File size: 31,121 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
# Dual Annealing implementation.
# Copyright (c) 2018 Sylvain Gubian <[email protected]>,
# Yang Xiang <[email protected]>
# Author: Sylvain Gubian, Yang Xiang, PMP S.A.

"""
A Dual Annealing global optimization algorithm
"""

import numpy as np
from scipy.optimize import OptimizeResult
from scipy.optimize import minimize, Bounds
from scipy.special import gammaln
from scipy._lib._util import check_random_state, _transition_to_rng
from scipy.optimize._constraints import new_bounds_to_old

__all__ = ['dual_annealing']


class VisitingDistribution:
    """
    Class used to generate new coordinates based on the distorted
    Cauchy-Lorentz distribution. Depending on the steps within the strategy
    chain, the class implements the strategy for generating new location
    changes.

    Parameters
    ----------
    lb : array_like
        A 1-D NumPy ndarray containing lower bounds of the generated
        components. Neither NaN or inf are allowed.
    ub : array_like
        A 1-D NumPy ndarray containing upper bounds for the generated
        components. Neither NaN or inf are allowed.
    visiting_param : float
        Parameter for visiting distribution. Default value is 2.62.
        Higher values give the visiting distribution a heavier tail, this
        makes the algorithm jump to a more distant region.
        The value range is (1, 3]. Its value is fixed for the life of the
        object.
    rng_gen : {`~numpy.random.Generator`}
        A `~numpy.random.Generator` object for generating new locations.
        (can be a `~numpy.random.RandomState` object until SPEC007 transition
         is fully complete).

    """
    TAIL_LIMIT = 1.e8
    MIN_VISIT_BOUND = 1.e-10

    def __init__(self, lb, ub, visiting_param, rng_gen):
        # if you wish to make _visiting_param adjustable during the life of
        # the object then _factor2, _factor3, _factor5, _d1, _factor6 will
        # have to be dynamically calculated in `visit_fn`. They're factored
        # out here so they don't need to be recalculated all the time.
        self._visiting_param = visiting_param
        self.rng_gen = rng_gen
        self.lower = lb
        self.upper = ub
        self.bound_range = ub - lb

        # these are invariant numbers unless visiting_param changes
        self._factor2 = np.exp((4.0 - self._visiting_param) * np.log(
            self._visiting_param - 1.0))
        self._factor3 = np.exp((2.0 - self._visiting_param) * np.log(2.0)
                               / (self._visiting_param - 1.0))
        self._factor4_p = np.sqrt(np.pi) * self._factor2 / (self._factor3 * (
            3.0 - self._visiting_param))

        self._factor5 = 1.0 / (self._visiting_param - 1.0) - 0.5
        self._d1 = 2.0 - self._factor5
        self._factor6 = np.pi * (1.0 - self._factor5) / np.sin(
            np.pi * (1.0 - self._factor5)) / np.exp(gammaln(self._d1))

    def visiting(self, x, step, temperature):
        """ Based on the step in the strategy chain, new coordinates are
        generated by changing all components is the same time or only
        one of them, the new values are computed with visit_fn method
        """
        dim = x.size
        if step < dim:
            # Changing all coordinates with a new visiting value
            visits = self.visit_fn(temperature, dim)
            upper_sample, lower_sample = self.rng_gen.uniform(size=2)
            visits[visits > self.TAIL_LIMIT] = self.TAIL_LIMIT * upper_sample
            visits[visits < -self.TAIL_LIMIT] = -self.TAIL_LIMIT * lower_sample
            x_visit = visits + x
            a = x_visit - self.lower
            b = np.fmod(a, self.bound_range) + self.bound_range
            x_visit = np.fmod(b, self.bound_range) + self.lower
            x_visit[np.fabs(
                x_visit - self.lower) < self.MIN_VISIT_BOUND] += 1.e-10
        else:
            # Changing only one coordinate at a time based on strategy
            # chain step
            x_visit = np.copy(x)
            visit = self.visit_fn(temperature, 1)[0]
            if visit > self.TAIL_LIMIT:
                visit = self.TAIL_LIMIT * self.rng_gen.uniform()
            elif visit < -self.TAIL_LIMIT:
                visit = -self.TAIL_LIMIT * self.rng_gen.uniform()
            index = step - dim
            x_visit[index] = visit + x[index]
            a = x_visit[index] - self.lower[index]
            b = np.fmod(a, self.bound_range[index]) + self.bound_range[index]
            x_visit[index] = np.fmod(b, self.bound_range[
                index]) + self.lower[index]
            if np.fabs(x_visit[index] - self.lower[
                    index]) < self.MIN_VISIT_BOUND:
                x_visit[index] += self.MIN_VISIT_BOUND
        return x_visit

