File size: 35,531 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 |
import pytest
import numpy as np
from scipy.optimize._bracket import _ELIMITS
from scipy.optimize.elementwise import bracket_root, bracket_minimum
import scipy._lib._elementwise_iterative_method as eim
from scipy import stats
from scipy._lib._array_api_no_0d import (xp_assert_close, xp_assert_equal,
xp_assert_less, array_namespace)
from scipy._lib._array_api import xp_ravel
from scipy.conftest import array_api_compatible
# These tests were originally written for the private `optimize._bracket`
# interfaces, but now we want the tests to check the behavior of the public
# `optimize.elementwise` interfaces. Therefore, rather than importing
# `_bracket_root`/`_bracket_minimum` from `_bracket.py`, we import
# `bracket_root`/`bracket_minimum` from `optimize.elementwise` and wrap those
# functions to conform to the private interface. This may look a little strange,
# since it effectively just inverts the interface transformation done within the
# `bracket_root`/`bracket_minimum` functions, but it allows us to run the original,
# unmodified tests on the public interfaces, simplifying the PR that adds
# the public interfaces. We'll refactor this when we want to @parametrize the
# tests over multiple `method`s.
def _bracket_root(*args, **kwargs):
res = bracket_root(*args, **kwargs)
res.xl, res.xr = res.bracket
res.fl, res.fr = res.f_bracket
del res.bracket
del res.f_bracket
return res
def _bracket_minimum(*args, **kwargs):
res = bracket_minimum(*args, **kwargs)
res.xl, res.xm, res.xr = res.bracket
res.fl, res.fm, res.fr = res.f_bracket
del res.bracket
del res.f_bracket
return res
array_api_strict_skip_reason = 'Array API does not support fancy indexing assignment.'
jax_skip_reason = 'JAX arrays do not support item assignment.'
@pytest.mark.skip_xp_backends('array_api_strict', reason=array_api_strict_skip_reason)
@pytest.mark.skip_xp_backends('jax.numpy', reason=jax_skip_reason)
@array_api_compatible
@pytest.mark.usefixtures("skip_xp_backends")
class TestBracketRoot:
@pytest.mark.parametrize("seed", (615655101, 3141866013, 238075752))
@pytest.mark.parametrize("use_xmin", (False, True))
@pytest.mark.parametrize("other_side", (False, True))
@pytest.mark.parametrize("fix_one_side", (False, True))
def test_nfev_expected(self, seed, use_xmin, other_side, fix_one_side, xp):
# Property-based test to confirm that _bracket_root is behaving as
# expected. The basic case is when root < a < b.
# The number of times bracket expands (per side) can be found by
# setting the expression for the left endpoint of the bracket to the
# root of f (x=0), solving for i, and rounding up. The corresponding
# lower and upper ends of the bracket are found by plugging this back
# into the expression for the ends of the bracket.
# `other_side=True` is the case that a < b < root
# Special cases like a < root < b are tested separately
rng = np.random.default_rng(seed)
xl0, d, factor = xp.asarray(rng.random(size=3) * [1e5, 10, 5])
factor = 1 + factor # factor must be greater than 1
xr0 = xl0 + d # xr0 must be greater than a in basic case
def f(x):
f.count += 1
return x # root is 0
if use_xmin:
xmin = xp.asarray(-rng.random())
n = xp.ceil(xp.log(-(xl0 - xmin) / xmin) / xp.log(factor))
l, u = xmin + (xl0 - xmin)*factor**-n, xmin + (xl0 - xmin)*factor**-(n - 1)
kwargs = dict(xl0=xl0, xr0=xr0, factor=factor, xmin=xmin)
else:
n = xp.ceil(xp.log(xr0/d) / xp.log(factor))
l, u = xr0 - d*factor**n, xr0 - d*factor**(n-1)
kwargs = dict(xl0=xl0, xr0=xr0, factor=factor)
if other_side:
kwargs['xl0'], kwargs['xr0'] = -kwargs['xr0'], -kwargs['xl0']
l, u = -u, -l
if 'xmin' in kwargs:
kwargs['xmax'] = -kwargs.pop('xmin')
if fix_one_side:
if other_side:
kwargs['xmin'] = -xr0
else:
kwargs['xmax'] = xr0
f.count = 0
res = _bracket_root(f, **kwargs)
