File size: 147,685 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
#__docformat__ = "restructuredtext en"
# ******NOTICE***************
# optimize.py module by Travis E. Oliphant
#
# You may copy and use this module as you see fit with no
# guarantee implied provided you keep this notice in all copies.
# *****END NOTICE************

# A collection of optimization algorithms. Version 0.5
# CHANGES
#  Added fminbound (July 2001)
#  Added brute (Aug. 2002)
#  Finished line search satisfying strong Wolfe conditions (Mar. 2004)
#  Updated strong Wolfe conditions line search to use
#  cubic-interpolation (Mar. 2004)


# Minimization routines

__all__ = ['fmin', 'fmin_powell', 'fmin_bfgs', 'fmin_ncg', 'fmin_cg',
           'fminbound', 'brent', 'golden', 'bracket', 'rosen', 'rosen_der',
           'rosen_hess', 'rosen_hess_prod', 'brute', 'approx_fprime',
           'line_search', 'check_grad', 'OptimizeResult', 'show_options',
           'OptimizeWarning']

__docformat__ = "restructuredtext en"

import math
import warnings
import sys
import inspect
from numpy import eye, argmin, zeros, shape, asarray, sqrt
import numpy as np
from scipy.linalg import cholesky, issymmetric, LinAlgError
from scipy.sparse.linalg import LinearOperator
from ._linesearch import (line_search_wolfe1, line_search_wolfe2,
                          line_search_wolfe2 as line_search,
                          LineSearchWarning)
from ._numdiff import approx_derivative
from scipy._lib._util import getfullargspec_no_self as _getfullargspec
from scipy._lib._util import (MapWrapper, check_random_state, _RichResult,
                              _call_callback_maybe_halt, _transition_to_rng)
from scipy.optimize._differentiable_functions import ScalarFunction, FD_METHODS
from scipy._lib._array_api import array_namespace
from scipy._lib import array_api_extra as xpx


# standard status messages of optimizers
_status_message = {'success': 'Optimization terminated successfully.',
                   'maxfev': 'Maximum number of function evaluations has '
                              'been exceeded.',
                   'maxiter': 'Maximum number of iterations has been '
                              'exceeded.',
                   'pr_loss': 'Desired error not necessarily achieved due '
                              'to precision loss.',
                   'nan': 'NaN result encountered.',
                   'out_of_bounds': 'The result is outside of the provided '
                                    'bounds.'}


class MemoizeJac:
    """Decorator that caches the return values of a function returning ``(fun, grad)``
    each time it is called."""

    def __init__(self, fun):
        self.fun = fun
        self.jac = None
        self._value = None
        self.x = None

    def _compute_if_needed(self, x, *args):
        if not np.all(x == self.x) or self._value is None or self.jac is None:
            self.x = np.asarray(x).copy()
            fg = self.fun(x, *args)
            self.jac = fg[1]
            self._value = fg[0]

    def __call__(self, x, *args):
        """ returns the function value """
        self._compute_if_needed(x, *args)
        return self._value

    def derivative(self, x, *args):
        self._compute_if_needed(x, *args)
        return self.jac


def _wrap_callback(callback, method=None):
    """Wrap a user-provided callback so that attributes can be attached."""
    if callback is None or method in {'tnc', 'slsqp', 'cobyla', 'cobyqa'}:
        return callback  # don't wrap

    sig = inspect.signature(callback)

    if set(sig.parameters) == {'intermediate_result'}:
        def wrapped_callback(res):
            return callback(intermediate_result=res)
    elif method == 'trust-constr':
        def wrapped_callback(res):
            return callback(np.copy(res.x), res)
    elif method == 'differential_evolution':
        def wrapped_callback(res):
            return callback(np.copy(res.x), res.convergence)
    else:
        def wrapped_callback(res):
            return callback(np.copy(res.x))

    wrapped_callback.stop_iteration = False
    return wrapped_callback


class OptimizeResult(_RichResult):
    """
    Represents the optimization result.

    Attributes
    ----------
    x : ndarray
        The solution of the optimization.
    success : bool
        Whether or not the optimizer exited successfully.
    status : int
        Termination status of the optimizer. Its value depends on the
        underlying solver. Refer to `message` for details.
    message : str
        Description of the cause of the termination.
    fun : float
        Value of objective function at `x`.
    jac, hess : ndarray
        Values of objective function's Jacobian and its Hessian at `x` (if
        available). The Hessian may be an approximation, see the documentation
        of the function in question.
    hess_inv : object
        Inverse of the objective function's Hessian; may be an approximation.
        Not available for all solvers. The type of this attribute may be
        either np.ndarray or scipy.sparse.linalg.LinearOperator.
    nfev, njev, nhev : int
        Number of evaluations of the objective functions and of its
        Jacobian and Hessian.
    nit : int
        Number of iterations performed by the optimizer.
    maxcv : float
        The maximum constraint violation.

    Notes
    -----
    Depending on the specific solver being used, `OptimizeResult` may
    not have all attributes listed here, and they may have additional
    attributes not listed here. Since this class is essentially a
    subclass of dict with attribute accessors, one can see which
    attributes are available using the `OptimizeResult.keys` method.

    """
    pass


class OptimizeWarning(UserWarning):
    pass

def _check_positive_definite(Hk):
    def is_pos_def(A):
        if issymmetric(A):
            try:
                cholesky(A)
                return True
            except LinAlgError:
                return False
        else:
            return False
    if Hk is not None:
        if not is_pos_def(Hk):
            raise ValueError("'hess_inv0' matrix isn't positive definite.")


def _check_unknown_options(unknown_options):
    if unknown_options:
        msg = ", ".join(map(str, unknown_options.keys()))
        # Stack level 4: this is called from _minimize_*, which is
        # called from another function in SciPy. Level 4 is the first
        # level in user code.
        warnings.warn(f"Unknown solver options: {msg}", OptimizeWarning, stacklevel=4)


def is_finite_scalar(x):
    """Test whether `x` is either a finite scalar or a finite array scalar.

    """
    return np.size(x) == 1 and np.isfinite(x)


_epsilon = sqrt(np.finfo(float).eps)


def vecnorm(x, ord=2):
    if ord == np.inf:
        return np.amax(np.abs(x))
    elif ord == -np.inf:
        return np.amin(np.abs(x))
    else:
        return np.sum(np.abs(x)**ord, axis=0)**(1.0 / ord)


def _prepare_scalar_function(fun, x0, jac=None, args=(), bounds=None,
                             epsilon=None, finite_diff_rel_step=None,
                             hess=None):
    """
    Creates a ScalarFunction object for use with scalar minimizers
    (BFGS/LBFGSB/SLSQP/TNC/CG/etc).

    Parameters
    ----------
    fun : callable
        The objective function to be minimized.

            ``fun(x, *args) -> float``

        where ``x`` is an 1-D array with shape (n,) and ``args``
        is a tuple of the fixed parameters needed to completely
        specify the function.
    x0 : ndarray, shape (n,)
        Initial guess. Array of real elements of size (n,),
        where 'n' is the number of independent variables.
    jac : {callable,  '2-point', '3-point', 'cs', None}, optional
        Method for computing the gradient vector. If it is a callable, it
        should be a function that returns the gradient vector:

            ``jac(x, *args) -> array_like, shape (n,)``

        If one of `{'2-point', '3-point', 'cs'}` is selected then the gradient
        is calculated with a relative step for finite differences. If `None`,
        then two-point finite differences with an absolute step is used.
    args : tuple, optional
        Extra arguments passed to the objective function and its
        derivatives (`fun`, `jac` functions).
    bounds : sequence, optional
        Bounds on variables. 'new-style' bounds are required.
    eps : float or ndarray
        If ``jac is None`` the absolute step size used for numerical
        approximation of the jacobian via forward differences.
    finite_diff_rel_step : None or array_like, optional
        If ``jac in ['2-point', '3-point', 'cs']`` the relative step size to
        use for numerical approximation of the jacobian. The absolute step
        size is computed as ``h = rel_step * sign(x0) * max(1, abs(x0))``,
        possibly adjusted to fit into the bounds. For ``jac='3-point'``
        the sign of `h` is ignored. If None (default) then step is selected
        automatically.
    hess : {callable,  '2-point', '3-point', 'cs', None}
        Computes the Hessian matrix. If it is callable, it should return the
        Hessian matrix:

            ``hess(x, *args) -> {LinearOperator, spmatrix, array}, (n, n)``

        Alternatively, the keywords {'2-point', '3-point', 'cs'} select a
        finite difference scheme for numerical estimation.
        Whenever the gradient is estimated via finite-differences, the Hessian
        cannot be estimated with options {'2-point', '3-point', 'cs'} and needs
        to be estimated using one of the quasi-Newton strategies.

    Returns
    -------
    sf : ScalarFunction
    """
    if callable(jac):
        grad = jac
    elif jac in FD_METHODS:
        # epsilon is set to None so that ScalarFunction is made to use
        # rel_step
        epsilon = None
        grad = jac
    else:
        # default (jac is None) is to do 2-point finite differences with
        # absolute step size. ScalarFunction has to be provided an
        # epsilon value that is not None to use absolute steps. This is
        # normally the case from most _minimize* methods.
        grad = '2-point'
        epsilon = epsilon

    if hess is None:
        # ScalarFunction requires something for hess, so we give a dummy
        # implementation here if nothing is provided, return a value of None
        # so that downstream minimisers halt. The results of `fun.hess`
        # should not be used.
        def hess(x, *args):
            return None

    if bounds is None:
        bounds = (-np.inf, np.inf)

    # ScalarFunction caches. Reuse of fun(x) during grad
    # calculation reduces overall function evaluations.
    sf = ScalarFunction(fun, x0, args, grad, hess,
                        finite_diff_rel_step, bounds, epsilon=epsilon)

    return sf


def _clip_x_for_func(func, bounds):
    # ensures that x values sent to func are clipped to bounds

    # this is used as a mitigation for gh11403, slsqp/tnc sometimes
    # suggest a move that is outside the limits by 1 or 2 ULP. This
    # unclean fix makes sure x is strictly within bounds.
    def eval(x):
        x = _check_clip_x(x, bounds)
        return func(x)

    return eval


def _check_clip_x(x, bounds):
    if (x < bounds[0]).any() or (x > bounds[1]).any():
        warnings.warn("Values in x were outside bounds during a "
                      "minimize step, clipping to bounds",
                      RuntimeWarning, stacklevel=3)
        x = np.clip(x, bounds[0], bounds[1])
        return x

    return x


def rosen(x):
    """
    The Rosenbrock function.

    The function computed is::

        sum(100.0*(x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0)

    Parameters
    ----------
    x : array_like
        1-D array of points at which the Rosenbrock function is to be computed.

    Returns
    -------
    f : float
        The value of the Rosenbrock function.

    See Also
    --------
    rosen_der, rosen_hess, rosen_hess_prod

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.optimize import rosen
    >>> X = 0.1 * np.arange(10)
    >>> rosen(X)
    76.56

    For higher-dimensional input ``rosen`` broadcasts.
    In the following example, we use this to plot a 2D landscape.
    Note that ``rosen_hess`` does not broadcast in this manner.

    >>> import matplotlib.pyplot as plt
    >>> from mpl_toolkits.mplot3d import Axes3D
    >>> x = np.linspace(-1, 1, 50)
    >>> X, Y = np.meshgrid(x, x)
    >>> ax = plt.subplot(111, projection='3d')
    >>> ax.plot_surface(X, Y, rosen([X, Y]))
    >>> plt.show()
    """
    xp = array_namespace(x)
    x = xp.asarray(x)
    if xp.isdtype(x.dtype, 'integral'):
        x = xp.astype(x, xp.asarray(1.).dtype)
    r = xp.sum(100.0 * (x[1:] - x[:-1]**2.0)**2.0 + (1 - x[:-1])**2.0,
               axis=0, dtype=x.dtype)
    return r


def rosen_der(x):
    """
    The derivative (i.e. gradient) of the Rosenbrock function.

    Parameters
    ----------
    x : array_like
        1-D array of points at which the derivative is to be computed.

    Returns
    -------
    rosen_der : (N,) ndarray
        The gradient of the Rosenbrock function at `x`.

    See Also
    --------
    rosen, rosen_hess, rosen_hess_prod

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.optimize import rosen_der
    >>> X = 0.1 * np.arange(9)
    >>> rosen_der(X)
    array([ -2. ,  10.6,  15.6,  13.4,   6.4,  -3. , -12.4, -19.4,  62. ])

    """
    xp = array_namespace(x)
    x = xp.asarray(x)
    if xp.isdtype(x.dtype, 'integral'):
        x = xp.astype(x, xp.asarray(1.).dtype)
    xm = x[1:-1]
    xm_m1 = x[:-2]
    xm_p1 = x[2:]
    der = xp.zeros_like(x)
    der[1:-1] = (200 * (xm - xm_m1**2) -
                 400 * (xm_p1 - xm**2) * xm - 2 * (1 - xm))
    der[0] = -400 * x[0] * (x[1] - x[0]**2) - 2 * (1 - x[0])
    der[-1] = 200 * (x[-1] - x[-2]**2)
    return der


def rosen_hess(x):
    """
    The Hessian matrix of the Rosenbrock function.

    Parameters
    ----------
    x : array_like
        1-D array of points at which the Hessian matrix is to be computed.

    Returns
    -------
    rosen_hess : ndarray
        The Hessian matrix of the Rosenbrock function at `x`.

    See Also
    --------
    rosen, rosen_der, rosen_hess_prod

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.optimize import rosen_hess
    >>> X = 0.1 * np.arange(4)
    >>> rosen_hess(X)
    array([[-38.,   0.,   0.,   0.],
           [  0., 134., -40.,   0.],
           [  0., -40., 130., -80.],
           [  0.,   0., -80., 200.]])

    """
    xp = array_namespace(x)
    x = xpx.atleast_nd(x, ndim=1, xp=xp)
    if xp.isdtype(x.dtype, 'integral'):
        x = xp.astype(x, xp.asarray(1.).dtype)
    H = (xpx.create_diagonal(-400 * x[:-1], offset=1, xp=xp) 
         - xpx.create_diagonal(400 * x[:-1], offset=-1, xp=xp))
    diagonal = xp.zeros(x.shape[0], dtype=x.dtype)
    diagonal[0] = 1200 * x[0]**2 - 400 * x[1] + 2
    diagonal[-1] = 200
    diagonal[1:-1] = 202 + 1200 * x[1:-1]**2 - 400 * x[2:]
    return H + xpx.create_diagonal(diagonal, xp=xp)


def rosen_hess_prod(x, p):
    """
    Product of the Hessian matrix of the Rosenbrock function with a vector.

    Parameters
    ----------
    x : array_like
        1-D array of points at which the Hessian matrix is to be computed.
    p : array_like
        1-D array, the vector to be multiplied by the Hessian matrix.

    Returns
    -------
    rosen_hess_prod : ndarray
        The Hessian matrix of the Rosenbrock function at `x` multiplied
        by the vector `p`.

    See Also
    --------
    rosen, rosen_der, rosen_hess

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.optimize import rosen_hess_prod
    >>> X = 0.1 * np.arange(9)
    >>> p = 0.5 * np.arange(9)
    >>> rosen_hess_prod(X, p)
    array([  -0.,   27.,  -10.,  -95., -192., -265., -278., -195., -180.])

    """
    xp = array_namespace(x, p)
    x = xpx.atleast_nd(x, ndim=1, xp=xp)
    if xp.isdtype(x.dtype, 'integral'):
        x = xp.astype(x, xp.asarray(1.).dtype)
    p = xp.asarray(p, dtype=x.dtype)
    Hp = xp.zeros(x.shape[0], dtype=x.dtype)
    Hp[0] = (1200 * x[0]**2 - 400 * x[1] + 2) * p[0] - 400 * x[0] * p[1]
    Hp[1:-1] = (-400 * x[:-2] * p[:-2] +
                (202 + 1200 * x[1:-1]**2 - 400 * x[2:]) * p[1:-1] -
                400 * x[1:-1] * p[2:])
    Hp[-1] = -400 * x[-2] * p[-2] + 200*p[-1]
    return Hp


def _wrap_scalar_function(function, args):
    # wraps a minimizer function to count number of evaluations
    # and to easily provide an args kwd.
    ncalls = [0]
    if function is None:
        return ncalls, None

    def function_wrapper(x, *wrapper_args):
        ncalls[0] += 1
        # A copy of x is sent to the user function (gh13740)
        fx = function(np.copy(x), *(wrapper_args + args))
        # Ideally, we'd like to a have a true scalar returned from f(x). For
        # backwards-compatibility, also allow np.array([1.3]), np.array([[1.3]]) etc.
        if not np.isscalar(fx):
            try:
                fx = np.asarray(fx).item()
            except (TypeError, ValueError) as e:
                raise ValueError("The user-provided objective function "
                                 "must return a scalar value.") from e
        return fx

    return ncalls, function_wrapper


class _MaxFuncCallError(RuntimeError):
    pass


def _wrap_scalar_function_maxfun_validation(function, args, maxfun):
    # wraps a minimizer function to count number of evaluations
    # and to easily provide an args kwd.
    ncalls = [0]
    if function is None:
        return ncalls, None

    def function_wrapper(x, *wrapper_args):
        if ncalls[0] >= maxfun:
            raise _MaxFuncCallError("Too many function calls")
        ncalls[0] += 1
        # A copy of x is sent to the user function (gh13740)
        fx = function(np.copy(x), *(wrapper_args + args))
        # Ideally, we'd like to a have a true scalar returned from f(x). For
        # backwards-compatibility, also allow np.array([1.3]),
        # np.array([[1.3]]) etc.
        if not np.isscalar(fx):
            try:
                fx = np.asarray(fx).item()
            except (TypeError, ValueError) as e:
                raise ValueError("The user-provided objective function "
                                 "must return a scalar value.") from e
        return fx

    return ncalls, function_wrapper


def fmin(func, x0, args=(), xtol=1e-4, ftol=1e-4, maxiter=None, maxfun=None,
         full_output=0, disp=1, retall=0, callback=None, initial_simplex=None):
    """
    Minimize a function using the downhill simplex algorithm.

