2')]
def pre_func_eval(work):
# [1] Figure 1 (first box)
x = work.x1 + work.t * (work.x2 - work.x1)
return x
def post_func_eval(x, f, work):
# [1] Figure 1 (first diamond and boxes)
# Note: y/n are reversed in figure; compare to BASIC in appendix
work.x3, work.f3 = (xp.asarray(work.x2, copy=True),
xp.asarray(work.f2, copy=True))
j = xp.sign(f) == xp.sign(work.f1)
nj = ~j
work.x3[j], work.f3[j] = work.x1[j], work.f1[j]
work.x2[nj], work.f2[nj] = work.x1[nj], work.f1[nj]
work.x1, work.f1 = x, f
def check_termination(work):
# [1] Figure 1 (second diamond)
# Check for all terminal conditions and record statuses.
# See [1] Section 4 (first two sentences)
i = xp.abs(work.f1) < xp.abs(work.f2)
work.xmin = xp.where(i, work.x1, work.x2)
work.fmin = xp.where(i, work.f1, work.f2)
stop = xp.zeros_like(work.x1, dtype=xp.bool) # termination condition met
# If function value tolerance is met, report successful convergence,
# regardless of other conditions. Note that `frtol` has been redefined
# as `frtol = frtol * minimum(f1, f2)`, where `f1` and `f2` are the
# function evaluated at the original ends of the bracket.
i = xp.abs(work.fmin) <= work.fatol + work.frtol
work.status[i] = eim._ECONVERGED
stop[i] = True
# If the bracket is no longer valid, report failure (unless a function
# tolerance is met, as detected above).
i = (xp_sign(work.f1) == xp_sign(work.f2)) & ~stop
NaN = xp.asarray(xp.nan, dtype=work.xmin.dtype)
work.xmin[i], work.fmin[i], work.status[i] = NaN, NaN, eim._ESIGNERR
stop[i] = True
# If the abscissae are non-finite or either function value is NaN,
# report failure.
x_nonfinite = ~(xp.isfinite(work.x1) & xp.isfinite(work.x2))
f_nan = xp.isnan(work.f1) & xp.isnan(work.f2)
i = (x_nonfinite | f_nan) & ~stop
work.xmin[i], work.fmin[i], work.status[i] = NaN, NaN, eim._EVALUEERR
stop[i] = True
# This is the convergence criterion used in bisect. Chandrupatla's
# criterion is equivalent to this except with a factor of 4 on `xrtol`.
work.dx = xp.abs(work.x2 - work.x1)
work.tol = xp.abs(work.xmin) * work.xrtol + work.xatol
i = work.dx < work.tol
work.status[i] = eim._ECONVERGED
stop[i] = True
return stop
def post_termination_check(work):
# [1] Figure 1 (third diamond and boxes / Equation 1)
xi1 = (work.x1 - work.x2) / (work.x3 - work.x2)
with np.errstate(divide='ignore', invalid='ignore'):
phi1 = (work.f1 - work.f2) / (work.f3 - work.f2)
alpha = (work.x3 - work.x1) / (work.x2 - work.x1)
j = ((1 - xp.sqrt(1 - xi1)) < phi1) & (phi1 < xp.sqrt(xi1))
f1j, f2j, f3j, alphaj = work.f1[j], work.f2[j], work.f3[j], alpha[j]
t = xp.full_like(alpha, xp.asarray(0.5))
t[j] = (f1j / (f1j - f2j) * f3j / (f3j - f2j)
- alphaj * f1j / (f3j - f1j) * f2j / (f2j - f3j))
# [1] Figure 1 (last box; see also BASIC in appendix with comment
# "Adjust T Away from the Interval Boundary")
tl = 0.5 * work.tol / work.dx
work.t = xp.clip(t, tl, 1 - tl)
def customize_result(res, shape):
xl, xr, fl, fr = res['xl'], res['xr'], res['fl'], res['fr']
i = res['xl'] < res['xr']
res['xl'] = xp.where(i, xl, xr)
res['xr'] = xp.where(i, xr, xl)
res['fl'] = xp.where(i, fl, fr)
res['fr'] = xp.where(i, fr, fl)
return shape
return eim._loop(work, callback, shape, maxiter, func, args, dtype,
pre_func_eval, post_func_eval, check_termination,
post_termination_check, customize_result, res_work_pairs,
xp=xp)
def _chandrupatla_iv(func, args, xatol, xrtol,
fatol, frtol, maxiter, callback):
# Input validation for `_chandrupatla`
if not callable(func):
raise ValueError('`func` must be callable.')