    def visit_fn(self, temperature, dim):
        """ Formula Visita from p. 405 of reference [2] """
        x, y = self.rng_gen.normal(size=(dim, 2)).T

        factor1 = np.exp(np.log(temperature) / (self._visiting_param - 1.0))
        factor4 = self._factor4_p * factor1

        # sigmax
        x *= np.exp(-(self._visiting_param - 1.0) * np.log(
            self._factor6 / factor4) / (3.0 - self._visiting_param))

        den = np.exp((self._visiting_param - 1.0) * np.log(np.fabs(y)) /
                     (3.0 - self._visiting_param))

        return x / den


class EnergyState:
    """
    Class used to record the energy state. At any time, it knows what is the
    currently used coordinates and the most recent best location.

    Parameters
    ----------
    lower : array_like
        A 1-D NumPy ndarray containing lower bounds for generating an initial
        random components in the `reset` method.
    upper : array_like
        A 1-D NumPy ndarray containing upper bounds for generating an initial
        random components in the `reset` method
        components. Neither NaN or inf are allowed.
    callback : callable, ``callback(x, f, context)``, optional
        A callback function which will be called for all minima found.
        ``x`` and ``f`` are the coordinates and function value of the
        latest minimum found, and `context` has value in [0, 1, 2]
    """
    # Maximum number of trials for generating a valid starting point
    MAX_REINIT_COUNT = 1000

    def __init__(self, lower, upper, callback=None):
        self.ebest = None
        self.current_energy = None
        self.current_location = None
        self.xbest = None
        self.lower = lower
        self.upper = upper
        self.callback = callback

    def reset(self, func_wrapper, rng_gen, x0=None):
        """
        Initialize current location is the search domain. If `x0` is not
        provided, a random location within the bounds is generated.
        """
        if x0 is None:
            self.current_location = rng_gen.uniform(self.lower, self.upper,
                                                    size=len(self.lower))
        else:
            self.current_location = np.copy(x0)
        init_error = True
        reinit_counter = 0
        while init_error:
            self.current_energy = func_wrapper.fun(self.current_location)
            if self.current_energy is None:
                raise ValueError('Objective function is returning None')
            if not np.isfinite(self.current_energy):
                if reinit_counter >= EnergyState.MAX_REINIT_COUNT:
                    init_error = False
                    message = (
                        'Stopping algorithm because function '
                        'create NaN or (+/-) infinity values even with '
                        'trying new random parameters'
                    )
                    raise ValueError(message)
                self.current_location = rng_gen.uniform(self.lower,
                                                        self.upper,
                                                        size=self.lower.size)
                reinit_counter += 1
            else:
                init_error = False
            # If first time reset, initialize ebest and xbest
            if self.ebest is None and self.xbest is None:
                self.ebest = self.current_energy
                self.xbest = np.copy(self.current_location)
            # Otherwise, we keep them in case of reannealing reset

    def update_best(self, e, x, context):
        self.ebest = e
        self.xbest = np.copy(x)
        if self.callback is not None:
            val = self.callback(x, e, context)
            if val is not None:
                if val:
                    return ('Callback function requested to stop early by '
                           'returning True')

    def update_current(self, e, x):
        self.current_energy = e
        self.current_location = np.copy(x)


class StrategyChain:
    """
    Class that implements within a Markov chain the strategy for location
    acceptance and local search decision making.