# Compare reported number of function evaluations `nfev` against
# reported `nit`, actual function call count `f.count`, and theoretical
# number of expansions `n`.
# When both sides are free, these get multiplied by 2 because function
# is evaluated on the left and the right each iteration.
# When one side is fixed, however, we add one: on the right side, the
# function gets evaluated once at b.
# Add 1 to `n` and `res.nit` because function evaluations occur at
# iterations *0*, 1, ..., `n`. Subtract 1 from `f.count` because
# function is called separately for left and right in iteration 0.
if not fix_one_side:
assert res.nfev == 2*(res.nit+1) == 2*(f.count-1) == 2*(n + 1)
else:
assert res.nfev == (res.nit+1)+1 == (f.count-1)+1 == (n+1)+1
# Compare reported bracket to theoretical bracket and reported function
# values to function evaluated at bracket.
bracket = xp.asarray([res.xl, res.xr])
xp_assert_close(bracket, xp.asarray([l, u]))
f_bracket = xp.asarray([res.fl, res.fr])
xp_assert_close(f_bracket, f(bracket))
# Check that bracket is valid and that status and success are correct
assert res.xr > res.xl
signs = xp.sign(f_bracket)
assert signs[0] == -signs[1]
assert res.status == 0
assert res.success
def f(self, q, p):
return stats._stats_py._SimpleNormal().cdf(q) - p
@pytest.mark.parametrize('p', [0.6, np.linspace(0.05, 0.95, 10)])
@pytest.mark.parametrize('xmin', [-5, None])
@pytest.mark.parametrize('xmax', [5, None])
@pytest.mark.parametrize('factor', [1.2, 2])
def test_basic(self, p, xmin, xmax, factor, xp):
# Test basic functionality to bracket root (distribution PPF)
res = _bracket_root(self.f, xp.asarray(-0.01), 0.01, xmin=xmin, xmax=xmax,
factor=factor, args=(xp.asarray(p),))
xp_assert_equal(-xp.sign(res.fl), xp.sign(res.fr))
@pytest.mark.parametrize('shape', [tuple(), (12,), (3, 4), (3, 2, 2)])
def test_vectorization(self, shape, xp):
# Test for correct functionality, output shapes, and dtypes for various
# input shapes.
p = np.linspace(-0.05, 1.05, 12).reshape(shape) if shape else np.float64(0.6)
args = (p,)
maxiter = 10
@np.vectorize
def bracket_root_single(xl0, xr0, xmin, xmax, factor, p):
return _bracket_root(self.f, xl0, xr0, xmin=xmin, xmax=xmax,
factor=factor, args=(p,),
maxiter=maxiter)
def f(*args, **kwargs):
f.f_evals += 1
return self.f(*args, **kwargs)
f.f_evals = 0
rng = np.random.default_rng(2348234)
xl0 = -rng.random(size=shape)
xr0 = rng.random(size=shape)
xmin, xmax = 1e3*xl0, 1e3*xr0
if shape: # make some elements un
i = rng.random(size=shape) > 0.5
xmin[i], xmax[i] = -np.inf, np.inf
factor = rng.random(size=shape) + 1.5
refs = bracket_root_single(xl0, xr0, xmin, xmax, factor, p).ravel()
xl0, xr0, xmin, xmax, factor = (xp.asarray(xl0), xp.asarray(xr0),
xp.asarray(xmin), xp.asarray(xmax),
xp.asarray(factor))
args = tuple(map(xp.asarray, args))
res = _bracket_root(f, xl0, xr0, xmin=xmin, xmax=xmax, factor=factor,
args=args, maxiter=maxiter)
attrs = ['xl', 'xr', 'fl', 'fr', 'success', 'nfev', 'nit']
for attr in attrs:
ref_attr = [xp.asarray(getattr(ref, attr)) for ref in refs]
res_attr = getattr(res, attr)
xp_assert_close(xp_ravel(res_attr, xp=xp), xp.stack(ref_attr))
xp_assert_equal(res_attr.shape, shape)
xp_test = array_namespace(xp.asarray(1.))