    This algorithm only uses function values, not derivatives or second
    derivatives.

    Parameters
    ----------
    func : callable func(x,*args)
        The objective function to be minimized.
    x0 : ndarray
        Initial guess.
    args : tuple, optional
        Extra arguments passed to func, i.e., ``f(x,*args)``.
    xtol : float, optional
        Absolute error in xopt between iterations that is acceptable for
        convergence.
    ftol : number, optional
        Absolute error in func(xopt) between iterations that is acceptable for
        convergence.
    maxiter : int, optional
        Maximum number of iterations to perform.
    maxfun : number, optional
        Maximum number of function evaluations to make.
    full_output : bool, optional
        Set to True if fopt and warnflag outputs are desired.
    disp : bool, optional
        Set to True to print convergence messages.
    retall : bool, optional
        Set to True to return list of solutions at each iteration.
    callback : callable, optional
        Called after each iteration, as callback(xk), where xk is the
        current parameter vector.
    initial_simplex : array_like of shape (N + 1, N), optional
        Initial simplex. If given, overrides `x0`.
        ``initial_simplex[j,:]`` should contain the coordinates of
        the jth vertex of the ``N+1`` vertices in the simplex, where
        ``N`` is the dimension.

    Returns
    -------
    xopt : ndarray
        Parameter that minimizes function.
    fopt : float
        Value of function at minimum: ``fopt = func(xopt)``.
    iter : int
        Number of iterations performed.
    funcalls : int
        Number of function calls made.
    warnflag : int
        1 : Maximum number of function evaluations made.
        2 : Maximum number of iterations reached.
    allvecs : list
        Solution at each iteration.

    See also
    --------
    minimize: Interface to minimization algorithms for multivariate
        functions. See the 'Nelder-Mead' `method` in particular.

    Notes
    -----
    Uses a Nelder-Mead simplex algorithm to find the minimum of function of
    one or more variables.

    This algorithm has a long history of successful use in applications.
    But it will usually be slower than an algorithm that uses first or
    second derivative information. In practice, it can have poor
    performance in high-dimensional problems and is not robust to
    minimizing complicated functions. Additionally, there currently is no
    complete theory describing when the algorithm will successfully
    converge to the minimum, or how fast it will if it does. Both the ftol and
    xtol criteria must be met for convergence.

    Examples
    --------
    >>> def f(x):
    ...     return x**2

    >>> from scipy import optimize

    >>> minimum = optimize.fmin(f, 1)
    Optimization terminated successfully.
             Current function value: 0.000000
             Iterations: 17
             Function evaluations: 34
    >>> minimum[0]
    -8.8817841970012523e-16

    References
    ----------
    .. [1] Nelder, J.A. and Mead, R. (1965), "A simplex method for function
           minimization", The Computer Journal, 7, pp. 308-313

    .. [2] Wright, M.H. (1996), "Direct Search Methods: Once Scorned, Now
           Respectable", in Numerical Analysis 1995, Proceedings of the
           1995 Dundee Biennial Conference in Numerical Analysis, D.F.
           Griffiths and G.A. Watson (Eds.), Addison Wesley Longman,
           Harlow, UK, pp. 191-208.

    """
    opts = {'xatol': xtol,
            'fatol': ftol,
            'maxiter': maxiter,
            'maxfev': maxfun,
            'disp': disp,
            'return_all': retall,
            'initial_simplex': initial_simplex}

    callback = _wrap_callback(callback)
    res = _minimize_neldermead(func, x0, args, callback=callback, **opts)
    if full_output:
        retlist = res['x'], res['fun'], res['nit'], res['nfev'], res['status']
        if retall:
            retlist += (res['allvecs'], )
        return retlist
    else:
        if retall:
            return res['x'], res['allvecs']
        else:
            return res['x']


def _minimize_neldermead(func, x0, args=(), callback=None,
                         maxiter=None, maxfev=None, disp=False,
                         return_all=False, initial_simplex=None,
                         xatol=1e-4, fatol=1e-4, adaptive=False, bounds=None,
                         **unknown_options):
    """
    Minimization of scalar function of one or more variables using the
    Nelder-Mead algorithm.

    Options
    -------
    disp : bool
        Set to True to print convergence messages.
    maxiter, maxfev : int
        Maximum allowed number of iterations and function evaluations.
        Will default to ``N*200``, where ``N`` is the number of
        variables, if neither `maxiter` or `maxfev` is set. If both
        `maxiter` and `maxfev` are set, minimization will stop at the
        first reached.
    return_all : bool, optional
        Set to True to return a list of the best solution at each of the
        iterations.
    initial_simplex : array_like of shape (N + 1, N)
        Initial simplex. If given, overrides `x0`.
        ``initial_simplex[j,:]`` should contain the coordinates of
        the jth vertex of the ``N+1`` vertices in the simplex, where
        ``N`` is the dimension.
    xatol : float, optional
        Absolute error in xopt between iterations that is acceptable for
        convergence.
    fatol : number, optional
        Absolute error in func(xopt) between iterations that is acceptable for
        convergence.
    adaptive : bool, optional
        Adapt algorithm parameters to dimensionality of problem. Useful for
        high-dimensional minimization [1]_.
    bounds : sequence or `Bounds`, optional
        Bounds on variables. There are two ways to specify the bounds:

        1. Instance of `Bounds` class.
        2. Sequence of ``(min, max)`` pairs for each element in `x`. None
           is used to specify no bound.

        Note that this just clips all vertices in simplex based on
        the bounds.

    References
    ----------
    .. [1] Gao, F. and Han, L.
       Implementing the Nelder-Mead simplex algorithm with adaptive
       parameters. 2012. Computational Optimization and Applications.
       51:1, pp. 259-277

    """
    _check_unknown_options(unknown_options)
    maxfun = maxfev
    retall = return_all

    x0 = np.atleast_1d(x0).flatten()
    dtype = x0.dtype if np.issubdtype(x0.dtype, np.inexact) else np.float64
    x0 = np.asarray(x0, dtype=dtype)

    if adaptive:
        dim = float(len(x0))
        rho = 1
        chi = 1 + 2/dim
        psi = 0.75 - 1/(2*dim)
        sigma = 1 - 1/dim
    else:
        rho = 1
        chi = 2
        psi = 0.5
        sigma = 0.5

    nonzdelt = 0.05
    zdelt = 0.00025

    if bounds is not None:
        lower_bound, upper_bound = bounds.lb, bounds.ub
        # check bounds
        if (lower_bound > upper_bound).any():
            raise ValueError("Nelder Mead - one of the lower bounds "
                             "is greater than an upper bound.")
        if np.any(lower_bound > x0) or np.any(x0 > upper_bound):
            warnings.warn("Initial guess is not within the specified bounds",
                          OptimizeWarning, stacklevel=3)

    if bounds is not None:
        x0 = np.clip(x0, lower_bound, upper_bound)

    if initial_simplex is None:
        N = len(x0)

        sim = np.empty((N + 1, N), dtype=x0.dtype)
        sim[0] = x0
        for k in range(N):
            y = np.array(x0, copy=True)
            if y[k] != 0:
                y[k] = (1 + nonzdelt)*y[k]
            else:
                y[k] = zdelt
            sim[k + 1] = y
    else:
        sim = np.atleast_2d(initial_simplex).copy()
        dtype = sim.dtype if np.issubdtype(sim.dtype, np.inexact) else np.float64
        sim = np.asarray(sim, dtype=dtype)
        if sim.ndim != 2 or sim.shape[0] != sim.shape[1] + 1:
            raise ValueError("`initial_simplex` should be an array of shape (N+1,N)")
        if len(x0) != sim.shape[1]:
            raise ValueError("Size of `initial_simplex` is not consistent with `x0`")
        N = sim.shape[1]

    if retall:
        allvecs = [sim[0]]

    # If neither are set, then set both to default
    if maxiter is None and maxfun is None:
        maxiter = N * 200
        maxfun = N * 200
    elif maxiter is None:
        # Convert remaining Nones, to np.inf, unless the other is np.inf, in
        # which case use the default to avoid unbounded iteration
        if maxfun == np.inf:
            maxiter = N * 200
        else:
            maxiter = np.inf
    elif maxfun is None:
        if maxiter == np.inf:
            maxfun = N * 200
        else:
            maxfun = np.inf

    if bounds is not None:
        # The default simplex construction may make all entries (for a given
        # parameter) greater than an upper bound if x0 is very close to the
        # upper bound. If one simply clips the simplex to the bounds this could
        # make the simplex entries degenerate. If that occurs reflect into the
        # interior.
        msk = sim > upper_bound
        # reflect into the interior
        sim = np.where(msk, 2*upper_bound - sim, sim)
        # but make sure the reflection is no less than the lower_bound
        sim = np.clip(sim, lower_bound, upper_bound)

    one2np1 = list(range(1, N + 1))
    fsim = np.full((N + 1,), np.inf, dtype=float)

    fcalls, func = _wrap_scalar_function_maxfun_validation(func, args, maxfun)

    try:
        for k in range(N + 1):
            fsim[k] = func(sim[k])
    except _MaxFuncCallError:
        pass
    finally:
        ind = np.argsort(fsim)
        sim = np.take(sim, ind, 0)
        fsim = np.take(fsim, ind, 0)

    ind = np.argsort(fsim)
    fsim = np.take(fsim, ind, 0)
    # sort so sim[0,:] has the lowest function value
    sim = np.take(sim, ind, 0)

    iterations = 1

    while (fcalls[0] < maxfun and iterations < maxiter):
        try:
            if (np.max(np.ravel(np.abs(sim[1:] - sim[0]))) <= xatol and
                    np.max(np.abs(fsim[0] - fsim[1:])) <= fatol):
                break

            xbar = np.add.reduce(sim[:-1], 0) / N
            xr = (1 + rho) * xbar - rho * sim[-1]
            if bounds is not None:
                xr = np.clip(xr, lower_bound, upper_bound)
            fxr = func(xr)
            doshrink = 0

            if fxr < fsim[0]:
                xe = (1 + rho * chi) * xbar - rho * chi * sim[-1]
                if bounds is not None:
                    xe = np.clip(xe, lower_bound, upper_bound)
                fxe = func(xe)

                if fxe < fxr:
                    sim[-1] = xe
                    fsim[-1] = fxe
                else:
                    sim[-1] = xr
                    fsim[-1] = fxr
            else:  # fsim[0] <= fxr
                if fxr < fsim[-2]:
                    sim[-1] = xr
                    fsim[-1] = fxr
                else:  # fxr >= fsim[-2]
                    # Perform contraction
                    if fxr < fsim[-1]:
                        xc = (1 + psi * rho) * xbar - psi * rho * sim[-1]
                        if bounds is not None:
                            xc = np.clip(xc, lower_bound, upper_bound)
                        fxc = func(xc)

                        if fxc <= fxr:
                            sim[-1] = xc
                            fsim[-1] = fxc
                        else:
                            doshrink = 1
                    else:
                        # Perform an inside contraction
                        xcc = (1 - psi) * xbar + psi * sim[-1]
                        if bounds is not None:
                            xcc = np.clip(xcc, lower_bound, upper_bound)
                        fxcc = func(xcc)

                        if fxcc < fsim[-1]:
                            sim[-1] = xcc
                            fsim[-1] = fxcc
                        else:
                            doshrink = 1

                    if doshrink:
                        for j in one2np1:
                            sim[j] = sim[0] + sigma * (sim[j] - sim[0])
                            if bounds is not None:
                                sim[j] = np.clip(
                                    sim[j], lower_bound, upper_bound)
                            fsim[j] = func(sim[j])
            iterations += 1
        except _MaxFuncCallError:
            pass
        finally:
            ind = np.argsort(fsim)
            sim = np.take(sim, ind, 0)
            fsim = np.take(fsim, ind, 0)
            if retall:
                allvecs.append(sim[0])
            intermediate_result = OptimizeResult(x=sim[0], fun=fsim[0])
            if _call_callback_maybe_halt(callback, intermediate_result):
                break

    x = sim[0]
    fval = np.min(fsim)
    warnflag = 0

    if fcalls[0] >= maxfun:
        warnflag = 1
        msg = _status_message['maxfev']
        if disp:
            warnings.warn(msg, RuntimeWarning, stacklevel=3)
    elif iterations >= maxiter:
        warnflag = 2
        msg = _status_message['maxiter']
        if disp:
            warnings.warn(msg, RuntimeWarning, stacklevel=3)
    else:
        msg = _status_message['success']
        if disp:
            print(msg)
            print(f"         Current function value: {fval:f}")
            print("         Iterations: %d" % iterations)
            print("         Function evaluations: %d" % fcalls[0])

    result = OptimizeResult(fun=fval, nit=iterations, nfev=fcalls[0],
                            status=warnflag, success=(warnflag == 0),
                            message=msg, x=x, final_simplex=(sim, fsim))
    if retall:
        result['allvecs'] = allvecs
    return result


def approx_fprime(xk, f, epsilon=_epsilon, *args):
    """Finite difference approximation of the derivatives of a
    scalar or vector-valued function.

    If a function maps from :math:`R^n` to :math:`R^m`, its derivatives form
    an m-by-n matrix
    called the Jacobian, where an element :math:`(i, j)` is a partial
    derivative of f[i] with respect to ``xk[j]``.

    Parameters
    ----------
    xk : array_like
        The coordinate vector at which to determine the gradient of `f`.
    f : callable
        Function of which to estimate the derivatives of. Has the signature
        ``f(xk, *args)`` where `xk` is the argument in the form of a 1-D array
        and `args` is a tuple of any additional fixed parameters needed to
        completely specify the function. The argument `xk` passed to this
        function is an ndarray of shape (n,) (never a scalar even if n=1).
        It must return a 1-D array_like of shape (m,) or a scalar.

        Suppose the callable has signature ``f0(x, *my_args, **my_kwargs)``, where
        ``my_args`` and ``my_kwargs`` are required positional and keyword arguments.
        Rather than passing ``f0`` as the callable, wrap it to accept
        only ``x``; e.g., pass ``fun=lambda x: f0(x, *my_args, **my_kwargs)`` as the
        callable, where ``my_args`` (tuple) and ``my_kwargs`` (dict) have been
        gathered before invoking this function.

        .. versionchanged:: 1.9.0
            `f` is now able to return a 1-D array-like, with the :math:`(m, n)`
            Jacobian being estimated.

    epsilon : {float, array_like}, optional
        Increment to `xk` to use for determining the function gradient.
        If a scalar, uses the same finite difference delta for all partial
        derivatives. If an array, should contain one value per element of
        `xk`. Defaults to ``sqrt(np.finfo(float).eps)``, which is approximately
        1.49e-08.
    \\*args : args, optional
        Any other arguments that are to be passed to `f`.

    Returns
    -------
    jac : ndarray
        The partial derivatives of `f` to `xk`.

    See Also
    --------
    check_grad : Check correctness of gradient function against approx_fprime.

    Notes
    -----
    The function gradient is determined by the forward finite difference
    formula::

                 f(xk[i] + epsilon[i]) - f(xk[i])
        f'[i] = ---------------------------------
                            epsilon[i]

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import optimize
    >>> def func(x, c0, c1):
    ...     "Coordinate vector `x` should be an array of size two."
    ...     return c0 * x[0]**2 + c1*x[1]**2

    >>> x = np.ones(2)
    >>> c0, c1 = (1, 200)
    >>> eps = np.sqrt(np.finfo(float).eps)
    >>> optimize.approx_fprime(x, func, [eps, np.sqrt(200) * eps], c0, c1)
    array([   2.        ,  400.00004208])

    """
    xk = np.asarray(xk, float)
    f0 = f(xk, *args)

    return approx_derivative(f, xk, method='2-point', abs_step=epsilon,
                             args=args, f0=f0)


@_transition_to_rng("seed", position_num=6)
def check_grad(func, grad, x0, *args, epsilon=_epsilon,
                direction='all', rng=None):
    r"""Check the correctness of a gradient function by comparing it against a
    (forward) finite-difference approximation of the gradient.

    Parameters
    ----------
    func : callable ``func(x0, *args)``
        Function whose derivative is to be checked.
    grad : callable ``grad(x0, *args)``
        Jacobian of `func`.
    x0 : ndarray
        Points to check `grad` against forward difference approximation of grad
        using `func`.
    args : \\*args, optional
        Extra arguments passed to `func` and `grad`.
    epsilon : float, optional
        Step size used for the finite difference approximation. It defaults to
        ``sqrt(np.finfo(float).eps)``, which is approximately 1.49e-08.
    direction : str, optional
        If set to ``'random'``, then gradients along a random vector
        are used to check `grad` against forward difference approximation
        using `func`. By default it is ``'all'``, in which case, all
        the one hot direction vectors are considered to check `grad`.
        If `func` is a vector valued function then only ``'all'`` can be used.
    rng : `numpy.random.Generator`, optional
        Pseudorandom number generator state. When `rng` is None, a new
        `numpy.random.Generator` is created using entropy from the
        operating system. Types other than `numpy.random.Generator` are
        passed to `numpy.random.default_rng` to instantiate a ``Generator``.