    Parameters
    ----------
    acceptance_param : float
        Parameter for acceptance distribution. It is used to control the
        probability of acceptance. The lower the acceptance parameter, the
        smaller the probability of acceptance. Default value is -5.0 with
        a range (-1e4, -5].
    visit_dist : VisitingDistribution
        Instance of `VisitingDistribution` class.
    func_wrapper : ObjectiveFunWrapper
        Instance of `ObjectiveFunWrapper` class.
    minimizer_wrapper: LocalSearchWrapper
        Instance of `LocalSearchWrapper` class.
    rand_gen : {None, int, `numpy.random.Generator`,
                `numpy.random.RandomState`}, optional

        If `seed` is None (or `np.random`), the `numpy.random.RandomState`
        singleton is used.
        If `seed` is an int, a new ``RandomState`` instance is used,
        seeded with `seed`.
        If `seed` is already a ``Generator`` or ``RandomState`` instance then
        that instance is used.
    energy_state: EnergyState
        Instance of `EnergyState` class.

    """

    def __init__(self, acceptance_param, visit_dist, func_wrapper,
                 minimizer_wrapper, rand_gen, energy_state):
        # Local strategy chain minimum energy and location
        self.emin = energy_state.current_energy
        self.xmin = np.array(energy_state.current_location)
        # Global optimizer state
        self.energy_state = energy_state
        # Acceptance parameter
        self.acceptance_param = acceptance_param
        # Visiting distribution instance
        self.visit_dist = visit_dist
        # Wrapper to objective function
        self.func_wrapper = func_wrapper
        # Wrapper to the local minimizer
        self.minimizer_wrapper = minimizer_wrapper
        self.not_improved_idx = 0
        self.not_improved_max_idx = 1000
        self._rand_gen = rand_gen
        self.temperature_step = 0
        self.K = 100 * len(energy_state.current_location)

    def accept_reject(self, j, e, x_visit):
        r = self._rand_gen.uniform()
        pqv_temp = 1.0 - ((1.0 - self.acceptance_param) *
            (e - self.energy_state.current_energy) / self.temperature_step)
        if pqv_temp <= 0.:
            pqv = 0.
        else:
            pqv = np.exp(np.log(pqv_temp) / (
                1. - self.acceptance_param))

        if r <= pqv:
            # We accept the new location and update state
            self.energy_state.update_current(e, x_visit)
            self.xmin = np.copy(self.energy_state.current_location)

        # No improvement for a long time
        if self.not_improved_idx >= self.not_improved_max_idx:
            if j == 0 or self.energy_state.current_energy < self.emin:
                self.emin = self.energy_state.current_energy
                self.xmin = np.copy(self.energy_state.current_location)

    def run(self, step, temperature):
        self.temperature_step = temperature / float(step + 1)
        self.not_improved_idx += 1
        for j in range(self.energy_state.current_location.size * 2):
            if j == 0:
                if step == 0:
                    self.energy_state_improved = True
                else:
                    self.energy_state_improved = False
            x_visit = self.visit_dist.visiting(
                self.energy_state.current_location, j, temperature)
            # Calling the objective function
            e = self.func_wrapper.fun(x_visit)
            if e < self.energy_state.current_energy:
                # We have got a better energy value
                self.energy_state.update_current(e, x_visit)
                if e < self.energy_state.ebest:
                    val = self.energy_state.update_best(e, x_visit, 0)
                    if val is not None:
                        if val:
                            return val
                    self.energy_state_improved = True
                    self.not_improved_idx = 0
            else:
                # We have not improved but do we accept the new location?
                self.accept_reject(j, e, x_visit)
            if self.func_wrapper.nfev >= self.func_wrapper.maxfun:
                return ('Maximum number of function call reached '
                        'during annealing')
        # End of StrategyChain loop