assert res.success.dtype == xp_test.bool
if shape:
assert xp.all(res.success[1:-1])
assert res.status.dtype == xp.int32
assert res.nfev.dtype == xp.int32
assert res.nit.dtype == xp.int32
assert xp.max(res.nit) == f.f_evals - 2
xp_assert_less(res.xl, res.xr)
xp_assert_close(res.fl, xp.asarray(self.f(res.xl, *args)))
xp_assert_close(res.fr, xp.asarray(self.f(res.xr, *args)))
def test_flags(self, xp):
# Test cases that should produce different status flags; show that all
# can be produced simultaneously.
def f(xs, js):
funcs = [lambda x: x - 1.5,
lambda x: x - 1000,
lambda x: x - 1000,
lambda x: x * xp.nan,
lambda x: x]
return [funcs[int(j)](x) for x, j in zip(xs, js)]
args = (xp.arange(5, dtype=xp.int64),)
res = _bracket_root(f,
xl0=xp.asarray([-1., -1., -1., -1., 4.]),
xr0=xp.asarray([1, 1, 1, 1, -4]),
xmin=xp.asarray([-xp.inf, -1, -xp.inf, -xp.inf, 6]),
xmax=xp.asarray([xp.inf, 1, xp.inf, xp.inf, 2]),
args=args, maxiter=3)
ref_flags = xp.asarray([eim._ECONVERGED,
_ELIMITS,
eim._ECONVERR,
eim._EVALUEERR,
eim._EINPUTERR],
dtype=xp.int32)
xp_assert_equal(res.status, ref_flags)
@pytest.mark.parametrize("root", (0.622, [0.622, 0.623]))
@pytest.mark.parametrize('xmin', [-5, None])
@pytest.mark.parametrize('xmax', [5, None])
@pytest.mark.parametrize("dtype", ("float16", "float32", "float64"))
def test_dtype(self, root, xmin, xmax, dtype, xp):
# Test that dtypes are preserved
dtype = getattr(xp, dtype)
xp_test = array_namespace(xp.asarray(1.))
xmin = xmin if xmin is None else xp.asarray(xmin, dtype=dtype)
xmax = xmax if xmax is None else xp.asarray(xmax, dtype=dtype)
root = xp.asarray(root, dtype=dtype)
def f(x, root):
return xp_test.astype((x - root) ** 3, dtype)
bracket = xp.asarray([-0.01, 0.01], dtype=dtype)
res = _bracket_root(f, *bracket, xmin=xmin, xmax=xmax, args=(root,))
assert xp.all(res.success)
assert res.xl.dtype == res.xr.dtype == dtype
assert res.fl.dtype == res.fr.dtype == dtype
def test_input_validation(self, xp):
# Test input validation for appropriate error messages
message = '`func` must be callable.'
with pytest.raises(ValueError, match=message):
_bracket_root(None, -4, 4)
message = '...must be numeric and real.'
with pytest.raises(ValueError, match=message):
_bracket_root(lambda x: x, -4+1j, 4)
with pytest.raises(ValueError, match=message):
_bracket_root(lambda x: x, -4, 'hello')
with pytest.raises(ValueError, match=message):
_bracket_root(lambda x: x, -4, 4, xmin=np)
with pytest.raises(ValueError, match=message):
_bracket_root(lambda x: x, -4, 4, xmax=object())
with pytest.raises(ValueError, match=message):
_bracket_root(lambda x: x, -4, 4, factor=sum)
message = "All elements of `factor` must be greater than 1."
with pytest.raises(ValueError, match=message):
_bracket_root(lambda x: x, -4, 4, factor=0.5)
message = "broadcast"
# raised by `xp.broadcast, but the traceback is readable IMO
with pytest.raises(Exception, match=message):
_bracket_root(lambda x: x, xp.asarray([-2, -3]), xp.asarray([3, 4, 5]))
# Consider making this give a more readable error message
# with pytest.raises(ValueError, match=message):
# _bracket_root(lambda x: [x[0], x[1], x[1]], [-3, -3], [5, 5])
message = '`maxiter` must be a non-negative integer.'
with pytest.raises(ValueError, match=message):
_bracket_root(lambda x: x, -4, 4, maxiter=1.5)
with pytest.raises(ValueError, match=message):
_bracket_root(lambda x: x, -4, 4, maxiter=-1)
with pytest.raises(ValueError, match=message):
_bracket_root(lambda x: x, -4, 4, maxiter="shrubbery")
def test_special_cases(self, xp):
# Test edge cases and other special cases
xp_test = array_namespace(xp.asarray(1.))