if not np.iterable(args):
args = (args,)
# tolerances are floats, not arrays; OK to use NumPy
tols = np.asarray([xatol if xatol is not None else 1,
xrtol if xrtol is not None else 1,
fatol if fatol is not None else 1,
frtol if frtol is not None else 1])
if (not np.issubdtype(tols.dtype, np.number) or np.any(tols < 0)
or np.any(np.isnan(tols)) or tols.shape != (4,)):
raise ValueError('Tolerances must be non-negative scalars.')
if maxiter is not None:
maxiter_int = int(maxiter)
if maxiter != maxiter_int or maxiter < 0:
raise ValueError('`maxiter` must be a non-negative integer.')
if callback is not None and not callable(callback):
raise ValueError('`callback` must be callable.')
return func, args, xatol, xrtol, fatol, frtol, maxiter, callback
def _chandrupatla_minimize(func, x1, x2, x3, *, args=(), xatol=None,
xrtol=None, fatol=None, frtol=None, maxiter=100,
callback=None):
"""Find the minimizer of an elementwise function.
For each element of the output of `func`, `_chandrupatla_minimize` seeks
the scalar minimizer that minimizes the element. This function allows for
`x1`, `x2`, `x3`, and the elements of `args` to be arrays of any
broadcastable shapes.
Parameters
----------
func : callable
The function whose minimizer is desired. The signature must be::
func(x: ndarray, *args) -> ndarray
where each element of ``x`` is a finite real and ``args`` is a tuple,
which may contain an arbitrary number of arrays that are broadcastable
with `x`. ``func`` must be an elementwise function: each element
``func(x)[i]`` must equal ``func(x[i])`` for all indices ``i``.
`_chandrupatla` seeks an array ``x`` such that ``func(x)`` is an array
of minima.
x1, x2, x3 : array_like
The abscissae of a standard scalar minimization bracket. A bracket is
valid if ``x1 < x2 < x3`` and ``func(x1) > func(x2) <= func(x3)``.
Must be broadcastable with one another and `args`.
args : tuple, optional
Additional positional arguments to be passed to `func`. Must be arrays
broadcastable with `x1`, `x2`, and `x3`. If the callable to be
differentiated requires arguments that are not broadcastable with `x`,
wrap that callable with `func` such that `func` accepts only `x` and
broadcastable arrays.
xatol, xrtol, fatol, frtol : float, optional
Absolute and relative tolerances on the minimizer and function value.
See Notes for details.
maxiter : int, optional
The maximum number of iterations of the algorithm to perform.
callback : callable, optional
An optional user-supplied function to be called before the first
iteration and after each iteration.
Called as ``callback(res)``, where ``res`` is a ``_RichResult``
similar to that returned by `_chandrupatla_minimize` (but containing
the current iterate's values of all variables). If `callback` raises a
``StopIteration``, the algorithm will terminate immediately and
`_chandrupatla_minimize` will return a result.
Returns
-------
res : _RichResult
An instance of `scipy._lib._util._RichResult` with the following
attributes. (The descriptions are written as though the values will be
scalars; however, if `func` returns an array, the outputs will be
arrays of the same shape.)
success : bool
``True`` when the algorithm terminated successfully (status ``0``).
status : int
An integer representing the exit status of the algorithm.
``0`` : The algorithm converged to the specified tolerances.
``-1`` : The algorithm encountered an invalid bracket.
``-2`` : The maximum number of iterations was reached.
``-3`` : A non-finite value was encountered.
``-4`` : Iteration was terminated by `callback`.
``1`` : The algorithm is proceeding normally (in `callback` only).
x : float
The minimizer of the function, if the algorithm terminated
successfully.
fun : float
The value of `func` evaluated at `x`.
nfev : int
The number of points at which `func` was evaluated.
nit : int
The number of iterations of the algorithm that were performed.
xl, xm, xr : float
The final three-point bracket.
fl, fm, fr : float
The function value at the bracket points.
Notes
-----
Implemented based on Chandrupatla's original paper [1]_.
If ``x1 < x2 < x3`` are the points of the bracket and ``f1 > f2 <= f3``
are the values of ``func`` at those points, then the algorithm is
considered to have converged when ``x3 - x1 <= abs(x2)*xrtol + xatol``
or ``(f1 - 2*f2 + f3)/2 <= abs(f2)*frtol + fatol``. Note that first of
these differs from the termination conditions described in [1]_. The
default values of `xrtol` is the square root of the precision of the
appropriate dtype, and ``xatol = fatol = frtol`` is the smallest normal
number of the appropriate dtype.
References
----------
.. [1] Chandrupatla, Tirupathi R. (1998).