    def local_search(self):
        # Decision making for performing a local search
        # based on strategy chain results
        # If energy has been improved or no improvement since too long,
        # performing a local search with the best strategy chain location
        if self.energy_state_improved:
            # Global energy has improved, let's see if LS improves further
            e, x = self.minimizer_wrapper.local_search(self.energy_state.xbest,
                                                       self.energy_state.ebest)
            if e < self.energy_state.ebest:
                self.not_improved_idx = 0
                val = self.energy_state.update_best(e, x, 1)
                if val is not None:
                    if val:
                        return val
                self.energy_state.update_current(e, x)
            if self.func_wrapper.nfev >= self.func_wrapper.maxfun:
                return ('Maximum number of function call reached '
                        'during local search')
        # Check probability of a need to perform a LS even if no improvement
        do_ls = False
        if self.K < 90 * len(self.energy_state.current_location):
            pls = np.exp(self.K * (
                self.energy_state.ebest - self.energy_state.current_energy) /
                self.temperature_step)
            if pls >= self._rand_gen.uniform():
                do_ls = True
        # Global energy not improved, let's see what LS gives
        # on the best strategy chain location
        if self.not_improved_idx >= self.not_improved_max_idx:
            do_ls = True
        if do_ls:
            e, x = self.minimizer_wrapper.local_search(self.xmin, self.emin)
            self.xmin = np.copy(x)
            self.emin = e
            self.not_improved_idx = 0
            self.not_improved_max_idx = self.energy_state.current_location.size
            if e < self.energy_state.ebest:
                val = self.energy_state.update_best(
                    self.emin, self.xmin, 2)
                if val is not None:
                    if val:
                        return val
                self.energy_state.update_current(e, x)
            if self.func_wrapper.nfev >= self.func_wrapper.maxfun:
                return ('Maximum number of function call reached '
                        'during dual annealing')


class ObjectiveFunWrapper:

    def __init__(self, func, maxfun=1e7, *args):
        self.func = func
        self.args = args
        # Number of objective function evaluations
        self.nfev = 0
        # Number of gradient function evaluation if used
        self.ngev = 0
        # Number of hessian of the objective function if used
        self.nhev = 0
        self.maxfun = maxfun

    def fun(self, x):
        self.nfev += 1
        return self.func(x, *self.args)


class LocalSearchWrapper:
    """
    Class used to wrap around the minimizer used for local search
    Default local minimizer is SciPy minimizer L-BFGS-B
    """

    LS_MAXITER_RATIO = 6
    LS_MAXITER_MIN = 100
    LS_MAXITER_MAX = 1000

    def __init__(self, search_bounds, func_wrapper, *args, **kwargs):
        self.func_wrapper = func_wrapper
        self.kwargs = kwargs
        self.jac = self.kwargs.get('jac', None)
        self.hess = self.kwargs.get('hess', None)
        self.hessp = self.kwargs.get('hessp', None)
        self.kwargs.pop("args", None)
        self.minimizer = minimize
        bounds_list = list(zip(*search_bounds))
        self.lower = np.array(bounds_list[0])
        self.upper = np.array(bounds_list[1])

        # If no minimizer specified, use SciPy minimize with 'L-BFGS-B' method
        if not self.kwargs:
            n = len(self.lower)
            ls_max_iter = min(max(n * self.LS_MAXITER_RATIO,
                                  self.LS_MAXITER_MIN),
                              self.LS_MAXITER_MAX)
            self.kwargs['method'] = 'L-BFGS-B'
            self.kwargs['options'] = {
                'maxiter': ls_max_iter,
            }
            self.kwargs['bounds'] = list(zip(self.lower, self.upper))
        else:
            if callable(self.jac):
                def wrapped_jac(x):
                    return self.jac(x, *args)
                self.kwargs['jac'] = wrapped_jac
            if callable(self.hess):
                def wrapped_hess(x):
                    return self.hess(x, *args)
                self.kwargs['hess'] = wrapped_hess
            if callable(self.hessp):
                def wrapped_hessp(x, p):
                    return self.hessp(x, p, *args)
                self.kwargs['hessp'] = wrapped_hessp

    def local_search(self, x, e):
        # Run local search from the given x location where energy value is e
        x_tmp = np.copy(x)
        mres = self.minimizer(self.func_wrapper.fun, x, **self.kwargs)
        if 'njev' in mres:
            self.func_wrapper.ngev += mres.njev
        if 'nhev' in mres:
            self.func_wrapper.nhev += mres.nhev
        # Check if is valid value
        is_finite = np.all(np.isfinite(mres.x)) and np.isfinite(mres.fun)
        in_bounds = np.all(mres.x >= self.lower) and np.all(
            mres.x <= self.upper)
        is_valid = is_finite and in_bounds