        The random numbers generated affect the random vector along which gradients
        are computed to check ``grad``. Note that `rng` is only used when `direction`
        argument is set to `'random'`.

    Returns
    -------
    err : float
        The square root of the sum of squares (i.e., the 2-norm) of the
        difference between ``grad(x0, *args)`` and the finite difference
        approximation of `grad` using func at the points `x0`.

    See Also
    --------
    approx_fprime

    Examples
    --------
    >>> import numpy as np
    >>> def func(x):
    ...     return x[0]**2 - 0.5 * x[1]**3
    >>> def grad(x):
    ...     return [2 * x[0], -1.5 * x[1]**2]
    >>> from scipy.optimize import check_grad
    >>> check_grad(func, grad, [1.5, -1.5])
    2.9802322387695312e-08  # may vary
    >>> rng = np.random.default_rng()
    >>> check_grad(func, grad, [1.5, -1.5],
    ...             direction='random', seed=rng)
    2.9802322387695312e-08

    """
    step = epsilon
    x0 = np.asarray(x0)

    def g(w, func, x0, v, *args):
        return func(x0 + w*v, *args)

    if direction == 'random':
        _grad = np.asanyarray(grad(x0, *args))
        if _grad.ndim > 1:
            raise ValueError("'random' can only be used with scalar valued"
                             " func")
        rng_gen = check_random_state(rng)
        v = rng_gen.standard_normal(size=(x0.shape))
        _args = (func, x0, v) + args
        _func = g
        vars = np.zeros((1,))
        analytical_grad = np.dot(_grad, v)
    elif direction == 'all':
        _args = args
        _func = func
        vars = x0
        analytical_grad = grad(x0, *args)
    else:
        raise ValueError(f"{direction} is not a valid string for "
                         "``direction`` argument")

    return np.sqrt(np.sum(np.abs(
        (analytical_grad - approx_fprime(vars, _func, step, *_args))**2
    )))


def approx_fhess_p(x0, p, fprime, epsilon, *args):
    # calculate fprime(x0) first, as this may be cached by ScalarFunction
    f1 = fprime(*((x0,) + args))
    f2 = fprime(*((x0 + epsilon*p,) + args))
    return (f2 - f1) / epsilon


class _LineSearchError(RuntimeError):
    pass


def _line_search_wolfe12(f, fprime, xk, pk, gfk, old_fval, old_old_fval,
                         **kwargs):
    """
    Same as line_search_wolfe1, but fall back to line_search_wolfe2 if
    suitable step length is not found, and raise an exception if a
    suitable step length is not found.

    Raises
    ------
    _LineSearchError
        If no suitable step size is found

    """

    extra_condition = kwargs.pop('extra_condition', None)

    ret = line_search_wolfe1(f, fprime, xk, pk, gfk,
                             old_fval, old_old_fval,
                             **kwargs)

    if ret[0] is not None and extra_condition is not None:
        xp1 = xk + ret[0] * pk
        if not extra_condition(ret[0], xp1, ret[3], ret[5]):
            # Reject step if extra_condition fails
            ret = (None,)

    if ret[0] is None:
        # line search failed: try different one.
        with warnings.catch_warnings():
            warnings.simplefilter('ignore', LineSearchWarning)
            kwargs2 = {}
            for key in ('c1', 'c2', 'amax'):
                if key in kwargs:
                    kwargs2[key] = kwargs[key]
            ret = line_search_wolfe2(f, fprime, xk, pk, gfk,
                                     old_fval, old_old_fval,
                                     extra_condition=extra_condition,
                                     **kwargs2)

    if ret[0] is None:
        raise _LineSearchError()

    return ret


def fmin_bfgs(f, x0, fprime=None, args=(), gtol=1e-5, norm=np.inf,
              epsilon=_epsilon, maxiter=None, full_output=0, disp=1,
              retall=0, callback=None, xrtol=0, c1=1e-4, c2=0.9,
              hess_inv0=None):
    """
    Minimize a function using the BFGS algorithm.

    Parameters
    ----------
    f : callable ``f(x,*args)``
        Objective function to be minimized.
    x0 : ndarray
        Initial guess, shape (n,)
    fprime : callable ``f'(x,*args)``, optional
        Gradient of f.
    args : tuple, optional
        Extra arguments passed to f and fprime.
    gtol : float, optional
        Terminate successfully if gradient norm is less than `gtol`
    norm : float, optional
        Order of norm (Inf is max, -Inf is min)
    epsilon : int or ndarray, optional
        If `fprime` is approximated, use this value for the step size.
    callback : callable, optional
        An optional user-supplied function to call after each
        iteration. Called as ``callback(xk)``, where ``xk`` is the
        current parameter vector.
    maxiter : int, optional
        Maximum number of iterations to perform.
    full_output : bool, optional
        If True, return ``fopt``, ``func_calls``, ``grad_calls``, and
        ``warnflag`` in addition to ``xopt``.
    disp : bool, optional
        Print convergence message if True.
    retall : bool, optional
        Return a list of results at each iteration if True.
    xrtol : float, default: 0
        Relative tolerance for `x`. Terminate successfully if step
        size is less than ``xk * xrtol`` where ``xk`` is the current
        parameter vector.
    c1 : float, default: 1e-4
        Parameter for Armijo condition rule.
    c2 : float, default: 0.9
        Parameter for curvature condition rule.
    hess_inv0 : None or ndarray, optional``
        Initial inverse hessian estimate, shape (n, n). If None (default) then
        the identity matrix is used.

    Returns
    -------
    xopt : ndarray
        Parameters which minimize f, i.e., ``f(xopt) == fopt``.
    fopt : float
        Minimum value.
    gopt : ndarray
        Value of gradient at minimum, f'(xopt), which should be near 0.
    Bopt : ndarray
        Value of 1/f''(xopt), i.e., the inverse Hessian matrix.
    func_calls : int
        Number of function_calls made.
    grad_calls : int
        Number of gradient calls made.
    warnflag : integer
        1 : Maximum number of iterations exceeded.
        2 : Gradient and/or function calls not changing.
        3 : NaN result encountered.
    allvecs : list
        The value of `xopt` at each iteration. Only returned if `retall` is
        True.

    Notes
    -----
    Optimize the function, `f`, whose gradient is given by `fprime`
    using the quasi-Newton method of Broyden, Fletcher, Goldfarb,
    and Shanno (BFGS).

    Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``.

    See Also
    --------
    minimize: Interface to minimization algorithms for multivariate
        functions. See ``method='BFGS'`` in particular.

    References
    ----------
    Wright, and Nocedal 'Numerical Optimization', 1999, p. 198.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.optimize import fmin_bfgs
    >>> def quadratic_cost(x, Q):
    ...     return x @ Q @ x
    ...
    >>> x0 = np.array([-3, -4])
    >>> cost_weight =  np.diag([1., 10.])
    >>> # Note that a trailing comma is necessary for a tuple with single element
    >>> fmin_bfgs(quadratic_cost, x0, args=(cost_weight,))
    Optimization terminated successfully.
            Current function value: 0.000000
            Iterations: 7                   # may vary
            Function evaluations: 24        # may vary
            Gradient evaluations: 8         # may vary
    array([ 2.85169950e-06, -4.61820139e-07])

    >>> def quadratic_cost_grad(x, Q):
    ...     return 2 * Q @ x
    ...
    >>> fmin_bfgs(quadratic_cost, x0, quadratic_cost_grad, args=(cost_weight,))
    Optimization terminated successfully.
            Current function value: 0.000000
            Iterations: 7
            Function evaluations: 8
            Gradient evaluations: 8
    array([ 2.85916637e-06, -4.54371951e-07])

    """
    opts = {'gtol': gtol,
            'norm': norm,
            'eps': epsilon,
            'disp': disp,
            'maxiter': maxiter,
            'return_all': retall,
            'xrtol': xrtol,
            'c1': c1,
            'c2': c2,
            'hess_inv0': hess_inv0}

    callback = _wrap_callback(callback)
    res = _minimize_bfgs(f, x0, args, fprime, callback=callback, **opts)

    if full_output:
        retlist = (res['x'], res['fun'], res['jac'], res['hess_inv'],
                   res['nfev'], res['njev'], res['status'])
        if retall:
            retlist += (res['allvecs'], )
        return retlist
    else:
        if retall:
            return res['x'], res['allvecs']
        else:
            return res['x']


def _minimize_bfgs(fun, x0, args=(), jac=None, callback=None,
                   gtol=1e-5, norm=np.inf, eps=_epsilon, maxiter=None,
                   disp=False, return_all=False, finite_diff_rel_step=None,
                   xrtol=0, c1=1e-4, c2=0.9,
                   hess_inv0=None, **unknown_options):
    """
    Minimization of scalar function of one or more variables using the
    BFGS algorithm.

    Options
    -------
    disp : bool
        Set to True to print convergence messages.
    maxiter : int
        Maximum number of iterations to perform.
    gtol : float
        Terminate successfully if gradient norm is less than `gtol`.
    norm : float
        Order of norm (Inf is max, -Inf is min).
    eps : float or ndarray
        If `jac is None` the absolute step size used for numerical
        approximation of the jacobian via forward differences.
    return_all : bool, optional
        Set to True to return a list of the best solution at each of the
        iterations.
    finite_diff_rel_step : None or array_like, optional
        If ``jac in ['2-point', '3-point', 'cs']`` the relative step size to
        use for numerical approximation of the jacobian. The absolute step
        size is computed as ``h = rel_step * sign(x) * max(1, abs(x))``,
        possibly adjusted to fit into the bounds. For ``jac='3-point'``
        the sign of `h` is ignored. If None (default) then step is selected
        automatically.
    xrtol : float, default: 0
        Relative tolerance for `x`. Terminate successfully if step size is
        less than ``xk * xrtol`` where ``xk`` is the current parameter vector.
    c1 : float, default: 1e-4
        Parameter for Armijo condition rule.
    c2 : float, default: 0.9
        Parameter for curvature condition rule.
    hess_inv0 : None or ndarray, optional
        Initial inverse hessian estimate, shape (n, n). If None (default) then
        the identity matrix is used.

    Notes
    -----
    Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``.

    If minimization doesn't complete successfully, with an error message of
    ``Desired error not necessarily achieved due to precision loss``, then
    consider setting `gtol` to a higher value. This precision loss typically
    occurs when the (finite difference) numerical differentiation cannot provide
    sufficient precision to satisfy the `gtol` termination criterion.
    This can happen when working in single precision and a callable jac is not
    provided. For single precision problems a `gtol` of 1e-3 seems to work.
    """
    _check_unknown_options(unknown_options)
    _check_positive_definite(hess_inv0)
    retall = return_all

    x0 = asarray(x0).flatten()
    if x0.ndim == 0:
        x0.shape = (1,)
    if maxiter is None:
        maxiter = len(x0) * 200

    sf = _prepare_scalar_function(fun, x0, jac, args=args, epsilon=eps,
                                  finite_diff_rel_step=finite_diff_rel_step)

    f = sf.fun
    myfprime = sf.grad

    old_fval = f(x0)
    gfk = myfprime(x0)

    k = 0
    N = len(x0)
    I = np.eye(N, dtype=int)
    Hk = I if hess_inv0 is None else hess_inv0

    # Sets the initial step guess to dx ~ 1
    old_old_fval = old_fval + np.linalg.norm(gfk) / 2

    xk = x0
    if retall:
        allvecs = [x0]
    warnflag = 0
    gnorm = vecnorm(gfk, ord=norm)
    while (gnorm > gtol) and (k < maxiter):
        pk = -np.dot(Hk, gfk)
        try:
            alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
                     _line_search_wolfe12(f, myfprime, xk, pk, gfk,
                                          old_fval, old_old_fval, amin=1e-100,
                                          amax=1e100, c1=c1, c2=c2)
        except _LineSearchError:
            # Line search failed to find a better solution.
            warnflag = 2
            break

        sk = alpha_k * pk
        xkp1 = xk + sk

        if retall:
            allvecs.append(xkp1)
        xk = xkp1
        if gfkp1 is None:
            gfkp1 = myfprime(xkp1)

        yk = gfkp1 - gfk
        gfk = gfkp1
        k += 1
        intermediate_result = OptimizeResult(x=xk, fun=old_fval)
        if _call_callback_maybe_halt(callback, intermediate_result):
            break
        gnorm = vecnorm(gfk, ord=norm)
        if (gnorm <= gtol):
            break

        #  See Chapter 5 in  P.E. Frandsen, K. Jonasson, H.B. Nielsen,
        #  O. Tingleff: "Unconstrained Optimization", IMM, DTU.  1999.
        #  These notes are available here:
        #  http://www2.imm.dtu.dk/documents/ftp/publlec.html
        if (alpha_k*vecnorm(pk) <= xrtol*(xrtol + vecnorm(xk))):
            break

        if not np.isfinite(old_fval):
            # We correctly found +-Inf as optimal value, or something went
            # wrong.
            warnflag = 2
            break

        rhok_inv = np.dot(yk, sk)
        # this was handled in numeric, let it remains for more safety
        # Cryptic comment above is preserved for posterity. Future reader:
        # consider change to condition below proposed in gh-1261/gh-17345.
        if rhok_inv == 0.:
            rhok = 1000.0
            if disp:
                msg = "Divide-by-zero encountered: rhok assumed large"
                _print_success_message_or_warn(True, msg)
        else:
            rhok = 1. / rhok_inv

        A1 = I - sk[:, np.newaxis] * yk[np.newaxis, :] * rhok
        A2 = I - yk[:, np.newaxis] * sk[np.newaxis, :] * rhok
        Hk = np.dot(A1, np.dot(Hk, A2)) + (rhok * sk[:, np.newaxis] *
                                                 sk[np.newaxis, :])

    fval = old_fval

    if warnflag == 2:
        msg = _status_message['pr_loss']
    elif k >= maxiter:
        warnflag = 1
        msg = _status_message['maxiter']
    elif np.isnan(gnorm) or np.isnan(fval) or np.isnan(xk).any():
        warnflag = 3
        msg = _status_message['nan']
    else:
        msg = _status_message['success']

    if disp:
        _print_success_message_or_warn(warnflag, msg)
        print(f"         Current function value: {fval:f}")
        print("         Iterations: %d" % k)
        print("         Function evaluations: %d" % sf.nfev)
        print("         Gradient evaluations: %d" % sf.ngev)

    result = OptimizeResult(fun=fval, jac=gfk, hess_inv=Hk, nfev=sf.nfev,
                            njev=sf.ngev, status=warnflag,
                            success=(warnflag == 0), message=msg, x=xk,
                            nit=k)
    if retall:
        result['allvecs'] = allvecs
    return result


def _print_success_message_or_warn(warnflag, message, warntype=None):
    if not warnflag:
        print(message)
    else:
        warnings.warn(message, warntype or OptimizeWarning, stacklevel=3)


def fmin_cg(f, x0, fprime=None, args=(), gtol=1e-5, norm=np.inf,
            epsilon=_epsilon, maxiter=None, full_output=0, disp=1, retall=0,
            callback=None, c1=1e-4, c2=0.4):
    """
    Minimize a function using a nonlinear conjugate gradient algorithm.

    Parameters
    ----------
    f : callable, ``f(x, *args)``
        Objective function to be minimized. Here `x` must be a 1-D array of
        the variables that are to be changed in the search for a minimum, and
        `args` are the other (fixed) parameters of `f`.
    x0 : ndarray
        A user-supplied initial estimate of `xopt`, the optimal value of `x`.
        It must be a 1-D array of values.
    fprime : callable, ``fprime(x, *args)``, optional
        A function that returns the gradient of `f` at `x`. Here `x` and `args`
        are as described above for `f`. The returned value must be a 1-D array.
        Defaults to None, in which case the gradient is approximated
        numerically (see `epsilon`, below).
    args : tuple, optional
        Parameter values passed to `f` and `fprime`. Must be supplied whenever
        additional fixed parameters are needed to completely specify the
        functions `f` and `fprime`.
    gtol : float, optional
        Stop when the norm of the gradient is less than `gtol`.
    norm : float, optional
        Order to use for the norm of the gradient
        (``-np.inf`` is min, ``np.inf`` is max).
    epsilon : float or ndarray, optional
        Step size(s) to use when `fprime` is approximated numerically. Can be a
        scalar or a 1-D array. Defaults to ``sqrt(eps)``, with eps the
        floating point machine precision.  Usually ``sqrt(eps)`` is about
        1.5e-8.
    maxiter : int, optional
        Maximum number of iterations to perform. Default is ``200 * len(x0)``.
    full_output : bool, optional
        If True, return `fopt`, `func_calls`, `grad_calls`, and `warnflag` in
        addition to `xopt`.  See the Returns section below for additional
        information on optional return values.
    disp : bool, optional
        If True, return a convergence message, followed by `xopt`.
    retall : bool, optional
        If True, add to the returned values the results of each iteration.
    callback : callable, optional
        An optional user-supplied function, called after each iteration.
        Called as ``callback(xk)``, where ``xk`` is the current value of `x0`.
    c1 : float, default: 1e-4
        Parameter for Armijo condition rule.
    c2 : float, default: 0.4
        Parameter for curvature condition rule.