"An efficient quadratic fit-sectioning algorithm for minimization
without derivatives".
Computer Methods in Applied Mechanics and Engineering, 152 (1-2),
211-217. https://doi.org/10.1016/S0045-7825(97)00190-4
See Also
--------
golden, brent, bounded
Examples
--------
>>> from scipy.optimize._chandrupatla import _chandrupatla_minimize
>>> def f(x, args=1):
... return (x - args)**2
>>> res = _chandrupatla_minimize(f, -5, 0, 5)
>>> res.x
1.0
>>> c = [1, 1.5, 2]
>>> res = _chandrupatla_minimize(f, -5, 0, 5, args=(c,))
>>> res.x
array([1. , 1.5, 2. ])
"""
res = _chandrupatla_iv(func, args, xatol, xrtol,
fatol, frtol, maxiter, callback)
func, args, xatol, xrtol, fatol, frtol, maxiter, callback = res
# Initialization
xs = (x1, x2, x3)
temp = eim._initialize(func, xs, args)
func, xs, fs, args, shape, dtype, xp = temp # line split for PEP8
x1, x2, x3 = xs
f1, f2, f3 = fs
phi = xp.asarray(0.5 + 0.5*5**0.5, dtype=dtype)[()] # golden ratio
status = xp.full_like(x1, xp.asarray(eim._EINPROGRESS),
dtype=xp.int32) # in progress
nit, nfev = 0, 3 # three function evaluations performed above
fatol = xp.finfo(dtype).smallest_normal if fatol is None else fatol
frtol = xp.finfo(dtype).smallest_normal if frtol is None else frtol
xatol = xp.finfo(dtype).smallest_normal if xatol is None else xatol
xrtol = math.sqrt(xp.finfo(dtype).eps) if xrtol is None else xrtol
# Ensure that x1 < x2 < x3 initially.
xs, fs = xp.stack((x1, x2, x3)), xp.stack((f1, f2, f3))
i = xp.argsort(xs, axis=0)
x1, x2, x3 = xp_take_along_axis(xs, i, axis=0) # data-apis/array-api#808
f1, f2, f3 = xp_take_along_axis(fs, i, axis=0) # data-apis/array-api#808
q0 = xp_copy(x3) # "At the start, q0 is set at x3..." ([1] after (7))
work = _RichResult(x1=x1, f1=f1, x2=x2, f2=f2, x3=x3, f3=f3, phi=phi,
xatol=xatol, xrtol=xrtol, fatol=fatol, frtol=frtol,
nit=nit, nfev=nfev, status=status, q0=q0, args=args)
res_work_pairs = [('status', 'status'),
('x', 'x2'), ('fun', 'f2'),
('nit', 'nit'), ('nfev', 'nfev'),
('xl', 'x1'), ('xm', 'x2'), ('xr', 'x3'),
('fl', 'f1'), ('fm', 'f2'), ('fr', 'f3')]
def pre_func_eval(work):
# `_check_termination` is called first -> `x3 - x2 > x2 - x1`
# But let's calculate a few terms that we'll reuse
x21 = work.x2 - work.x1
x32 = work.x3 - work.x2
# [1] Section 3. "The quadratic minimum point Q1 is calculated using
# the relations developed in the previous section." [1] Section 2 (5/6)
A = x21 * (work.f3 - work.f2)
B = x32 * (work.f1 - work.f2)
C = A / (A + B)
# q1 = C * (work.x1 + work.x2) / 2 + (1 - C) * (work.x2 + work.x3) / 2
q1 = 0.5 * (C*(work.x1 - work.x3) + work.x2 + work.x3) # much faster
# this is an array, so multiplying by 0.5 does not change dtype
# "If Q1 and Q0 are sufficiently close... Q1 is accepted if it is
# sufficiently away from the inside point x2"
i = xp.abs(q1 - work.q0) < 0.5 * xp.abs(x21) # [1] (7)
xi = q1[i]
# Later, after (9), "If the point Q1 is in a +/- xtol neighborhood of
# x2, the new point is chosen in the larger interval at a distance
# tol away from x2."
# See also QBASIC code after "Accept Ql adjust if close to X2".
j = xp.abs(q1[i] - work.x2[i]) <= work.xtol[i]
xi[j] = work.x2[i][j] + xp_sign(x32[i][j]) * work.xtol[i][j]