# Test that integers are not passed to `f`
# (otherwise this would overflow)
def f(x):
assert xp_test.isdtype(x.dtype, "real floating")
return x ** 99 - 1
res = _bracket_root(f, xp.asarray(-7.), xp.asarray(5.))
assert res.success
# Test maxiter = 0. Should do nothing to bracket.
def f(x):
return x - 10
bracket = (xp.asarray(-3.), xp.asarray(5.))
res = _bracket_root(f, *bracket, maxiter=0)
assert res.xl, res.xr == bracket
assert res.nit == 0
assert res.nfev == 2
assert res.status == -2
# Test scalar `args` (not in tuple)
def f(x, c):
return c*x - 1
res = _bracket_root(f, xp.asarray(-1.), xp.asarray(1.),
args=xp.asarray(3.))
assert res.success
xp_assert_close(res.fl, f(res.xl, 3))
# Test other edge cases
def f(x):
f.count += 1
return x
# 1. root lies within guess of bracket
f.count = 0
_bracket_root(f, xp.asarray(-10), xp.asarray(20))
assert f.count == 2
# 2. bracket endpoint hits root exactly
f.count = 0
res = _bracket_root(f, xp.asarray(5.), xp.asarray(10.),
factor=2)
assert res.nfev == 4
xp_assert_close(res.xl, xp.asarray(0.), atol=1e-15)
xp_assert_close(res.xr, xp.asarray(5.), atol=1e-15)
# 3. bracket limit hits root exactly
with np.errstate(over='ignore'):
res = _bracket_root(f, xp.asarray(5.), xp.asarray(10.),
xmin=0)
xp_assert_close(res.xl, xp.asarray(0.), atol=1e-15)
with np.errstate(over='ignore'):
res = _bracket_root(f, xp.asarray(-10.), xp.asarray(-5.),
xmax=0)
xp_assert_close(res.xr, xp.asarray(0.), atol=1e-15)
# 4. bracket not within min, max
with np.errstate(over='ignore'):
res = _bracket_root(f, xp.asarray(5.), xp.asarray(10.),
xmin=1)
assert not res.success
@pytest.mark.skip_xp_backends('array_api_strict', reason=array_api_strict_skip_reason)
@pytest.mark.skip_xp_backends('jax.numpy', reason=jax_skip_reason)
@array_api_compatible
@pytest.mark.usefixtures("skip_xp_backends")
class TestBracketMinimum:
def init_f(self):
def f(x, a, b):
f.count += 1
return (x - a)**2 + b
f.count = 0
return f
def assert_valid_bracket(self, result, xp):
assert xp.all(
(result.xl < result.xm) & (result.xm < result.xr)
)
assert xp.all(
(result.fl >= result.fm) & (result.fr > result.fm)
| (result.fl > result.fm) & (result.fr > result.fm)
)
def get_kwargs(
self, *, xl0=None, xr0=None, factor=None, xmin=None, xmax=None, args=None
):
names = ("xl0", "xr0", "xmin", "xmax", "factor", "args")
return {
name: val for name, val in zip(names, (xl0, xr0, xmin, xmax, factor, args))
if val is not None
}
@pytest.mark.parametrize(
"seed",
(
307448016549685229886351382450158984917,
11650702770735516532954347931959000479,
113767103358505514764278732330028568336,
)
)
@pytest.mark.parametrize("use_xmin", (False, True))
@pytest.mark.parametrize("other_side", (False, True))
def test_nfev_expected(self, seed, use_xmin, other_side, xp):
rng = np.random.default_rng(seed)
args = (xp.asarray(0.), xp.asarray(0.)) # f(x) = x^2 with minimum at 0
# xl0, xm0, xr0 are chosen such that the initial bracket is to
# the right of the minimum, and the bracket will expand
# downhill towards zero.
xl0, d1, d2, factor = xp.asarray(rng.random(size=4) * [1e5, 10, 10, 5])
xm0 = xl0 + d1
xr0 = xm0 + d2
# Factor should be greater than one.
factor += 1
if use_xmin:
xmin = xp.asarray(-rng.random() * 5, dtype=xp.float64)
n = int(xp.ceil(xp.log(-(xl0 - xmin) / xmin) / xp.log(factor)))
lower = xmin + (xl0 - xmin)*factor**-n
middle = xmin + (xl0 - xmin)*factor**-(n-1)
upper = xmin + (xl0 - xmin)*factor**-(n-2) if n > 1 else xm0
# It may be the case the lower is below the minimum, but we still
# don't have a valid bracket.
if middle**2 > lower**2:
n += 1
lower, middle, upper = (
xmin + (xl0 - xmin)*factor**-n, lower, middle
)
else:
xmin = None
n = int(xp.ceil(xp.log(xl0 / d1) / xp.log(factor)))