    Returns
    -------
    xopt : ndarray
        Parameters which minimize f, i.e., ``f(xopt) == fopt``.
    fopt : float, optional
        Minimum value found, f(xopt). Only returned if `full_output` is True.
    func_calls : int, optional
        The number of function_calls made. Only returned if `full_output`
        is True.
    grad_calls : int, optional
        The number of gradient calls made. Only returned if `full_output` is
        True.
    warnflag : int, optional
        Integer value with warning status, only returned if `full_output` is
        True.

        0 : Success.

        1 : The maximum number of iterations was exceeded.

        2 : Gradient and/or function calls were not changing. May indicate
            that precision was lost, i.e., the routine did not converge.

        3 : NaN result encountered.

    allvecs : list of ndarray, optional
        List of arrays, containing the results at each iteration.
        Only returned if `retall` is True.

    See Also
    --------
    minimize : common interface to all `scipy.optimize` algorithms for
               unconstrained and constrained minimization of multivariate
               functions. It provides an alternative way to call
               ``fmin_cg``, by specifying ``method='CG'``.

    Notes
    -----
    This conjugate gradient algorithm is based on that of Polak and Ribiere
    [1]_.

    Conjugate gradient methods tend to work better when:

    1. `f` has a unique global minimizing point, and no local minima or
       other stationary points,
    2. `f` is, at least locally, reasonably well approximated by a
       quadratic function of the variables,
    3. `f` is continuous and has a continuous gradient,
    4. `fprime` is not too large, e.g., has a norm less than 1000,
    5. The initial guess, `x0`, is reasonably close to `f` 's global
       minimizing point, `xopt`.

    Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``.

    References
    ----------
    .. [1] Wright & Nocedal, "Numerical Optimization", 1999, pp. 120-122.

    Examples
    --------
    Example 1: seek the minimum value of the expression
    ``a*u**2 + b*u*v + c*v**2 + d*u + e*v + f`` for given values
    of the parameters and an initial guess ``(u, v) = (0, 0)``.

    >>> import numpy as np
    >>> args = (2, 3, 7, 8, 9, 10)  # parameter values
    >>> def f(x, *args):
    ...     u, v = x
    ...     a, b, c, d, e, f = args
    ...     return a*u**2 + b*u*v + c*v**2 + d*u + e*v + f
    >>> def gradf(x, *args):
    ...     u, v = x
    ...     a, b, c, d, e, f = args
    ...     gu = 2*a*u + b*v + d     # u-component of the gradient
    ...     gv = b*u + 2*c*v + e     # v-component of the gradient
    ...     return np.asarray((gu, gv))
    >>> x0 = np.asarray((0, 0))  # Initial guess.
    >>> from scipy import optimize
    >>> res1 = optimize.fmin_cg(f, x0, fprime=gradf, args=args)
    Optimization terminated successfully.
             Current function value: 1.617021
             Iterations: 4
             Function evaluations: 8
             Gradient evaluations: 8
    >>> res1
    array([-1.80851064, -0.25531915])

    Example 2: solve the same problem using the `minimize` function.
    (This `myopts` dictionary shows all of the available options,
    although in practice only non-default values would be needed.
    The returned value will be a dictionary.)

    >>> opts = {'maxiter' : None,    # default value.
    ...         'disp' : True,    # non-default value.
    ...         'gtol' : 1e-5,    # default value.
    ...         'norm' : np.inf,  # default value.
    ...         'eps' : 1.4901161193847656e-08}  # default value.
    >>> res2 = optimize.minimize(f, x0, jac=gradf, args=args,
    ...                          method='CG', options=opts)
    Optimization terminated successfully.
            Current function value: 1.617021
            Iterations: 4
            Function evaluations: 8
            Gradient evaluations: 8
    >>> res2.x  # minimum found
    array([-1.80851064, -0.25531915])

    """
    opts = {'gtol': gtol,
            'norm': norm,
            'eps': epsilon,
            'disp': disp,
            'maxiter': maxiter,
            'return_all': retall}

    callback = _wrap_callback(callback)
    res = _minimize_cg(f, x0, args, fprime, callback=callback, c1=c1, c2=c2,
                       **opts)

    if full_output:
        retlist = res['x'], res['fun'], res['nfev'], res['njev'], res['status']
        if retall:
            retlist += (res['allvecs'], )
        return retlist
    else:
        if retall:
            return res['x'], res['allvecs']
        else:
            return res['x']


def _minimize_cg(fun, x0, args=(), jac=None, callback=None,
                 gtol=1e-5, norm=np.inf, eps=_epsilon, maxiter=None,
                 disp=False, return_all=False, finite_diff_rel_step=None,
                 c1=1e-4, c2=0.4, **unknown_options):
    """
    Minimization of scalar function of one or more variables using the
    conjugate gradient algorithm.

    Options
    -------
    disp : bool
        Set to True to print convergence messages.
    maxiter : int
        Maximum number of iterations to perform.
    gtol : float
        Gradient norm must be less than `gtol` before successful
        termination.
    norm : float
        Order of norm (Inf is max, -Inf is min).
    eps : float or ndarray
        If `jac is None` the absolute step size used for numerical
        approximation of the jacobian via forward differences.
    return_all : bool, optional
        Set to True to return a list of the best solution at each of the
        iterations.
    finite_diff_rel_step : None or array_like, optional
        If ``jac in ['2-point', '3-point', 'cs']`` the relative step size to
        use for numerical approximation of the jacobian. The absolute step
        size is computed as ``h = rel_step * sign(x) * max(1, abs(x))``,
        possibly adjusted to fit into the bounds. For ``jac='3-point'``
        the sign of `h` is ignored. If None (default) then step is selected
        automatically.
    c1 : float, default: 1e-4
        Parameter for Armijo condition rule.
    c2 : float, default: 0.4
        Parameter for curvature condition rule.

    Notes
    -----
    Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``.
    """
    _check_unknown_options(unknown_options)

    retall = return_all

    x0 = asarray(x0).flatten()
    if maxiter is None:
        maxiter = len(x0) * 200

    sf = _prepare_scalar_function(fun, x0, jac=jac, args=args, epsilon=eps,
                                  finite_diff_rel_step=finite_diff_rel_step)

    f = sf.fun
    myfprime = sf.grad

    old_fval = f(x0)
    gfk = myfprime(x0)

    k = 0
    xk = x0
    # Sets the initial step guess to dx ~ 1
    old_old_fval = old_fval + np.linalg.norm(gfk) / 2

    if retall:
        allvecs = [xk]
    warnflag = 0
    pk = -gfk
    gnorm = vecnorm(gfk, ord=norm)

    sigma_3 = 0.01

    while (gnorm > gtol) and (k < maxiter):
        deltak = np.dot(gfk, gfk)

        cached_step = [None]

        def polak_ribiere_powell_step(alpha, gfkp1=None):
            xkp1 = xk + alpha * pk
            if gfkp1 is None:
                gfkp1 = myfprime(xkp1)
            yk = gfkp1 - gfk
            beta_k = max(0, np.dot(yk, gfkp1) / deltak)
            pkp1 = -gfkp1 + beta_k * pk
            gnorm = vecnorm(gfkp1, ord=norm)
            return (alpha, xkp1, pkp1, gfkp1, gnorm)

        def descent_condition(alpha, xkp1, fp1, gfkp1):
            # Polak-Ribiere+ needs an explicit check of a sufficient
            # descent condition, which is not guaranteed by strong Wolfe.
            #
            # See Gilbert & Nocedal, "Global convergence properties of
            # conjugate gradient methods for optimization",
            # SIAM J. Optimization 2, 21 (1992).
            cached_step[:] = polak_ribiere_powell_step(alpha, gfkp1)
            alpha, xk, pk, gfk, gnorm = cached_step

            # Accept step if it leads to convergence.
            if gnorm <= gtol:
                return True

            # Accept step if sufficient descent condition applies.
            return np.dot(pk, gfk) <= -sigma_3 * np.dot(gfk, gfk)

        try:
            alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
                     _line_search_wolfe12(f, myfprime, xk, pk, gfk, old_fval,
                                          old_old_fval, c1=c1, c2=c2, amin=1e-100,
                                          amax=1e100, extra_condition=descent_condition)
        except _LineSearchError:
            # Line search failed to find a better solution.
            warnflag = 2
            break

        # Reuse already computed results if possible
        if alpha_k == cached_step[0]:
            alpha_k, xk, pk, gfk, gnorm = cached_step
        else:
            alpha_k, xk, pk, gfk, gnorm = polak_ribiere_powell_step(alpha_k, gfkp1)

        if retall:
            allvecs.append(xk)
        k += 1
        intermediate_result = OptimizeResult(x=xk, fun=old_fval)
        if _call_callback_maybe_halt(callback, intermediate_result):
            break

    fval = old_fval
    if warnflag == 2:
        msg = _status_message['pr_loss']
    elif k >= maxiter:
        warnflag = 1
        msg = _status_message['maxiter']
    elif np.isnan(gnorm) or np.isnan(fval) or np.isnan(xk).any():
        warnflag = 3
        msg = _status_message['nan']
    else:
        msg = _status_message['success']

    if disp:
        _print_success_message_or_warn(warnflag, msg)
        print(f"         Current function value: {fval:f}")
        print("         Iterations: %d" % k)
        print("         Function evaluations: %d" % sf.nfev)
        print("         Gradient evaluations: %d" % sf.ngev)

    result = OptimizeResult(fun=fval, jac=gfk, nfev=sf.nfev,
                            njev=sf.ngev, status=warnflag,
                            success=(warnflag == 0), message=msg, x=xk,
                            nit=k)
    if retall:
        result['allvecs'] = allvecs
    return result


def fmin_ncg(f, x0, fprime, fhess_p=None, fhess=None, args=(), avextol=1e-5,
             epsilon=_epsilon, maxiter=None, full_output=0, disp=1, retall=0,
             callback=None, c1=1e-4, c2=0.9):
    """
    Unconstrained minimization of a function using the Newton-CG method.

    Parameters
    ----------
    f : callable ``f(x, *args)``
        Objective function to be minimized.
    x0 : ndarray
        Initial guess.
    fprime : callable ``f'(x, *args)``
        Gradient of f.
    fhess_p : callable ``fhess_p(x, p, *args)``, optional
        Function which computes the Hessian of f times an
        arbitrary vector, p.
    fhess : callable ``fhess(x, *args)``, optional
        Function to compute the Hessian matrix of f.
    args : tuple, optional
        Extra arguments passed to f, fprime, fhess_p, and fhess
        (the same set of extra arguments is supplied to all of
        these functions).
    epsilon : float or ndarray, optional
        If fhess is approximated, use this value for the step size.
    callback : callable, optional
        An optional user-supplied function which is called after
        each iteration. Called as callback(xk), where xk is the
        current parameter vector.
    avextol : float, optional
        Convergence is assumed when the average relative error in
        the minimizer falls below this amount.
    maxiter : int, optional
        Maximum number of iterations to perform.
    full_output : bool, optional
        If True, return the optional outputs.
    disp : bool, optional
        If True, print convergence message.
    retall : bool, optional
        If True, return a list of results at each iteration.
    c1 : float, default: 1e-4
        Parameter for Armijo condition rule.
    c2 : float, default: 0.9
        Parameter for curvature condition rule

    Returns
    -------
    xopt : ndarray
        Parameters which minimize f, i.e., ``f(xopt) == fopt``.
    fopt : float
        Value of the function at xopt, i.e., ``fopt = f(xopt)``.
    fcalls : int
        Number of function calls made.
    gcalls : int
        Number of gradient calls made.
    hcalls : int
        Number of Hessian calls made.
    warnflag : int
        Warnings generated by the algorithm.
        1 : Maximum number of iterations exceeded.
        2 : Line search failure (precision loss).
        3 : NaN result encountered.
    allvecs : list
        The result at each iteration, if retall is True (see below).

    See also
    --------
    minimize: Interface to minimization algorithms for multivariate
        functions. See the 'Newton-CG' `method` in particular.

    Notes
    -----
    Only one of `fhess_p` or `fhess` need to be given.  If `fhess`
    is provided, then `fhess_p` will be ignored. If neither `fhess`
    nor `fhess_p` is provided, then the hessian product will be
    approximated using finite differences on `fprime`. `fhess_p`
    must compute the hessian times an arbitrary vector. If it is not
    given, finite-differences on `fprime` are used to compute
    it.

    Newton-CG methods are also called truncated Newton methods. This
    function differs from scipy.optimize.fmin_tnc because

    1. scipy.optimize.fmin_ncg is written purely in Python using NumPy
        and scipy while scipy.optimize.fmin_tnc calls a C function.
    2. scipy.optimize.fmin_ncg is only for unconstrained minimization
        while scipy.optimize.fmin_tnc is for unconstrained minimization
        or box constrained minimization. (Box constraints give
        lower and upper bounds for each variable separately.)

    Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``.

    References
    ----------
    Wright & Nocedal, 'Numerical Optimization', 1999, p. 140.

    """
    opts = {'xtol': avextol,
            'eps': epsilon,
            'maxiter': maxiter,
            'disp': disp,
            'return_all': retall}

    callback = _wrap_callback(callback)
    res = _minimize_newtoncg(f, x0, args, fprime, fhess, fhess_p,
                             callback=callback, c1=c1, c2=c2, **opts)

    if full_output:
        retlist = (res['x'], res['fun'], res['nfev'], res['njev'],
                   res['nhev'], res['status'])
        if retall:
            retlist += (res['allvecs'], )
        return retlist
    else:
        if retall:
            return res['x'], res['allvecs']
        else:
            return res['x']


def _minimize_newtoncg(fun, x0, args=(), jac=None, hess=None, hessp=None,
                       callback=None, xtol=1e-5, eps=_epsilon, maxiter=None,
                       disp=False, return_all=False, c1=1e-4, c2=0.9,
                       **unknown_options):
    """
    Minimization of scalar function of one or more variables using the
    Newton-CG algorithm.

    Note that the `jac` parameter (Jacobian) is required.

    Options
    -------
    disp : bool
        Set to True to print convergence messages.
    xtol : float
        Average relative error in solution `xopt` acceptable for
        convergence.
    maxiter : int
        Maximum number of iterations to perform.
    eps : float or ndarray
        If `hessp` is approximated, use this value for the step size.
    return_all : bool, optional
        Set to True to return a list of the best solution at each of the
        iterations.
    c1 : float, default: 1e-4
        Parameter for Armijo condition rule.
    c2 : float, default: 0.9
        Parameter for curvature condition rule.

    Notes
    -----
    Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``.
    """
    _check_unknown_options(unknown_options)
    if jac is None:
        raise ValueError('Jacobian is required for Newton-CG method')
    fhess_p = hessp
    fhess = hess
    avextol = xtol
    epsilon = eps
    retall = return_all

    x0 = asarray(x0).flatten()
    # TODO: add hessp (callable or FD) to ScalarFunction?
    sf = _prepare_scalar_function(
        fun, x0, jac, args=args, epsilon=eps, hess=hess
    )
    f = sf.fun
    fprime = sf.grad
    _h = sf.hess(x0)

    # Logic for hess/hessp
    # - If a callable(hess) is provided, then use that
    # - If hess is a FD_METHOD, or the output from hess(x) is a LinearOperator
    #   then create a hessp function using those.
    # - If hess is None but you have callable(hessp) then use the hessp.
    # - If hess and hessp are None then approximate hessp using the grad/jac.