        # Use the new point only if it is valid and return a better results
        if is_valid and mres.fun < e:
            return mres.fun, mres.x
        else:
            return e, x_tmp


@_transition_to_rng("seed", position_num=10)
def dual_annealing(func, bounds, args=(), maxiter=1000,
                   minimizer_kwargs=None, initial_temp=5230.,
                   restart_temp_ratio=2.e-5, visit=2.62, accept=-5.0,
                   maxfun=1e7, rng=None, no_local_search=False,
                   callback=None, x0=None):
    """
    Find the global minimum of a function using Dual Annealing.

    Parameters
    ----------
    func : callable
        The objective function to be minimized. Must be in the form
        ``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
        and ``args`` is a  tuple of any additional fixed parameters needed to
        completely specify the function.
    bounds : sequence or `Bounds`
        Bounds for variables. There are two ways to specify the bounds:

        1. Instance of `Bounds` class.
        2. Sequence of ``(min, max)`` pairs for each element in `x`.

    args : tuple, optional
        Any additional fixed parameters needed to completely specify the
        objective function.
    maxiter : int, optional
        The maximum number of global search iterations. Default value is 1000.
    minimizer_kwargs : dict, optional
        Keyword arguments to be passed to the local minimizer
        (`minimize`). An important option could be ``method`` for the minimizer
        method to use.
        If no keyword arguments are provided, the local minimizer defaults to
        'L-BFGS-B' and uses the already supplied bounds. If `minimizer_kwargs`
        is specified, then the dict must contain all parameters required to
        control the local minimization. `args` is ignored in this dict, as it is
        passed automatically. `bounds` is not automatically passed on to the
        local minimizer as the method may not support them.
    initial_temp : float, optional
        The initial temperature, use higher values to facilitates a wider
        search of the energy landscape, allowing dual_annealing to escape
        local minima that it is trapped in. Default value is 5230. Range is
        (0.01, 5.e4].
    restart_temp_ratio : float, optional
        During the annealing process, temperature is decreasing, when it
        reaches ``initial_temp * restart_temp_ratio``, the reannealing process
        is triggered. Default value of the ratio is 2e-5. Range is (0, 1).
    visit : float, optional
        Parameter for visiting distribution. Default value is 2.62. Higher
        values give the visiting distribution a heavier tail, this makes
        the algorithm jump to a more distant region. The value range is (1, 3].
    accept : float, optional
        Parameter for acceptance distribution. It is used to control the
        probability of acceptance. The lower the acceptance parameter, the
        smaller the probability of acceptance. Default value is -5.0 with
        a range (-1e4, -5].
    maxfun : int, optional
        Soft limit for the number of objective function calls. If the
        algorithm is in the middle of a local search, this number will be
        exceeded, the algorithm will stop just after the local search is
        done. Default value is 1e7.
    rng : `numpy.random.Generator`, optional
        Pseudorandom number generator state. When `rng` is None, a new
        `numpy.random.Generator` is created using entropy from the
        operating system. Types other than `numpy.random.Generator` are
        passed to `numpy.random.default_rng` to instantiate a `Generator`.

        Specify `rng` for repeatable minimizations. The random numbers
        generated only affect the visiting distribution function
        and new coordinates generation.
    no_local_search : bool, optional
        If `no_local_search` is set to True, a traditional Generalized
        Simulated Annealing will be performed with no local search
        strategy applied.
    callback : callable, optional
        A callback function with signature ``callback(x, f, context)``,
        which will be called for all minima found.
        ``x`` and ``f`` are the coordinates and function value of the
        latest minimum found, and ``context`` has one of the following
        values:

        - ``0``: minimum detected in the annealing process.
        - ``1``: detection occurred in the local search process.
        - ``2``: detection done in the dual annealing process.

        If the callback implementation returns True, the algorithm will stop.
    x0 : ndarray, shape(n,), optional
        Coordinates of a single N-D starting point.