# "If condition (7) is not satisfied, golden sectioning of the larger
# interval is carried out to introduce the new point."
# (For simplicity, we go ahead and calculate it for all points, but we
# change the elements for which the condition was satisfied.)
x = work.x2 + (2 - work.phi) * x32
x[i] = xi
# "We define Q0 as the value of Q1 at the previous iteration."
work.q0 = q1
return x
def post_func_eval(x, f, work):
# Standard logic for updating a three-point bracket based on a new
# point. In QBASIC code, see "IF SGN(X-X2) = SGN(X3-X2) THEN...".
# There is an awful lot of data copying going on here; this would
# probably benefit from code optimization or implementation in Pythran.
i = xp_sign(x - work.x2) == xp_sign(work.x3 - work.x2)
xi, x1i, x2i, x3i = x[i], work.x1[i], work.x2[i], work.x3[i],
fi, f1i, f2i, f3i = f[i], work.f1[i], work.f2[i], work.f3[i]
j = fi > f2i
x3i[j], f3i[j] = xi[j], fi[j]
j = ~j
x1i[j], f1i[j], x2i[j], f2i[j] = x2i[j], f2i[j], xi[j], fi[j]
ni = ~i
xni, x1ni, x2ni, x3ni = x[ni], work.x1[ni], work.x2[ni], work.x3[ni],
fni, f1ni, f2ni, f3ni = f[ni], work.f1[ni], work.f2[ni], work.f3[ni]
j = fni > f2ni
x1ni[j], f1ni[j] = xni[j], fni[j]
j = ~j
x3ni[j], f3ni[j], x2ni[j], f2ni[j] = x2ni[j], f2ni[j], xni[j], fni[j]
work.x1[i], work.x2[i], work.x3[i] = x1i, x2i, x3i
work.f1[i], work.f2[i], work.f3[i] = f1i, f2i, f3i
work.x1[ni], work.x2[ni], work.x3[ni] = x1ni, x2ni, x3ni,
work.f1[ni], work.f2[ni], work.f3[ni] = f1ni, f2ni, f3ni
def check_termination(work):
# Check for all terminal conditions and record statuses.
stop = xp.zeros_like(work.x1, dtype=bool) # termination condition met
# Bracket is invalid; stop and don't return minimizer/minimum
i = ((work.f2 > work.f1) | (work.f2 > work.f3))
work.x2[i], work.f2[i] = xp.nan, xp.nan
stop[i], work.status[i] = True, eim._ESIGNERR
# Non-finite values; stop and don't return minimizer/minimum
finite = xp.isfinite(work.x1+work.x2+work.x3+work.f1+work.f2+work.f3)
i = ~(finite | stop)
work.x2[i], work.f2[i] = xp.nan, xp.nan
stop[i], work.status[i] = True, eim._EVALUEERR
# [1] Section 3 "Points 1 and 3 are interchanged if necessary to make
# the (x2, x3) the larger interval."
# Note: I had used np.choose; this is much faster. This would be a good
# place to save e.g. `work.x3 - work.x2` for reuse, but I tried and
# didn't notice a speed boost, so let's keep it simple.
i = xp.abs(work.x3 - work.x2) < xp.abs(work.x2 - work.x1)
temp = work.x1[i]
work.x1[i] = work.x3[i]
work.x3[i] = temp
temp = work.f1[i]
work.f1[i] = work.f3[i]
work.f3[i] = temp
# [1] Section 3 (bottom of page 212)
# "We set a tolerance value xtol..."
work.xtol = xp.abs(work.x2) * work.xrtol + work.xatol # [1] (8)
# "The convergence based on interval is achieved when..."
# Note: Equality allowed in case of `xtol=0`
i = xp.abs(work.x3 - work.x2) <= 2 * work.xtol # [1] (9)
# "We define ftol using..."
ftol = xp.abs(work.f2) * work.frtol + work.fatol # [1] (10)
# "The convergence based on function values is achieved when..."
# Note 1: modify in place to incorporate tolerance on function value.
# Note 2: factor of 2 is not in the text; see QBASIC start of DO loop
i |= (work.f1 - 2 * work.f2 + work.f3) <= 2*ftol # [1] (11)
i &= ~stop
stop[i], work.status[i] = True, eim._ECONVERGED
return stop
def post_termination_check(work):
pass
def customize_result(res, shape):
xl, xr, fl, fr = res['xl'], res['xr'], res['fl'], res['fr']
i = res['xl'] >= res['xr']
res['xl'] = xp.where(i, xr, xl)
res['xr'] = xp.where(i, xl, xr)
res['fl'] = xp.where(i, fr, fl)
res['fr'] = xp.where(i, fl, fr)
return shape
return eim._loop(work, callback, shape, maxiter, func, args, dtype,
pre_func_eval, post_func_eval, check_termination,
post_termination_check, customize_result, res_work_pairs,
xp=xp)
|