    if (hess in FD_METHODS or isinstance(_h, LinearOperator)):
        fhess = None

        def _hessp(x, p, *args):
            return sf.hess(x).dot(p)

        fhess_p = _hessp

    def terminate(warnflag, msg):
        if disp:
            _print_success_message_or_warn(warnflag, msg)
            print(f"         Current function value: {old_fval:f}")
            print("         Iterations: %d" % k)
            print("         Function evaluations: %d" % sf.nfev)
            print("         Gradient evaluations: %d" % sf.ngev)
            print("         Hessian evaluations: %d" % hcalls)
        fval = old_fval
        result = OptimizeResult(fun=fval, jac=gfk, nfev=sf.nfev,
                                njev=sf.ngev, nhev=hcalls, status=warnflag,
                                success=(warnflag == 0), message=msg, x=xk,
                                nit=k)
        if retall:
            result['allvecs'] = allvecs
        return result

    hcalls = 0
    if maxiter is None:
        maxiter = len(x0)*200
    cg_maxiter = 20*len(x0)

    xtol = len(x0) * avextol
    # Make sure we enter the while loop.
    update_l1norm = np.finfo(float).max
    xk = np.copy(x0)
    if retall:
        allvecs = [xk]
    k = 0
    gfk = None
    old_fval = f(x0)
    old_old_fval = None
    float64eps = np.finfo(np.float64).eps
    while update_l1norm > xtol:
        if k >= maxiter:
            msg = "Warning: " + _status_message['maxiter']
            return terminate(1, msg)
        # Compute a search direction pk by applying the CG method to
        #  del2 f(xk) p = - grad f(xk) starting from 0.
        b = -fprime(xk)
        maggrad = np.linalg.norm(b, ord=1)
        eta = min(0.5, math.sqrt(maggrad))
        termcond = eta * maggrad
        xsupi = zeros(len(x0), dtype=x0.dtype)
        ri = -b
        psupi = -ri
        i = 0
        dri0 = np.dot(ri, ri)

        if fhess is not None:             # you want to compute hessian once.
            A = sf.hess(xk)
            hcalls += 1

        for k2 in range(cg_maxiter):
            if np.add.reduce(np.abs(ri)) <= termcond:
                break
            if fhess is None:
                if fhess_p is None:
                    Ap = approx_fhess_p(xk, psupi, fprime, epsilon)
                else:
                    Ap = fhess_p(xk, psupi, *args)
                    hcalls += 1
            else:
                # hess was supplied as a callable or hessian update strategy, so
                # A is a dense numpy array or sparse matrix
                Ap = A.dot(psupi)
            # check curvature
            Ap = asarray(Ap).squeeze()  # get rid of matrices...
            curv = np.dot(psupi, Ap)
            if 0 <= curv <= 3 * float64eps:
                break
            elif curv < 0:
                if (i > 0):
                    break
                else:
                    # fall back to steepest descent direction
                    xsupi = dri0 / (-curv) * b
                    break
            alphai = dri0 / curv
            xsupi += alphai * psupi
            ri += alphai * Ap
            dri1 = np.dot(ri, ri)
            betai = dri1 / dri0
            psupi = -ri + betai * psupi
            i += 1
            dri0 = dri1          # update np.dot(ri,ri) for next time.
        else:
            # curvature keeps increasing, bail out
            msg = ("Warning: CG iterations didn't converge. The Hessian is not "
                   "positive definite.")
            return terminate(3, msg)

        pk = xsupi  # search direction is solution to system.
        gfk = -b    # gradient at xk

        try:
            alphak, fc, gc, old_fval, old_old_fval, gfkp1 = \
                     _line_search_wolfe12(f, fprime, xk, pk, gfk,
                                          old_fval, old_old_fval, c1=c1, c2=c2)
        except _LineSearchError:
            # Line search failed to find a better solution.
            msg = "Warning: " + _status_message['pr_loss']
            return terminate(2, msg)

        update = alphak * pk
        xk += update        # upcast if necessary
        if retall:
            allvecs.append(xk)
        k += 1
        intermediate_result = OptimizeResult(x=xk, fun=old_fval)
        if _call_callback_maybe_halt(callback, intermediate_result):
            return terminate(5, "")
        update_l1norm = np.linalg.norm(update, ord=1)

    else:
        if np.isnan(old_fval) or np.isnan(update_l1norm):
            return terminate(3, _status_message['nan'])

        msg = _status_message['success']
        return terminate(0, msg)


def fminbound(func, x1, x2, args=(), xtol=1e-5, maxfun=500,
              full_output=0, disp=1):
    """Bounded minimization for scalar functions.

    Parameters
    ----------
    func : callable f(x,*args)
        Objective function to be minimized (must accept and return scalars).
    x1, x2 : float or array scalar
        Finite optimization bounds.
    args : tuple, optional
        Extra arguments passed to function.
    xtol : float, optional
        The convergence tolerance.
    maxfun : int, optional
        Maximum number of function evaluations allowed.
    full_output : bool, optional
        If True, return optional outputs.
    disp: int, optional
        If non-zero, print messages.

        ``0`` : no message printing.

        ``1`` : non-convergence notification messages only.

        ``2`` : print a message on convergence too.

        ``3`` : print iteration results.

    Returns
    -------
    xopt : ndarray
        Parameters (over given interval) which minimize the
        objective function.
    fval : number
        (Optional output) The function value evaluated at the minimizer.
    ierr : int
        (Optional output) An error flag (0 if converged, 1 if maximum number of
        function calls reached).
    numfunc : int
        (Optional output) The number of function calls made.

    See also
    --------
    minimize_scalar: Interface to minimization algorithms for scalar
        univariate functions. See the 'Bounded' `method` in particular.

    Notes
    -----
    Finds a local minimizer of the scalar function `func` in the
    interval x1 < xopt < x2 using Brent's method. (See `brent`
    for auto-bracketing.)

    References
    ----------
    .. [1] Forsythe, G.E., M. A. Malcolm, and C. B. Moler. "Computer Methods
           for Mathematical Computations." Prentice-Hall Series in Automatic
           Computation 259 (1977).
    .. [2] Brent, Richard P. Algorithms for Minimization Without Derivatives.
           Courier Corporation, 2013.

    Examples
    --------
    `fminbound` finds the minimizer of the function in the given range.
    The following examples illustrate this.

    >>> from scipy import optimize
    >>> def f(x):
    ...     return (x-1)**2
    >>> minimizer = optimize.fminbound(f, -4, 4)
    >>> minimizer
    1.0
    >>> minimum = f(minimizer)
    >>> minimum
    0.0
    >>> res = optimize.fminbound(f, 3, 4, full_output=True)
    >>> minimizer, fval, ierr, numfunc = res
    >>> minimizer
    3.000005960860986
    >>> minimum = f(minimizer)
    >>> minimum, fval
    (4.000023843479476, 4.000023843479476)
    """
    options = {'xatol': xtol,
               'maxiter': maxfun,
               'disp': disp}

    res = _minimize_scalar_bounded(func, (x1, x2), args, **options)
    if full_output:
        return res['x'], res['fun'], res['status'], res['nfev']
    else:
        return res['x']


def _minimize_scalar_bounded(func, bounds, args=(),
                             xatol=1e-5, maxiter=500, disp=0,
                             **unknown_options):
    """
    Options
    -------
    maxiter : int
        Maximum number of iterations to perform.
    disp: int, optional
        If non-zero, print messages.

        ``0`` : no message printing.

        ``1`` : non-convergence notification messages only.

        ``2`` : print a message on convergence too.

        ``3`` : print iteration results.

    xatol : float
        Absolute error in solution `xopt` acceptable for convergence.

    """
    _check_unknown_options(unknown_options)
    maxfun = maxiter
    # Test bounds are of correct form
    if len(bounds) != 2:
        raise ValueError('bounds must have two elements.')
    x1, x2 = bounds

    if not (is_finite_scalar(x1) and is_finite_scalar(x2)):
        raise ValueError("Optimization bounds must be finite scalars.")

    if x1 > x2:
        raise ValueError("The lower bound exceeds the upper bound.")

    flag = 0
    header = ' Func-count     x          f(x)          Procedure'
    step = '       initial'

    sqrt_eps = sqrt(2.2e-16)
    golden_mean = 0.5 * (3.0 - sqrt(5.0))
    a, b = x1, x2
    fulc = a + golden_mean * (b - a)
    nfc, xf = fulc, fulc
    rat = e = 0.0
    x = xf
    fx = func(x, *args)
    num = 1
    fmin_data = (1, xf, fx)
    fu = np.inf

    ffulc = fnfc = fx
    xm = 0.5 * (a + b)
    tol1 = sqrt_eps * np.abs(xf) + xatol / 3.0
    tol2 = 2.0 * tol1

    if disp > 2:
        print(" ")
        print(header)
        print("%5.0f   %12.6g %12.6g %s" % (fmin_data + (step,)))

    while (np.abs(xf - xm) > (tol2 - 0.5 * (b - a))):
        golden = 1
        # Check for parabolic fit
        if np.abs(e) > tol1:
            golden = 0
            r = (xf - nfc) * (fx - ffulc)
            q = (xf - fulc) * (fx - fnfc)
            p = (xf - fulc) * q - (xf - nfc) * r
            q = 2.0 * (q - r)
            if q > 0.0:
                p = -p
            q = np.abs(q)
            r = e
            e = rat

            # Check for acceptability of parabola
            if ((np.abs(p) < np.abs(0.5*q*r)) and (p > q*(a - xf)) and
                    (p < q * (b - xf))):
                rat = (p + 0.0) / q
                x = xf + rat
                step = '       parabolic'

                if ((x - a) < tol2) or ((b - x) < tol2):
                    si = np.sign(xm - xf) + ((xm - xf) == 0)
                    rat = tol1 * si
            else:      # do a golden-section step
                golden = 1

        if golden:  # do a golden-section step
            if xf >= xm:
                e = a - xf
            else:
                e = b - xf
            rat = golden_mean*e
            step = '       golden'

        si = np.sign(rat) + (rat == 0)
        x = xf + si * np.maximum(np.abs(rat), tol1)
        fu = func(x, *args)
        num += 1
        fmin_data = (num, x, fu)
        if disp > 2:
            print("%5.0f   %12.6g %12.6g %s" % (fmin_data + (step,)))

        if fu <= fx:
            if x >= xf:
                a = xf
            else:
                b = xf
            fulc, ffulc = nfc, fnfc
            nfc, fnfc = xf, fx
            xf, fx = x, fu
        else:
            if x < xf:
                a = x
            else:
                b = x
            if (fu <= fnfc) or (nfc == xf):
                fulc, ffulc = nfc, fnfc
                nfc, fnfc = x, fu
            elif (fu <= ffulc) or (fulc == xf) or (fulc == nfc):
                fulc, ffulc = x, fu

        xm = 0.5 * (a + b)
        tol1 = sqrt_eps * np.abs(xf) + xatol / 3.0
        tol2 = 2.0 * tol1

        if num >= maxfun:
            flag = 1
            break

    if np.isnan(xf) or np.isnan(fx) or np.isnan(fu):
        flag = 2

    fval = fx
    if disp > 0:
        _endprint(x, flag, fval, maxfun, xatol, disp)

    result = OptimizeResult(fun=fval, status=flag, success=(flag == 0),
                            message={0: 'Solution found.',
                                     1: 'Maximum number of function calls '
                                        'reached.',
                                     2: _status_message['nan']}.get(flag, ''),
                            x=xf, nfev=num, nit=num)

    return result


class Brent:
    #need to rethink design of __init__
    def __init__(self, func, args=(), tol=1.48e-8, maxiter=500,
                 full_output=0, disp=0):
        self.func = func
        self.args = args
        self.tol = tol
        self.maxiter = maxiter
        self._mintol = 1.0e-11
        self._cg = 0.3819660
        self.xmin = None
        self.fval = None
        self.iter = 0
        self.funcalls = 0
        self.disp = disp

    # need to rethink design of set_bracket (new options, etc.)
    def set_bracket(self, brack=None):
        self.brack = brack

    def get_bracket_info(self):
        #set up
        func = self.func
        args = self.args
        brack = self.brack
        ### BEGIN core bracket_info code ###
        ### carefully DOCUMENT any CHANGES in core ##
        if brack is None:
            xa, xb, xc, fa, fb, fc, funcalls = bracket(func, args=args)
        elif len(brack) == 2:
            xa, xb, xc, fa, fb, fc, funcalls = bracket(func, xa=brack[0],
                                                       xb=brack[1], args=args)
        elif len(brack) == 3:
            xa, xb, xc = brack
            if (xa > xc):  # swap so xa < xc can be assumed
                xc, xa = xa, xc
            if not ((xa < xb) and (xb < xc)):
                raise ValueError(
                    "Bracketing values (xa, xb, xc) do not"
                    " fulfill this requirement: (xa < xb) and (xb < xc)"
                )
            fa = func(*((xa,) + args))
            fb = func(*((xb,) + args))
            fc = func(*((xc,) + args))
            if not ((fb < fa) and (fb < fc)):
                raise ValueError(
                    "Bracketing values (xa, xb, xc) do not fulfill"
                    " this requirement: (f(xb) < f(xa)) and (f(xb) < f(xc))"
                )

            funcalls = 3
        else:
            raise ValueError("Bracketing interval must be "
                             "length 2 or 3 sequence.")
        ### END core bracket_info code ###

        return xa, xb, xc, fa, fb, fc, funcalls

    def optimize(self):
        # set up for optimization
        func = self.func
        xa, xb, xc, fa, fb, fc, funcalls = self.get_bracket_info()
        _mintol = self._mintol
        _cg = self._cg
        #################################
        #BEGIN CORE ALGORITHM
        #################################
        x = w = v = xb
        fw = fv = fx = fb
        if (xa < xc):
            a = xa
            b = xc
        else:
            a = xc
            b = xa
        deltax = 0.0
        iter = 0

        if self.disp > 2:
            print(" ")
            print(f"{'Func-count':^12} {'x':^12} {'f(x)': ^12}")
            print(f"{funcalls:^12g} {x:^12.6g} {fx:^12.6g}")

        while (iter < self.maxiter):
            tol1 = self.tol * np.abs(x) + _mintol
            tol2 = 2.0 * tol1
            xmid = 0.5 * (a + b)
            # check for convergence
            if np.abs(x - xmid) < (tol2 - 0.5 * (b - a)):
                break
            # XXX In the first iteration, rat is only bound in the true case
            # of this conditional. This used to cause an UnboundLocalError
            # (gh-4140). It should be set before the if (but to what?).
            if (np.abs(deltax) <= tol1):
                if (x >= xmid):
                    deltax = a - x       # do a golden section step
                else:
                    deltax = b - x
                rat = _cg * deltax
            else:                              # do a parabolic step
                tmp1 = (x - w) * (fx - fv)
                tmp2 = (x - v) * (fx - fw)
                p = (x - v) * tmp2 - (x - w) * tmp1
                tmp2 = 2.0 * (tmp2 - tmp1)
                if (tmp2 > 0.0):
                    p = -p
                tmp2 = np.abs(tmp2)
                dx_temp = deltax
                deltax = rat
                # check parabolic fit
                if ((p > tmp2 * (a - x)) and (p < tmp2 * (b - x)) and
                        (np.abs(p) < np.abs(0.5 * tmp2 * dx_temp))):
                    rat = p * 1.0 / tmp2        # if parabolic step is useful.
                    u = x + rat
                    if ((u - a) < tol2 or (b - u) < tol2):
                        if xmid - x >= 0:
                            rat = tol1
                        else:
                            rat = -tol1
                else:
                    if (x >= xmid):
                        deltax = a - x  # if it's not do a golden section step
                    else:
                        deltax = b - x
                    rat = _cg * deltax

            if (np.abs(rat) < tol1):            # update by at least tol1
                if rat >= 0:
                    u = x + tol1
                else:
                    u = x - tol1
            else:
                u = x + rat
            fu = func(*((u,) + self.args))      # calculate new output value
            funcalls += 1

            if (fu > fx):                 # if it's bigger than current
                if (u < x):
                    a = u
                else:
                    b = u
                if (fu <= fw) or (w == x):
                    v = w
                    w = u
                    fv = fw
                    fw = fu
                elif (fu <= fv) or (v == x) or (v == w):
                    v = u
                    fv = fu
            else:
                if (u >= x):
                    a = x
                else:
                    b = x
                v = w
                w = x
                x = u
                fv = fw
                fw = fx
                fx = fu

            if self.disp > 2:
                print(f"{funcalls:^12g} {x:^12.6g} {fx:^12.6g}")

            iter += 1
        #################################
        #END CORE ALGORITHM
        #################################

        self.xmin = x
        self.fval = fx
        self.iter = iter
        self.funcalls = funcalls

    def get_result(self, full_output=False):
        if full_output:
            return self.xmin, self.fval, self.iter, self.funcalls
        else:
            return self.xmin


def brent(func, args=(), brack=None, tol=1.48e-8, full_output=0, maxiter=500):
    """
    Given a function of one variable and a possible bracket, return
    a local minimizer of the function isolated to a fractional precision
    of tol.

    Parameters
    ----------
    func : callable f(x,*args)
        Objective function.
    args : tuple, optional
        Additional arguments (if present).
    brack : tuple, optional
        Either a triple ``(xa, xb, xc)`` satisfying ``xa < xb < xc`` and
        ``func(xb) < func(xa) and  func(xb) < func(xc)``, or a pair
        ``(xa, xb)`` to be used as initial points for a downhill bracket search
        (see `scipy.optimize.bracket`).
        The minimizer ``x`` will not necessarily satisfy ``xa <= x <= xb``.
    tol : float, optional
        Relative error in solution `xopt` acceptable for convergence.
    full_output : bool, optional
        If True, return all output args (xmin, fval, iter,
        funcalls).
    maxiter : int, optional
        Maximum number of iterations in solution.

    Returns
    -------
    xmin : ndarray
        Optimum point.
    fval : float
        (Optional output) Optimum function value.
    iter : int
        (Optional output) Number of iterations.
    funcalls : int
        (Optional output) Number of objective function evaluations made.

    See also
    --------
    minimize_scalar: Interface to minimization algorithms for scalar
        univariate functions. See the 'Brent' `method` in particular.

    Notes
    -----
    Uses inverse parabolic interpolation when possible to speed up
    convergence of golden section method.

    Does not ensure that the minimum lies in the range specified by
    `brack`. See `scipy.optimize.fminbound`.

    Examples
    --------
    We illustrate the behaviour of the function when `brack` is of
    size 2 and 3 respectively. In the case where `brack` is of the
    form ``(xa, xb)``, we can see for the given values, the output does
    not necessarily lie in the range ``(xa, xb)``.

    >>> def f(x):
    ...     return (x-1)**2

    >>> from scipy import optimize

    >>> minimizer = optimize.brent(f, brack=(1, 2))
    >>> minimizer
    1
    >>> res = optimize.brent(f, brack=(-1, 0.5, 2), full_output=True)
    >>> xmin, fval, iter, funcalls = res
    >>> f(xmin), fval
    (0.0, 0.0)

    """
    options = {'xtol': tol,
               'maxiter': maxiter}
    res = _minimize_scalar_brent(func, brack, args, **options)
    if full_output:
        return res['x'], res['fun'], res['nit'], res['nfev']
    else:
        return res['x']


def _minimize_scalar_brent(func, brack=None, args=(), xtol=1.48e-8,
                           maxiter=500, disp=0,
                           **unknown_options):
    """
    Options
    -------
    maxiter : int
        Maximum number of iterations to perform.
    xtol : float
        Relative error in solution `xopt` acceptable for convergence.
    disp : int, optional
        If non-zero, print messages.