    Returns
    -------
    res : OptimizeResult
        The optimization result represented as a `OptimizeResult` object.
        Important attributes are: ``x`` the solution array, ``fun`` the value
        of the function at the solution, and ``message`` which describes the
        cause of the termination.
        See `OptimizeResult` for a description of other attributes.

    Notes
    -----
    This function implements the Dual Annealing optimization. This stochastic
    approach derived from [3]_ combines the generalization of CSA (Classical
    Simulated Annealing) and FSA (Fast Simulated Annealing) [1]_ [2]_ coupled
    to a strategy for applying a local search on accepted locations [4]_.
    An alternative implementation of this same algorithm is described in [5]_
    and benchmarks are presented in [6]_. This approach introduces an advanced
    method to refine the solution found by the generalized annealing
    process. This algorithm uses a distorted Cauchy-Lorentz visiting
    distribution, with its shape controlled by the parameter :math:`q_{v}`

    .. math::

        g_{q_{v}}(\\Delta x(t)) \\propto \\frac{ \\
        \\left[T_{q_{v}}(t) \\right]^{-\\frac{D}{3-q_{v}}}}{ \\
        \\left[{1+(q_{v}-1)\\frac{(\\Delta x(t))^{2}} { \\
        \\left[T_{q_{v}}(t)\\right]^{\\frac{2}{3-q_{v}}}}}\\right]^{ \\
        \\frac{1}{q_{v}-1}+\\frac{D-1}{2}}}

    Where :math:`t` is the artificial time. This visiting distribution is used
    to generate a trial jump distance :math:`\\Delta x(t)` of variable
    :math:`x(t)` under artificial temperature :math:`T_{q_{v}}(t)`.

    From the starting point, after calling the visiting distribution
    function, the acceptance probability is computed as follows:

    .. math::

        p_{q_{a}} = \\min{\\{1,\\left[1-(1-q_{a}) \\beta \\Delta E \\right]^{ \\
        \\frac{1}{1-q_{a}}}\\}}

    Where :math:`q_{a}` is a acceptance parameter. For :math:`q_{a}<1`, zero
    acceptance probability is assigned to the cases where

    .. math::

        [1-(1-q_{a}) \\beta \\Delta E] < 0

    The artificial temperature :math:`T_{q_{v}}(t)` is decreased according to

    .. math::

        T_{q_{v}}(t) = T_{q_{v}}(1) \\frac{2^{q_{v}-1}-1}{\\left( \\
        1 + t\\right)^{q_{v}-1}-1}

    Where :math:`q_{v}` is the visiting parameter.

    .. versionadded:: 1.2.0

    References
    ----------
    .. [1] Tsallis C. Possible generalization of Boltzmann-Gibbs
        statistics. Journal of Statistical Physics, 52, 479-487 (1998).
    .. [2] Tsallis C, Stariolo DA. Generalized Simulated Annealing.
        Physica A, 233, 395-406 (1996).
    .. [3] Xiang Y, Sun DY, Fan W, Gong XG. Generalized Simulated
        Annealing Algorithm and Its Application to the Thomson Model.
        Physics Letters A, 233, 216-220 (1997).
    .. [4] Xiang Y, Gong XG. Efficiency of Generalized Simulated
        Annealing. Physical Review E, 62, 4473 (2000).
    .. [5] Xiang Y, Gubian S, Suomela B, Hoeng J. Generalized
        Simulated Annealing for Efficient Global Optimization: the GenSA
        Package for R. The R Journal, Volume 5/1 (2013).
    .. [6] Mullen, K. Continuous Global Optimization in R. Journal of
        Statistical Software, 60(6), 1 - 45, (2014).
        :doi:`10.18637/jss.v060.i06`

    Examples
    --------
    The following example is a 10-D problem, with many local minima.
    The function involved is called Rastrigin
    (https://en.wikipedia.org/wiki/Rastrigin_function)