        ``0`` : no message printing.

        ``1`` : non-convergence notification messages only.

        ``2`` : print a message on convergence too.

        ``3`` : print iteration results.

    Notes
    -----
    Uses inverse parabolic interpolation when possible to speed up
    convergence of golden section method.

    """
    _check_unknown_options(unknown_options)
    tol = xtol
    if tol < 0:
        raise ValueError(f'tolerance should be >= 0, got {tol!r}')

    brent = Brent(func=func, args=args, tol=tol,
                  full_output=True, maxiter=maxiter, disp=disp)
    brent.set_bracket(brack)
    brent.optimize()
    x, fval, nit, nfev = brent.get_result(full_output=True)

    success = nit < maxiter and not (np.isnan(x) or np.isnan(fval))

    if success:
        message = ("\nOptimization terminated successfully;\n"
                   "The returned value satisfies the termination criteria\n"
                   f"(using xtol = {xtol} )")
    else:
        if nit >= maxiter:
            message = "\nMaximum number of iterations exceeded"
        if np.isnan(x) or np.isnan(fval):
            message = f"{_status_message['nan']}"

    if disp:
        _print_success_message_or_warn(not success, message)

    return OptimizeResult(fun=fval, x=x, nit=nit, nfev=nfev,
                          success=success, message=message)


def golden(func, args=(), brack=None, tol=_epsilon,
           full_output=0, maxiter=5000):
    """
    Return the minimizer of a function of one variable using the golden section
    method.

    Given a function of one variable and a possible bracketing interval,
    return a minimizer of the function isolated to a fractional precision of
    tol.

    Parameters
    ----------
    func : callable func(x,*args)
        Objective function to minimize.
    args : tuple, optional
        Additional arguments (if present), passed to func.
    brack : tuple, optional
        Either a triple ``(xa, xb, xc)`` where ``xa < xb < xc`` and
        ``func(xb) < func(xa) and  func(xb) < func(xc)``, or a pair (xa, xb)
        to be used as initial points for a downhill bracket search (see
        `scipy.optimize.bracket`).
        The minimizer ``x`` will not necessarily satisfy ``xa <= x <= xb``.
    tol : float, optional
        x tolerance stop criterion
    full_output : bool, optional
        If True, return optional outputs.
    maxiter : int
        Maximum number of iterations to perform.

    Returns
    -------
    xmin : ndarray
        Optimum point.
    fval : float
        (Optional output) Optimum function value.
    funcalls : int
        (Optional output) Number of objective function evaluations made.

    See also
    --------
    minimize_scalar: Interface to minimization algorithms for scalar
        univariate functions. See the 'Golden' `method` in particular.

    Notes
    -----
    Uses analog of bisection method to decrease the bracketed
    interval.

    Examples
    --------
    We illustrate the behaviour of the function when `brack` is of
    size 2 and 3, respectively. In the case where `brack` is of the
    form (xa,xb), we can see for the given values, the output need
    not necessarily lie in the range ``(xa, xb)``.

    >>> def f(x):
    ...     return (x-1)**2

    >>> from scipy import optimize

    >>> minimizer = optimize.golden(f, brack=(1, 2))
    >>> minimizer
    1
    >>> res = optimize.golden(f, brack=(-1, 0.5, 2), full_output=True)
    >>> xmin, fval, funcalls = res
    >>> f(xmin), fval
    (9.925165290385052e-18, 9.925165290385052e-18)

    """
    options = {'xtol': tol, 'maxiter': maxiter}
    res = _minimize_scalar_golden(func, brack, args, **options)
    if full_output:
        return res['x'], res['fun'], res['nfev']
    else:
        return res['x']


def _minimize_scalar_golden(func, brack=None, args=(),
                            xtol=_epsilon, maxiter=5000, disp=0,
                            **unknown_options):
    """
    Options
    -------
    xtol : float
        Relative error in solution `xopt` acceptable for convergence.
    maxiter : int
        Maximum number of iterations to perform.
    disp: int, optional
        If non-zero, print messages.

        ``0`` : no message printing.

        ``1`` : non-convergence notification messages only.

        ``2`` : print a message on convergence too.

        ``3`` : print iteration results.
    """
    _check_unknown_options(unknown_options)
    tol = xtol
    if brack is None:
        xa, xb, xc, fa, fb, fc, funcalls = bracket(func, args=args)
    elif len(brack) == 2:
        xa, xb, xc, fa, fb, fc, funcalls = bracket(func, xa=brack[0],
                                                   xb=brack[1], args=args)
    elif len(brack) == 3:
        xa, xb, xc = brack
        if (xa > xc):  # swap so xa < xc can be assumed
            xc, xa = xa, xc
        if not ((xa < xb) and (xb < xc)):
            raise ValueError(
                "Bracketing values (xa, xb, xc) do not"
                " fulfill this requirement: (xa < xb) and (xb < xc)"
            )
        fa = func(*((xa,) + args))
        fb = func(*((xb,) + args))
        fc = func(*((xc,) + args))
        if not ((fb < fa) and (fb < fc)):
            raise ValueError(
                "Bracketing values (xa, xb, xc) do not fulfill"
                " this requirement: (f(xb) < f(xa)) and (f(xb) < f(xc))"
            )
        funcalls = 3
    else:
        raise ValueError("Bracketing interval must be length 2 or 3 sequence.")

    _gR = 0.61803399  # golden ratio conjugate: 2.0/(1.0+sqrt(5.0))
    _gC = 1.0 - _gR
    x3 = xc
    x0 = xa
    if (np.abs(xc - xb) > np.abs(xb - xa)):
        x1 = xb
        x2 = xb + _gC * (xc - xb)
    else:
        x2 = xb
        x1 = xb - _gC * (xb - xa)
    f1 = func(*((x1,) + args))
    f2 = func(*((x2,) + args))
    funcalls += 2
    nit = 0

    if disp > 2:
        print(" ")
        print(f"{'Func-count':^12} {'x':^12} {'f(x)': ^12}")

    for i in range(maxiter):
        if np.abs(x3 - x0) <= tol * (np.abs(x1) + np.abs(x2)):
            break
        if (f2 < f1):
            x0 = x1
            x1 = x2
            x2 = _gR * x1 + _gC * x3
            f1 = f2
            f2 = func(*((x2,) + args))
        else:
            x3 = x2
            x2 = x1
            x1 = _gR * x2 + _gC * x0
            f2 = f1
            f1 = func(*((x1,) + args))
        funcalls += 1
        if disp > 2:
            if (f1 < f2):
                xmin, fval = x1, f1
            else:
                xmin, fval = x2, f2
            print(f"{funcalls:^12g} {xmin:^12.6g} {fval:^12.6g}")

        nit += 1
    # end of iteration loop

    if (f1 < f2):
        xmin = x1
        fval = f1
    else:
        xmin = x2
        fval = f2

    success = nit < maxiter and not (np.isnan(fval) or np.isnan(xmin))

    if success:
        message = ("\nOptimization terminated successfully;\n"
                   "The returned value satisfies the termination criteria\n"
                   f"(using xtol = {xtol} )")
    else:
        if nit >= maxiter:
            message = "\nMaximum number of iterations exceeded"
        if np.isnan(xmin) or np.isnan(fval):
            message = f"{_status_message['nan']}"

    if disp:
        _print_success_message_or_warn(not success, message)

    return OptimizeResult(fun=fval, nfev=funcalls, x=xmin, nit=nit,
                          success=success, message=message)


def bracket(func, xa=0.0, xb=1.0, args=(), grow_limit=110.0, maxiter=1000):
    """
    Bracket the minimum of a function.

    Given a function and distinct initial points, search in the
    downhill direction (as defined by the initial points) and return
    three points that bracket the minimum of the function.

    Parameters
    ----------
    func : callable f(x,*args)
        Objective function to minimize.
    xa, xb : float, optional
        Initial points. Defaults `xa` to 0.0, and `xb` to 1.0.
        A local minimum need not be contained within this interval.
    args : tuple, optional
        Additional arguments (if present), passed to `func`.
    grow_limit : float, optional
        Maximum grow limit.  Defaults to 110.0
    maxiter : int, optional
        Maximum number of iterations to perform. Defaults to 1000.

    Returns
    -------
    xa, xb, xc : float
        Final points of the bracket.
    fa, fb, fc : float
        Objective function values at the bracket points.
    funcalls : int
        Number of function evaluations made.

    Raises
    ------
    BracketError
        If no valid bracket is found before the algorithm terminates.
        See notes for conditions of a valid bracket.

    Notes
    -----
    The algorithm attempts to find three strictly ordered points (i.e.
    :math:`x_a < x_b < x_c` or :math:`x_c < x_b < x_a`) satisfying
    :math:`f(x_b) ≤ f(x_a)` and :math:`f(x_b) ≤ f(x_c)`, where one of the
    inequalities must be satisfied strictly and all :math:`x_i` must be
    finite.

    Examples
    --------
    This function can find a downward convex region of a function:

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.optimize import bracket
    >>> def f(x):
    ...     return 10*x**2 + 3*x + 5
    >>> x = np.linspace(-2, 2)
    >>> y = f(x)
    >>> init_xa, init_xb = 0.1, 1
    >>> xa, xb, xc, fa, fb, fc, funcalls = bracket(f, xa=init_xa, xb=init_xb)
    >>> plt.axvline(x=init_xa, color="k", linestyle="--")
    >>> plt.axvline(x=init_xb, color="k", linestyle="--")
    >>> plt.plot(x, y, "-k")
    >>> plt.plot(xa, fa, "bx")
    >>> plt.plot(xb, fb, "rx")
    >>> plt.plot(xc, fc, "bx")
    >>> plt.show()

    Note that both initial points were to the right of the minimum, and the
    third point was found in the "downhill" direction: the direction
    in which the function appeared to be decreasing (to the left).
    The final points are strictly ordered, and the function value
    at the middle point is less than the function values at the endpoints;
    it follows that a minimum must lie within the bracket.

    """
    _gold = 1.618034  # golden ratio: (1.0+sqrt(5.0))/2.0
    _verysmall_num = 1e-21
    # convert to numpy floats if not already
    xa, xb = np.asarray([xa, xb])
    fa = func(*(xa,) + args)
    fb = func(*(xb,) + args)
    if (fa < fb):                      # Switch so fa > fb
        xa, xb = xb, xa
        fa, fb = fb, fa
    xc = xb + _gold * (xb - xa)
    fc = func(*((xc,) + args))
    funcalls = 3
    iter = 0
    while (fc < fb):
        tmp1 = (xb - xa) * (fb - fc)
        tmp2 = (xb - xc) * (fb - fa)
        val = tmp2 - tmp1
        if np.abs(val) < _verysmall_num:
            denom = 2.0 * _verysmall_num
        else:
            denom = 2.0 * val
        w = xb - ((xb - xc) * tmp2 - (xb - xa) * tmp1) / denom
        wlim = xb + grow_limit * (xc - xb)
        msg = ("No valid bracket was found before the iteration limit was "
               "reached. Consider trying different initial points or "
               "increasing `maxiter`.")
        if iter > maxiter:
            raise RuntimeError(msg)
        iter += 1
        if (w - xc) * (xb - w) > 0.0:
            fw = func(*((w,) + args))
            funcalls += 1
            if (fw < fc):
                xa = xb
                xb = w
                fa = fb
                fb = fw
                break
            elif (fw > fb):
                xc = w
                fc = fw
                break
            w = xc + _gold * (xc - xb)
            fw = func(*((w,) + args))
            funcalls += 1
        elif (w - wlim)*(wlim - xc) >= 0.0:
            w = wlim
            fw = func(*((w,) + args))
            funcalls += 1
        elif (w - wlim)*(xc - w) > 0.0:
            fw = func(*((w,) + args))
            funcalls += 1
            if (fw < fc):
                xb = xc
                xc = w
                w = xc + _gold * (xc - xb)
                fb = fc
                fc = fw
                fw = func(*((w,) + args))
                funcalls += 1
        else:
            w = xc + _gold * (xc - xb)
            fw = func(*((w,) + args))
            funcalls += 1
        xa = xb
        xb = xc
        xc = w
        fa = fb
        fb = fc
        fc = fw

    # three conditions for a valid bracket
    cond1 = (fb < fc and fb <= fa) or (fb < fa and fb <= fc)
    cond2 = (xa < xb < xc or xc < xb < xa)
    cond3 = np.isfinite(xa) and np.isfinite(xb) and np.isfinite(xc)
    msg = ("The algorithm terminated without finding a valid bracket. "
           "Consider trying different initial points.")
    if not (cond1 and cond2 and cond3):
        e = BracketError(msg)
        e.data = (xa, xb, xc, fa, fb, fc, funcalls)
        raise e

    return xa, xb, xc, fa, fb, fc, funcalls


class BracketError(RuntimeError):
    pass


def _recover_from_bracket_error(solver, fun, bracket, args, **options):
    # `bracket` was originally written without checking whether the resulting
    # bracket is valid. `brent` and `golden` built on top of it without
    # checking the returned bracket for validity, and their output can be
    # incorrect without warning/error if the original bracket is invalid.
    # gh-14858 noticed the problem, and the following is the desired
    # behavior:
    # - `scipy.optimize.bracket`, `scipy.optimize.brent`, and
    #   `scipy.optimize.golden` should raise an error if the bracket is
    #   invalid, as opposed to silently returning garbage
    # - `scipy.optimize.minimize_scalar` should return with `success=False`
    #   and other information
    # The changes that would be required to achieve this the traditional
    # way (`return`ing all the required information from bracket all the way
    # up to `minimizer_scalar`) are extensive and invasive. (See a6aa40d.)
    # We can achieve the same thing by raising the error in `bracket`, but
    # storing the information needed by `minimize_scalar` in the error object,
    # and intercepting it here.
    try:
        res = solver(fun, bracket, args, **options)
    except BracketError as e:
        msg = str(e)
        xa, xb, xc, fa, fb, fc, funcalls = e.data
        xs, fs = [xa, xb, xc], [fa, fb, fc]
        if np.any(np.isnan([xs, fs])):
            x, fun = np.nan, np.nan
        else:
            imin = np.argmin(fs)
            x, fun = xs[imin], fs[imin]
        return OptimizeResult(fun=fun, nfev=funcalls, x=x,
                              nit=0, success=False, message=msg)
    return res


def _line_for_search(x0, alpha, lower_bound, upper_bound):
    """
    Given a parameter vector ``x0`` with length ``n`` and a direction
    vector ``alpha`` with length ``n``, and lower and upper bounds on
    each of the ``n`` parameters, what are the bounds on a scalar
    ``l`` such that ``lower_bound <= x0 + alpha * l <= upper_bound``.


    Parameters
    ----------
    x0 : np.array.
        The vector representing the current location.
        Note ``np.shape(x0) == (n,)``.
    alpha : np.array.
        The vector representing the direction.
        Note ``np.shape(alpha) == (n,)``.
    lower_bound : np.array.
        The lower bounds for each parameter in ``x0``. If the ``i``th
        parameter in ``x0`` is unbounded below, then ``lower_bound[i]``
        should be ``-np.inf``.
        Note ``np.shape(lower_bound) == (n,)``.
    upper_bound : np.array.
        The upper bounds for each parameter in ``x0``. If the ``i``th
        parameter in ``x0`` is unbounded above, then ``upper_bound[i]``
        should be ``np.inf``.
        Note ``np.shape(upper_bound) == (n,)``.

    Returns
    -------
    res : tuple ``(lmin, lmax)``
        The bounds for ``l`` such that
            ``lower_bound[i] <= x0[i] + alpha[i] * l <= upper_bound[i]``
        for all ``i``.

    """
    # get nonzero indices of alpha so we don't get any zero division errors.
    # alpha will not be all zero, since it is called from _linesearch_powell
    # where we have a check for this.
    nonzero, = alpha.nonzero()
    lower_bound, upper_bound = lower_bound[nonzero], upper_bound[nonzero]
    x0, alpha = x0[nonzero], alpha[nonzero]
    low = (lower_bound - x0) / alpha
    high = (upper_bound - x0) / alpha

    # positive and negative indices
    pos = alpha > 0

    lmin_pos = np.where(pos, low, 0)
    lmin_neg = np.where(pos, 0, high)
    lmax_pos = np.where(pos, high, 0)
    lmax_neg = np.where(pos, 0, low)

    lmin = np.max(lmin_pos + lmin_neg)
    lmax = np.min(lmax_pos + lmax_neg)

    # if x0 is outside the bounds, then it is possible that there is
    # no way to get back in the bounds for the parameters being updated
    # with the current direction alpha.
    # when this happens, lmax < lmin.
    # If this is the case, then we can just return (0, 0)
    return (lmin, lmax) if lmax >= lmin else (0, 0)


def _linesearch_powell(func, p, xi, tol=1e-3,
                       lower_bound=None, upper_bound=None, fval=None):
    """Line-search algorithm using fminbound.

    Find the minimum of the function ``func(x0 + alpha*direc)``.

    lower_bound : np.array.
        The lower bounds for each parameter in ``x0``. If the ``i``th
        parameter in ``x0`` is unbounded below, then ``lower_bound[i]``
        should be ``-np.inf``.
        Note ``np.shape(lower_bound) == (n,)``.
    upper_bound : np.array.
        The upper bounds for each parameter in ``x0``. If the ``i``th
        parameter in ``x0`` is unbounded above, then ``upper_bound[i]``
        should be ``np.inf``.
        Note ``np.shape(upper_bound) == (n,)``.
    fval : number.
        ``fval`` is equal to ``func(p)``, the idea is just to avoid
        recomputing it so we can limit the ``fevals``.

    """
    def myfunc(alpha):
        return func(p + alpha*xi)

    # if xi is zero, then don't optimize
    if not np.any(xi):
        return ((fval, p, xi) if fval is not None else (func(p), p, xi))
    elif lower_bound is None and upper_bound is None:
        # non-bounded minimization
        res = _recover_from_bracket_error(_minimize_scalar_brent,
                                          myfunc, None, tuple(), xtol=tol)
        alpha_min, fret = res.x, res.fun
        xi = alpha_min * xi
        return fret, p + xi, xi
    else:
        bound = _line_for_search(p, xi, lower_bound, upper_bound)
        if np.isneginf(bound[0]) and np.isposinf(bound[1]):
            # equivalent to unbounded
            return _linesearch_powell(func, p, xi, fval=fval, tol=tol)
        elif not np.isneginf(bound[0]) and not np.isposinf(bound[1]):
            # we can use a bounded scalar minimization
            res = _minimize_scalar_bounded(myfunc, bound, xatol=tol / 100)
            xi = res.x * xi
            return res.fun, p + xi, xi
        else:
            # only bounded on one side. use the tangent function to convert
            # the infinity bound to a finite bound. The new bounded region
            # is a subregion of the region bounded by -np.pi/2 and np.pi/2.
            bound = np.arctan(bound[0]), np.arctan(bound[1])
            res = _minimize_scalar_bounded(
                lambda x: myfunc(np.tan(x)),
                bound,
                xatol=tol / 100)
            xi = np.tan(res.x) * xi
            return res.fun, p + xi, xi


def fmin_powell(func, x0, args=(), xtol=1e-4, ftol=1e-4, maxiter=None,
                maxfun=None, full_output=0, disp=1, retall=0, callback=None,
                direc=None):
    """
    Minimize a function using modified Powell's method.

    This method only uses function values, not derivatives.

    Parameters
    ----------
    func : callable f(x,*args)
        Objective function to be minimized.
    x0 : ndarray
        Initial guess.
    args : tuple, optional
        Extra arguments passed to func.
    xtol : float, optional
        Line-search error tolerance.
    ftol : float, optional
        Relative error in ``func(xopt)`` acceptable for convergence.
    maxiter : int, optional
        Maximum number of iterations to perform.
    maxfun : int, optional
        Maximum number of function evaluations to make.
    full_output : bool, optional
        If True, ``fopt``, ``xi``, ``direc``, ``iter``, ``funcalls``, and
        ``warnflag`` are returned.
    disp : bool, optional
        If True, print convergence messages.
    retall : bool, optional
        If True, return a list of the solution at each iteration.
    callback : callable, optional
        An optional user-supplied function, called after each
        iteration.  Called as ``callback(xk)``, where ``xk`` is the
        current parameter vector.
    direc : ndarray, optional
        Initial fitting step and parameter order set as an (N, N) array, where N
        is the number of fitting parameters in `x0`. Defaults to step size 1.0
        fitting all parameters simultaneously (``np.eye((N, N))``). To
        prevent initial consideration of values in a step or to change initial
        step size, set to 0 or desired step size in the Jth position in the Mth
        block, where J is the position in `x0` and M is the desired evaluation
        step, with steps being evaluated in index order. Step size and ordering
        will change freely as minimization proceeds.

    Returns
    -------
    xopt : ndarray
        Parameter which minimizes `func`.
    fopt : number
        Value of function at minimum: ``fopt = func(xopt)``.
    direc : ndarray
        Current direction set.
    iter : int
        Number of iterations.
    funcalls : int
        Number of function calls made.
    warnflag : int
        Integer warning flag:
            1 : Maximum number of function evaluations.
            2 : Maximum number of iterations.
            3 : NaN result encountered.
            4 : The result is out of the provided bounds.
    allvecs : list
        List of solutions at each iteration.

    See also
    --------
    minimize: Interface to unconstrained minimization algorithms for
        multivariate functions. See the 'Powell' method in particular.

    Notes
    -----
    Uses a modification of Powell's method to find the minimum of
    a function of N variables. Powell's method is a conjugate
    direction method.

    The algorithm has two loops. The outer loop merely iterates over the inner
    loop. The inner loop minimizes over each current direction in the direction
    set. At the end of the inner loop, if certain conditions are met, the
    direction that gave the largest decrease is dropped and replaced with the
    difference between the current estimated x and the estimated x from the
    beginning of the inner-loop.

    The technical conditions for replacing the direction of greatest
    increase amount to checking that

    1. No further gain can be made along the direction of greatest increase
       from that iteration.
    2. The direction of greatest increase accounted for a large sufficient
       fraction of the decrease in the function value from that iteration of
       the inner loop.

    References
    ----------
    Powell M.J.D. (1964) An efficient method for finding the minimum of a
    function of several variables without calculating derivatives,
    Computer Journal, 7 (2):155-162.

    Press W., Teukolsky S.A., Vetterling W.T., and Flannery B.P.:
    Numerical Recipes (any edition), Cambridge University Press

    Examples
    --------
    >>> def f(x):
    ...     return x**2

    >>> from scipy import optimize

    >>> minimum = optimize.fmin_powell(f, -1)
    Optimization terminated successfully.
             Current function value: 0.000000
             Iterations: 2
             Function evaluations: 16
    >>> minimum
    array(0.0)

    """
    opts = {'xtol': xtol,
            'ftol': ftol,
            'maxiter': maxiter,
            'maxfev': maxfun,
            'disp': disp,
            'direc': direc,
            'return_all': retall}

    callback = _wrap_callback(callback)
    res = _minimize_powell(func, x0, args, callback=callback, **opts)

    if full_output:
        retlist = (res['x'], res['fun'], res['direc'], res['nit'],
                   res['nfev'], res['status'])
        if retall:
            retlist += (res['allvecs'], )
        return retlist
    else:
        if retall:
            return res['x'], res['allvecs']
        else:
            return res['x']


def _minimize_powell(func, x0, args=(), callback=None, bounds=None,
                     xtol=1e-4, ftol=1e-4, maxiter=None, maxfev=None,
                     disp=False, direc=None, return_all=False,
                     **unknown_options):
    """
    Minimization of scalar function of one or more variables using the
    modified Powell algorithm.

    Parameters
    ----------
    fun : callable
        The objective function to be minimized::

            fun(x, *args) -> float

        where ``x`` is a 1-D array with shape (n,) and ``args``
        is a tuple of the fixed parameters needed to completely
        specify the function.
    x0 : ndarray, shape (n,)
        Initial guess. Array of real elements of size (n,),
        where ``n`` is the number of independent variables.
    args : tuple, optional
        Extra arguments passed to the objective function and its
        derivatives (`fun`, `jac` and `hess` functions).
    method : str or callable, optional
        The present documentation is specific to ``method='powell'``, but other
        options are available. See documentation for `scipy.optimize.minimize`.
    bounds : sequence or `Bounds`, optional
        Bounds on decision variables. There are two ways to specify the bounds:

        1. Instance of `Bounds` class.
        2. Sequence of ``(min, max)`` pairs for each element in `x`. None
           is used to specify no bound.

        If bounds are not provided, then an unbounded line search will be used.
        If bounds are provided and the initial guess is within the bounds, then
        every function evaluation throughout the minimization procedure will be
        within the bounds. If bounds are provided, the initial guess is outside
        the bounds, and `direc` is full rank (or left to default), then some
        function evaluations during the first iteration may be outside the
        bounds, but every function evaluation after the first iteration will be
        within the bounds. If `direc` is not full rank, then some parameters
        may not be optimized and the solution is not guaranteed to be within
        the bounds.

    options : dict, optional
        A dictionary of solver options. All methods accept the following
        generic options:

        maxiter : int
            Maximum number of iterations to perform. Depending on the
            method each iteration may use several function evaluations.
        disp : bool
            Set to True to print convergence messages.

        See method-specific options for ``method='powell'`` below.
    callback : callable, optional
        Called after each iteration. The signature is::

            callback(xk)

        where ``xk`` is the current parameter vector.

    Returns
    -------
    res : OptimizeResult
        The optimization result represented as a ``OptimizeResult`` object.
        Important attributes are: ``x`` the solution array, ``success`` a
        Boolean flag indicating if the optimizer exited successfully and
        ``message`` which describes the cause of the termination. See
        `OptimizeResult` for a description of other attributes.

    Options
    -------
    disp : bool
        Set to True to print convergence messages.
    xtol : float
        Relative error in solution `xopt` acceptable for convergence.
    ftol : float
        Relative error in ``fun(xopt)`` acceptable for convergence.
    maxiter, maxfev : int
        Maximum allowed number of iterations and function evaluations.
        Will default to ``N*1000``, where ``N`` is the number of
        variables, if neither `maxiter` or `maxfev` is set. If both
        `maxiter` and `maxfev` are set, minimization will stop at the
        first reached.
    direc : ndarray
        Initial set of direction vectors for the Powell method.
    return_all : bool, optional
        Set to True to return a list of the best solution at each of the
        iterations.
    """
    _check_unknown_options(unknown_options)
    maxfun = maxfev
    retall = return_all

    x = asarray(x0).flatten()
    if retall:
        allvecs = [x]
    N = len(x)
    # If neither are set, then set both to default
    if maxiter is None and maxfun is None:
        maxiter = N * 1000
        maxfun = N * 1000
    elif maxiter is None:
        # Convert remaining Nones, to np.inf, unless the other is np.inf, in
        # which case use the default to avoid unbounded iteration
        if maxfun == np.inf:
            maxiter = N * 1000
        else:
            maxiter = np.inf
    elif maxfun is None:
        if maxiter == np.inf:
            maxfun = N * 1000
        else:
            maxfun = np.inf

    # we need to use a mutable object here that we can update in the
    # wrapper function
    fcalls, func = _wrap_scalar_function_maxfun_validation(func, args, maxfun)

    if direc is None:
        direc = eye(N, dtype=float)
    else:
        direc = asarray(direc, dtype=float)
        if np.linalg.matrix_rank(direc) != direc.shape[0]:
            warnings.warn("direc input is not full rank, some parameters may "
                          "not be optimized",
                          OptimizeWarning, stacklevel=3)

    if bounds is None:
        # don't make these arrays of all +/- inf. because
        # _linesearch_powell will do an unnecessary check of all the elements.
        # just keep them None, _linesearch_powell will not have to check
        # all the elements.
        lower_bound, upper_bound = None, None
    else:
        # bounds is standardized in _minimize.py.
        lower_bound, upper_bound = bounds.lb, bounds.ub
        if np.any(lower_bound > x0) or np.any(x0 > upper_bound):
            warnings.warn("Initial guess is not within the specified bounds",
                          OptimizeWarning, stacklevel=3)

    fval = func(x)
    x1 = x.copy()
    iter = 0
    while True:
        try:
            fx = fval
            bigind = 0
            delta = 0.0
            for i in range(N):
                direc1 = direc[i]
                fx2 = fval
                fval, x, direc1 = _linesearch_powell(func, x, direc1,
                                                     tol=xtol * 100,
                                                     lower_bound=lower_bound,
                                                     upper_bound=upper_bound,
                                                     fval=fval)
                if (fx2 - fval) > delta:
                    delta = fx2 - fval
                    bigind = i
            iter += 1
            if retall:
                allvecs.append(x)
            intermediate_result = OptimizeResult(x=x, fun=fval)
            if _call_callback_maybe_halt(callback, intermediate_result):
                break
            bnd = ftol * (np.abs(fx) + np.abs(fval)) + 1e-20
            if 2.0 * (fx - fval) <= bnd:
                break
            if fcalls[0] >= maxfun:
                break
            if iter >= maxiter:
                break
            if np.isnan(fx) and np.isnan(fval):
                # Ended up in a nan-region: bail out
                break

            # Construct the extrapolated point
            direc1 = x - x1
            x1 = x.copy()
            # make sure that we don't go outside the bounds when extrapolating
            if lower_bound is None and upper_bound is None:
                lmax = 1
            else:
                _, lmax = _line_for_search(x, direc1, lower_bound, upper_bound)
            x2 = x + min(lmax, 1) * direc1
            fx2 = func(x2)

            if (fx > fx2):
                t = 2.0*(fx + fx2 - 2.0*fval)
                temp = (fx - fval - delta)
                t *= temp*temp
                temp = fx - fx2
                t -= delta*temp*temp
                if t < 0.0:
                    fval, x, direc1 = _linesearch_powell(
                        func, x, direc1,
                        tol=xtol * 100,
                        lower_bound=lower_bound,
                        upper_bound=upper_bound,
                        fval=fval
                    )
                    if np.any(direc1):
                        direc[bigind] = direc[-1]
                        direc[-1] = direc1
        except _MaxFuncCallError:
            break

    warnflag = 0
    msg = _status_message['success']
    # out of bounds is more urgent than exceeding function evals or iters,
    # but I don't want to cause inconsistencies by changing the
    # established warning flags for maxfev and maxiter, so the out of bounds
    # warning flag becomes 3, but is checked for first.
    if bounds and (np.any(lower_bound > x) or np.any(x > upper_bound)):
        warnflag = 4
        msg = _status_message['out_of_bounds']
    elif fcalls[0] >= maxfun:
        warnflag = 1
        msg = _status_message['maxfev']
    elif iter >= maxiter:
        warnflag = 2
        msg = _status_message['maxiter']
    elif np.isnan(fval) or np.isnan(x).any():
        warnflag = 3
        msg = _status_message['nan']

    if disp:
        _print_success_message_or_warn(warnflag, msg, RuntimeWarning)
        print(f"         Current function value: {fval:f}")
        print("         Iterations: %d" % iter)
        print("         Function evaluations: %d" % fcalls[0])
    result = OptimizeResult(fun=fval, direc=direc, nit=iter, nfev=fcalls[0],
                            status=warnflag, success=(warnflag == 0),
                            message=msg, x=x)
    if retall:
        result['allvecs'] = allvecs
    return result


def _endprint(x, flag, fval, maxfun, xtol, disp):
    if flag == 0:
        if disp > 1:
            print("\nOptimization terminated successfully;\n"
                  "The returned value satisfies the termination criteria\n"
                  "(using xtol = ", xtol, ")")
        return

    if flag == 1:
        msg = ("\nMaximum number of function evaluations exceeded --- "
               "increase maxfun argument.\n")
    elif flag == 2:
        msg = f"\n{_status_message['nan']}"

    _print_success_message_or_warn(flag, msg)
    return


def brute(func, ranges, args=(), Ns=20, full_output=0, finish=fmin,
          disp=False, workers=1):
    """Minimize a function over a given range by brute force.

    Uses the "brute force" method, i.e., computes the function's value
    at each point of a multidimensional grid of points, to find the global
    minimum of the function.

    The function is evaluated everywhere in the range with the datatype of the
    first call to the function, as enforced by the ``vectorize`` NumPy
    function. The value and type of the function evaluation returned when
    ``full_output=True`` are affected in addition by the ``finish`` argument
    (see Notes).

    The brute force approach is inefficient because the number of grid points
    increases exponentially - the number of grid points to evaluate is
    ``Ns ** len(x)``. Consequently, even with coarse grid spacing, even
    moderately sized problems can take a long time to run, and/or run into
    memory limitations.

    Parameters
    ----------
    func : callable
        The objective function to be minimized. Must be in the
        form ``f(x, *args)``, where ``x`` is the argument in
        the form of a 1-D array and ``args`` is a tuple of any
        additional fixed parameters needed to completely specify
        the function.
    ranges : tuple
        Each component of the `ranges` tuple must be either a
        "slice object" or a range tuple of the form ``(low, high)``.
        The program uses these to create the grid of points on which
        the objective function will be computed. See `Note 2` for
        more detail.
    args : tuple, optional
        Any additional fixed parameters needed to completely specify
        the function.
    Ns : int, optional
        Number of grid points along the axes, if not otherwise
        specified. See `Note2`.
    full_output : bool, optional
        If True, return the evaluation grid and the objective function's
        values on it.
    finish : callable, optional
        An optimization function that is called with the result of brute force
        minimization as initial guess. `finish` should take `func` and
        the initial guess as positional arguments, and take `args` as
        keyword arguments. It may additionally take `full_output`
        and/or `disp` as keyword arguments. Use None if no "polishing"
        function is to be used. See Notes for more details.
    disp : bool, optional
        Set to True to print convergence messages from the `finish` callable.
    workers : int or map-like callable, optional
        If `workers` is an int the grid is subdivided into `workers`
        sections and evaluated in parallel (uses
        `multiprocessing.Pool <multiprocessing>`).
        Supply `-1` to use all cores available to the Process.
        Alternatively supply a map-like callable, such as
        `multiprocessing.Pool.map` for evaluating the grid in parallel.
        This evaluation is carried out as ``workers(func, iterable)``.
        Requires that `func` be pickleable.