    >>> import numpy as np
    >>> from scipy.optimize import dual_annealing
    >>> func = lambda x: np.sum(x*x - 10*np.cos(2*np.pi*x)) + 10*np.size(x)
    >>> lw = [-5.12] * 10
    >>> up = [5.12] * 10
    >>> ret = dual_annealing(func, bounds=list(zip(lw, up)))
    >>> ret.x
    array([-4.26437714e-09, -3.91699361e-09, -1.86149218e-09, -3.97165720e-09,
           -6.29151648e-09, -6.53145322e-09, -3.93616815e-09, -6.55623025e-09,
           -6.05775280e-09, -5.00668935e-09]) # random
    >>> ret.fun
    0.000000

    """

    if isinstance(bounds, Bounds):
        bounds = new_bounds_to_old(bounds.lb, bounds.ub, len(bounds.lb))

    if x0 is not None and not len(x0) == len(bounds):
        raise ValueError('Bounds size does not match x0')

    lu = list(zip(*bounds))
    lower = np.array(lu[0])
    upper = np.array(lu[1])
    # Check that restart temperature ratio is correct
    if restart_temp_ratio <= 0. or restart_temp_ratio >= 1.:
        raise ValueError('Restart temperature ratio has to be in range (0, 1)')
    # Checking bounds are valid
    if (np.any(np.isinf(lower)) or np.any(np.isinf(upper)) or np.any(
            np.isnan(lower)) or np.any(np.isnan(upper))):
        raise ValueError('Some bounds values are inf values or nan values')
    # Checking that bounds are consistent
    if not np.all(lower < upper):
        raise ValueError('Bounds are not consistent min < max')
    # Checking that bounds are the same length
    if not len(lower) == len(upper):
        raise ValueError('Bounds do not have the same dimensions')

    # Wrapper for the objective function
    func_wrapper = ObjectiveFunWrapper(func, maxfun, *args)

    # minimizer_kwargs has to be a dict, not None
    minimizer_kwargs = minimizer_kwargs or {}

    minimizer_wrapper = LocalSearchWrapper(
        bounds, func_wrapper, *args, **minimizer_kwargs)

    # Initialization of random Generator for reproducible runs if rng provided
    rng_gen = check_random_state(rng)
    # Initialization of the energy state
    energy_state = EnergyState(lower, upper, callback)
    energy_state.reset(func_wrapper, rng_gen, x0)
    # Minimum value of annealing temperature reached to perform
    # re-annealing
    temperature_restart = initial_temp * restart_temp_ratio
    # VisitingDistribution instance
    visit_dist = VisitingDistribution(lower, upper, visit, rng_gen)
    # Strategy chain instance
    strategy_chain = StrategyChain(accept, visit_dist, func_wrapper,
                                   minimizer_wrapper, rng_gen, energy_state)
    need_to_stop = False
    iteration = 0
    message = []
    # OptimizeResult object to be returned
    optimize_res = OptimizeResult()
    optimize_res.success = True
    optimize_res.status = 0

    t1 = np.exp((visit - 1) * np.log(2.0)) - 1.0
    # Run the search loop
    while not need_to_stop:
        for i in range(maxiter):
            # Compute temperature for this step
            s = float(i) + 2.0
            t2 = np.exp((visit - 1) * np.log(s)) - 1.0
            temperature = initial_temp * t1 / t2
            if iteration >= maxiter:
                message.append("Maximum number of iteration reached")
                need_to_stop = True
                break
            # Need a re-annealing process?
            if temperature < temperature_restart:
                energy_state.reset(func_wrapper, rng_gen)
                break
            # starting strategy chain
            val = strategy_chain.run(i, temperature)
            if val is not None:
                message.append(val)
                need_to_stop = True
                optimize_res.success = False
                break
            # Possible local search at the end of the strategy chain
            if not no_local_search:
                val = strategy_chain.local_search()
                if val is not None:
                    message.append(val)
                    need_to_stop = True
                    optimize_res.success = False
                    break
            iteration += 1

    # Setting the OptimizeResult values
    optimize_res.x = energy_state.xbest
    optimize_res.fun = energy_state.ebest
    optimize_res.nit = iteration
    optimize_res.nfev = func_wrapper.nfev
    optimize_res.njev = func_wrapper.ngev
    optimize_res.nhev = func_wrapper.nhev
    optimize_res.message = message
    return optimize_res