        .. versionadded:: 1.3.0

    Returns
    -------
    x0 : ndarray
        A 1-D array containing the coordinates of a point at which the
        objective function had its minimum value. (See `Note 1` for
        which point is returned.)
    fval : float
        Function value at the point `x0`. (Returned when `full_output` is
        True.)
    grid : tuple
        Representation of the evaluation grid. It has the same
        length as `x0`. (Returned when `full_output` is True.)
    Jout : ndarray
        Function values at each point of the evaluation
        grid, i.e., ``Jout = func(*grid)``. (Returned
        when `full_output` is True.)

    See Also
    --------
    basinhopping, differential_evolution

    Notes
    -----
    *Note 1*: The program finds the gridpoint at which the lowest value
    of the objective function occurs. If `finish` is None, that is the
    point returned. When the global minimum occurs within (or not very far
    outside) the grid's boundaries, and the grid is fine enough, that
    point will be in the neighborhood of the global minimum.

    However, users often employ some other optimization program to
    "polish" the gridpoint values, i.e., to seek a more precise
    (local) minimum near `brute's` best gridpoint.
    The `brute` function's `finish` option provides a convenient way to do
    that. Any polishing program used must take `brute's` output as its
    initial guess as a positional argument, and take `brute's` input values
    for `args` as keyword arguments, otherwise an error will be raised.
    It may additionally take `full_output` and/or `disp` as keyword arguments.

    `brute` assumes that the `finish` function returns either an
    `OptimizeResult` object or a tuple in the form:
    ``(xmin, Jmin, ... , statuscode)``, where ``xmin`` is the minimizing
    value of the argument, ``Jmin`` is the minimum value of the objective
    function, "..." may be some other returned values (which are not used
    by `brute`), and ``statuscode`` is the status code of the `finish` program.

    Note that when `finish` is not None, the values returned are those
    of the `finish` program, *not* the gridpoint ones. Consequently,
    while `brute` confines its search to the input grid points,
    the `finish` program's results usually will not coincide with any
    gridpoint, and may fall outside the grid's boundary. Thus, if a
    minimum only needs to be found over the provided grid points, make
    sure to pass in ``finish=None``.

    *Note 2*: The grid of points is a `numpy.mgrid` object.
    For `brute` the `ranges` and `Ns` inputs have the following effect.
    Each component of the `ranges` tuple can be either a slice object or a
    two-tuple giving a range of values, such as (0, 5). If the component is a
    slice object, `brute` uses it directly. If the component is a two-tuple
    range, `brute` internally converts it to a slice object that interpolates
    `Ns` points from its low-value to its high-value, inclusive.

    Examples
    --------
    We illustrate the use of `brute` to seek the global minimum of a function
    of two variables that is given as the sum of a positive-definite
    quadratic and two deep "Gaussian-shaped" craters. Specifically, define
    the objective function `f` as the sum of three other functions,
    ``f = f1 + f2 + f3``. We suppose each of these has a signature
    ``(z, *params)``, where ``z = (x, y)``,  and ``params`` and the functions
    are as defined below.

    >>> import numpy as np
    >>> params = (2, 3, 7, 8, 9, 10, 44, -1, 2, 26, 1, -2, 0.5)
    >>> def f1(z, *params):
    ...     x, y = z
    ...     a, b, c, d, e, f, g, h, i, j, k, l, scale = params
    ...     return (a * x**2 + b * x * y + c * y**2 + d*x + e*y + f)

    >>> def f2(z, *params):
    ...     x, y = z
    ...     a, b, c, d, e, f, g, h, i, j, k, l, scale = params
    ...     return (-g*np.exp(-((x-h)**2 + (y-i)**2) / scale))

    >>> def f3(z, *params):
    ...     x, y = z
    ...     a, b, c, d, e, f, g, h, i, j, k, l, scale = params
    ...     return (-j*np.exp(-((x-k)**2 + (y-l)**2) / scale))

    >>> def f(z, *params):
    ...     return f1(z, *params) + f2(z, *params) + f3(z, *params)

    Thus, the objective function may have local minima near the minimum
    of each of the three functions of which it is composed. To
    use `fmin` to polish its gridpoint result, we may then continue as
    follows:

    >>> rranges = (slice(-4, 4, 0.25), slice(-4, 4, 0.25))
    >>> from scipy import optimize
    >>> resbrute = optimize.brute(f, rranges, args=params, full_output=True,
    ...                           finish=optimize.fmin)
    >>> resbrute[0]  # global minimum
    array([-1.05665192,  1.80834843])
    >>> resbrute[1]  # function value at global minimum
    -3.4085818767

    Note that if `finish` had been set to None, we would have gotten the
    gridpoint [-1.0 1.75] where the rounded function value is -2.892.

    """
    N = len(ranges)
    if N > 40:
        raise ValueError("Brute Force not possible with more "
                         "than 40 variables.")
    lrange = list(ranges)
    for k in range(N):
        if not isinstance(lrange[k], slice):
            if len(lrange[k]) < 3:
                lrange[k] = tuple(lrange[k]) + (complex(Ns),)
            lrange[k] = slice(*lrange[k])
    if (N == 1):
        lrange = lrange[0]

    grid = np.mgrid[lrange]

    # obtain an array of parameters that is iterable by a map-like callable
    inpt_shape = grid.shape
    if (N > 1):
        grid = np.reshape(grid, (inpt_shape[0], np.prod(inpt_shape[1:]))).T

    if not np.iterable(args):
        args = (args,)

    wrapped_func = _Brute_Wrapper(func, args)

    # iterate over input arrays, possibly in parallel
    with MapWrapper(pool=workers) as mapper:
        Jout = np.array(list(mapper(wrapped_func, grid)))
        if (N == 1):
            grid = (grid,)
            Jout = np.squeeze(Jout)
        elif (N > 1):
            Jout = np.reshape(Jout, inpt_shape[1:])
            grid = np.reshape(grid.T, inpt_shape)

    Nshape = shape(Jout)

    indx = argmin(Jout.ravel(), axis=-1)
    Nindx = np.empty(N, int)
    xmin = np.empty(N, float)
    for k in range(N - 1, -1, -1):
        thisN = Nshape[k]
        Nindx[k] = indx % Nshape[k]
        indx = indx // thisN
    for k in range(N):
        xmin[k] = grid[k][tuple(Nindx)]

    Jmin = Jout[tuple(Nindx)]
    if (N == 1):
        grid = grid[0]
        xmin = xmin[0]

    if callable(finish):
        # set up kwargs for `finish` function
        finish_args = _getfullargspec(finish).args
        finish_kwargs = dict()
        if 'full_output' in finish_args:
            finish_kwargs['full_output'] = 1
        if 'disp' in finish_args:
            finish_kwargs['disp'] = disp
        elif 'options' in finish_args:
            # pass 'disp' as `options`
            # (e.g., if `finish` is `minimize`)
            finish_kwargs['options'] = {'disp': disp}

        # run minimizer
        res = finish(func, xmin, args=args, **finish_kwargs)

        if isinstance(res, OptimizeResult):
            xmin = res.x
            Jmin = res.fun
            success = res.success
        else:
            xmin = res[0]
            Jmin = res[1]
            success = res[-1] == 0
        if not success:
            if disp:
                warnings.warn("Either final optimization did not succeed or `finish` "
                              "does not return `statuscode` as its last argument.",
                              RuntimeWarning, stacklevel=2)

    if full_output:
        return xmin, Jmin, grid, Jout
    else:
        return xmin


class _Brute_Wrapper:
    """
    Object to wrap user cost function for optimize.brute, allowing picklability
    """

    def __init__(self, f, args):
        self.f = f
        self.args = [] if args is None else args

    def __call__(self, x):
        # flatten needed for one dimensional case.
        return self.f(np.asarray(x).flatten(), *self.args)


def show_options(solver=None, method=None, disp=True):
    """
    Show documentation for additional options of optimization solvers.

    These are method-specific options that can be supplied through the
    ``options`` dict.

    Parameters
    ----------
    solver : str
        Type of optimization solver. One of 'minimize', 'minimize_scalar',
        'root', 'root_scalar', 'linprog', or 'quadratic_assignment'.
    method : str, optional
        If not given, shows all methods of the specified solver. Otherwise,
        show only the options for the specified method. Valid values
        corresponds to methods' names of respective solver (e.g., 'BFGS' for
        'minimize').
    disp : bool, optional
        Whether to print the result rather than returning it.

    Returns
    -------
    text
        Either None (for disp=True) or the text string (disp=False)

    Notes
    -----
    The solver-specific methods are:

    `scipy.optimize.minimize`

    - :ref:`Nelder-Mead <optimize.minimize-neldermead>`
    - :ref:`Powell      <optimize.minimize-powell>`
    - :ref:`CG          <optimize.minimize-cg>`
    - :ref:`BFGS        <optimize.minimize-bfgs>`
    - :ref:`Newton-CG   <optimize.minimize-newtoncg>`
    - :ref:`L-BFGS-B    <optimize.minimize-lbfgsb>`
    - :ref:`TNC         <optimize.minimize-tnc>`
    - :ref:`COBYLA      <optimize.minimize-cobyla>`
    - :ref:`COBYQA      <optimize.minimize-cobyqa>`
    - :ref:`SLSQP       <optimize.minimize-slsqp>`
    - :ref:`dogleg      <optimize.minimize-dogleg>`
    - :ref:`trust-ncg   <optimize.minimize-trustncg>`

    `scipy.optimize.root`

    - :ref:`hybr              <optimize.root-hybr>`
    - :ref:`lm                <optimize.root-lm>`
    - :ref:`broyden1          <optimize.root-broyden1>`
    - :ref:`broyden2          <optimize.root-broyden2>`
    - :ref:`anderson          <optimize.root-anderson>`
    - :ref:`linearmixing      <optimize.root-linearmixing>`
    - :ref:`diagbroyden       <optimize.root-diagbroyden>`
    - :ref:`excitingmixing    <optimize.root-excitingmixing>`
    - :ref:`krylov            <optimize.root-krylov>`
    - :ref:`df-sane           <optimize.root-dfsane>`

    `scipy.optimize.minimize_scalar`

    - :ref:`brent       <optimize.minimize_scalar-brent>`
    - :ref:`golden      <optimize.minimize_scalar-golden>`
    - :ref:`bounded     <optimize.minimize_scalar-bounded>`

    `scipy.optimize.root_scalar`

    - :ref:`bisect  <optimize.root_scalar-bisect>`
    - :ref:`brentq  <optimize.root_scalar-brentq>`
    - :ref:`brenth  <optimize.root_scalar-brenth>`
    - :ref:`ridder  <optimize.root_scalar-ridder>`
    - :ref:`toms748 <optimize.root_scalar-toms748>`
    - :ref:`newton  <optimize.root_scalar-newton>`
    - :ref:`secant  <optimize.root_scalar-secant>`
    - :ref:`halley  <optimize.root_scalar-halley>`

    `scipy.optimize.linprog`

    - :ref:`simplex           <optimize.linprog-simplex>`
    - :ref:`interior-point    <optimize.linprog-interior-point>`
    - :ref:`revised simplex   <optimize.linprog-revised_simplex>`
    - :ref:`highs             <optimize.linprog-highs>`
    - :ref:`highs-ds          <optimize.linprog-highs-ds>`
    - :ref:`highs-ipm         <optimize.linprog-highs-ipm>`

    `scipy.optimize.quadratic_assignment`

    - :ref:`faq             <optimize.qap-faq>`
    - :ref:`2opt            <optimize.qap-2opt>`

    Examples
    --------
    We can print documentations of a solver in stdout:

    >>> from scipy.optimize import show_options
    >>> show_options(solver="minimize")
    ...

    Specifying a method is possible:

    >>> show_options(solver="minimize", method="Nelder-Mead")
    ...

    We can also get the documentations as a string:

    >>> show_options(solver="minimize", method="Nelder-Mead", disp=False)
    Minimization of scalar function of one or more variables using the ...

    """
    import textwrap

    doc_routines = {
        'minimize': (
            ('bfgs', 'scipy.optimize._optimize._minimize_bfgs'),
            ('cg', 'scipy.optimize._optimize._minimize_cg'),
            ('cobyla', 'scipy.optimize._cobyla_py._minimize_cobyla'),
            ('cobyqa', 'scipy.optimize._cobyqa_py._minimize_cobyqa'),
            ('dogleg', 'scipy.optimize._trustregion_dogleg._minimize_dogleg'),
            ('l-bfgs-b', 'scipy.optimize._lbfgsb_py._minimize_lbfgsb'),
            ('nelder-mead', 'scipy.optimize._optimize._minimize_neldermead'),
            ('newton-cg', 'scipy.optimize._optimize._minimize_newtoncg'),
            ('powell', 'scipy.optimize._optimize._minimize_powell'),
            ('slsqp', 'scipy.optimize._slsqp_py._minimize_slsqp'),
            ('tnc', 'scipy.optimize._tnc._minimize_tnc'),
            ('trust-ncg',
             'scipy.optimize._trustregion_ncg._minimize_trust_ncg'),
            ('trust-constr',
             'scipy.optimize._trustregion_constr.'
             '_minimize_trustregion_constr'),
            ('trust-exact',
             'scipy.optimize._trustregion_exact._minimize_trustregion_exact'),
            ('trust-krylov',
             'scipy.optimize._trustregion_krylov._minimize_trust_krylov'),
        ),
        'root': (
            ('hybr', 'scipy.optimize._minpack_py._root_hybr'),
            ('lm', 'scipy.optimize._root._root_leastsq'),
            ('broyden1', 'scipy.optimize._root._root_broyden1_doc'),
            ('broyden2', 'scipy.optimize._root._root_broyden2_doc'),
            ('anderson', 'scipy.optimize._root._root_anderson_doc'),
            ('diagbroyden', 'scipy.optimize._root._root_diagbroyden_doc'),
            ('excitingmixing', 'scipy.optimize._root._root_excitingmixing_doc'),
            ('linearmixing', 'scipy.optimize._root._root_linearmixing_doc'),
            ('krylov', 'scipy.optimize._root._root_krylov_doc'),
            ('df-sane', 'scipy.optimize._spectral._root_df_sane'),
        ),
        'root_scalar': (
            ('bisect', 'scipy.optimize._root_scalar._root_scalar_bisect_doc'),
            ('brentq', 'scipy.optimize._root_scalar._root_scalar_brentq_doc'),
            ('brenth', 'scipy.optimize._root_scalar._root_scalar_brenth_doc'),
            ('ridder', 'scipy.optimize._root_scalar._root_scalar_ridder_doc'),
            ('toms748', 'scipy.optimize._root_scalar._root_scalar_toms748_doc'),
            ('secant', 'scipy.optimize._root_scalar._root_scalar_secant_doc'),
            ('newton', 'scipy.optimize._root_scalar._root_scalar_newton_doc'),
            ('halley', 'scipy.optimize._root_scalar._root_scalar_halley_doc'),
        ),
        'linprog': (
            ('simplex', 'scipy.optimize._linprog._linprog_simplex_doc'),
            ('interior-point', 'scipy.optimize._linprog._linprog_ip_doc'),
            ('revised simplex', 'scipy.optimize._linprog._linprog_rs_doc'),
            ('highs-ipm', 'scipy.optimize._linprog._linprog_highs_ipm_doc'),
            ('highs-ds', 'scipy.optimize._linprog._linprog_highs_ds_doc'),
            ('highs', 'scipy.optimize._linprog._linprog_highs_doc'),
        ),
        'quadratic_assignment': (
            ('faq', 'scipy.optimize._qap._quadratic_assignment_faq'),
            ('2opt', 'scipy.optimize._qap._quadratic_assignment_2opt'),
        ),
        'minimize_scalar': (
            ('brent', 'scipy.optimize._optimize._minimize_scalar_brent'),
            ('bounded', 'scipy.optimize._optimize._minimize_scalar_bounded'),
            ('golden', 'scipy.optimize._optimize._minimize_scalar_golden'),
        ),
    }

    if solver is None:
        text = ["\n\n\n========\n", "minimize\n", "========\n"]
        text.append(show_options('minimize', disp=False))
        text.extend(["\n\n===============\n", "minimize_scalar\n",
                     "===============\n"])
        text.append(show_options('minimize_scalar', disp=False))
        text.extend(["\n\n\n====\n", "root\n",
                     "====\n"])
        text.append(show_options('root', disp=False))
        text.extend(['\n\n\n=======\n', 'linprog\n',
                     '=======\n'])
        text.append(show_options('linprog', disp=False))
        text = "".join(text)
    else:
        solver = solver.lower()
        if solver not in doc_routines:
            raise ValueError(f'Unknown solver {solver!r}')

        if method is None:
            text = []
            for name, _ in doc_routines[solver]:
                text.extend(["\n\n" + name, "\n" + "="*len(name) + "\n\n"])
                text.append(show_options(solver, name, disp=False))
            text = "".join(text)
        else:
            method = method.lower()
            methods = dict(doc_routines[solver])
            if method not in methods:
                raise ValueError(f"Unknown method {method!r}")
            name = methods[method]

            # Import function object
            parts = name.split('.')
            mod_name = ".".join(parts[:-1])
            __import__(mod_name)
            obj = getattr(sys.modules[mod_name], parts[-1])

            # Get doc
            doc = obj.__doc__
            if doc is not None:
                text = textwrap.dedent(doc).strip()
            else:
                text = ""

    if disp:
        print(text)
        return
    else:
        return text