lower = xl0 - d1*factor**n
middle = xl0 - d1*factor**(n-1) if n > 1 else xl0
upper = xl0 - d1*factor**(n-2) if n > 1 else xm0
# It may be the case the lower is below the minimum, but we still
# don't have a valid bracket.
if middle**2 > lower**2:
n += 1
lower, middle, upper = (
xl0 - d1*factor**n, lower, middle
)
f = self.init_f()
xmax = None
if other_side:
xl0, xm0, xr0 = -xr0, -xm0, -xl0
xmin, xmax = None, -xmin if xmin is not None else None
lower, middle, upper = -upper, -middle, -lower
kwargs = self.get_kwargs(
xl0=xl0, xr0=xr0, xmin=xmin, xmax=xmax, factor=factor, args=args
)
result = _bracket_minimum(f, xp.asarray(xm0), **kwargs)
# Check that `nfev` and `nit` have the correct relationship
assert result.nfev == result.nit + 3
# Check that `nfev` reports the correct number of function evaluations.
assert result.nfev == f.count
# Check that the number of iterations matches the theoretical value.
assert result.nit == n
# Compare reported bracket to theoretical bracket and reported function
# values to function evaluated at bracket.
xp_assert_close(result.xl, lower)
xp_assert_close(result.xm, middle)
xp_assert_close(result.xr, upper)
xp_assert_close(result.fl, f(lower, *args))
xp_assert_close(result.fm, f(middle, *args))
xp_assert_close(result.fr, f(upper, *args))
self.assert_valid_bracket(result, xp)
assert result.status == 0
assert result.success
def test_flags(self, xp):
# Test cases that should produce different status flags; show that all
# can be produced simultaneously
def f(xs, js):
funcs = [lambda x: (x - 1.5)**2,
lambda x: x,
lambda x: x,
lambda x: xp.nan,
lambda x: x**2]
return [funcs[j](x) for x, j in zip(xs, js)]
args = (xp.arange(5, dtype=xp.int64),)
xl0 = xp.asarray([-1.0, -1.0, -1.0, -1.0, 6.0])
xm0 = xp.asarray([0.0, 0.0, 0.0, 0.0, 4.0])
xr0 = xp.asarray([1.0, 1.0, 1.0, 1.0, 2.0])
xmin = xp.asarray([-xp.inf, -1.0, -xp.inf, -xp.inf, 8.0])
result = _bracket_minimum(f, xm0, xl0=xl0, xr0=xr0, xmin=xmin,
args=args, maxiter=3)
reference_flags = xp.asarray([eim._ECONVERGED, _ELIMITS,
eim._ECONVERR, eim._EVALUEERR,
eim._EINPUTERR], dtype=xp.int32)
xp_assert_equal(result.status, reference_flags)
@pytest.mark.parametrize("minimum", (0.622, [0.622, 0.623]))
@pytest.mark.parametrize("dtype", ("float16", "float32", "float64"))
@pytest.mark.parametrize("xmin", [-5, None])
@pytest.mark.parametrize("xmax", [5, None])
def test_dtypes(self, minimum, xmin, xmax, dtype, xp):
dtype = getattr(xp, dtype)
xp_test = array_namespace(xp.asarray(1.))
xmin = xmin if xmin is None else xp.asarray(xmin, dtype=dtype)
xmax = xmax if xmax is None else xp.asarray(xmax, dtype=dtype)
minimum = xp.asarray(minimum, dtype=dtype)
def f(x, minimum):
return xp_test.astype((x - minimum)**2, dtype)
xl0, xm0, xr0 = [-0.01, 0.0, 0.01]
result = _bracket_minimum(
f, xp.asarray(xm0, dtype=dtype), xl0=xp.asarray(xl0, dtype=dtype),
xr0=xp.asarray(xr0, dtype=dtype), xmin=xmin, xmax=xmax, args=(minimum, )
)
assert xp.all(result.success)
assert result.xl.dtype == result.xm.dtype == result.xr.dtype == dtype
assert result.fl.dtype == result.fm.dtype == result.fr.dtype == dtype
@pytest.mark.skip_xp_backends(np_only=True, reason="str/object arrays")
def test_input_validation(self, xp):
# Test input validation for appropriate error messages
message = '`func` must be callable.'
with pytest.raises(ValueError, match=message):
_bracket_minimum(None, -4, xl0=4)
message = '...must be numeric and real.'
with pytest.raises(ValueError, match=message):
_bracket_minimum(lambda x: x**2, xp.asarray(4+1j))
with pytest.raises(ValueError, match=message):
_bracket_minimum(lambda x: x**2, xp.asarray(-4), xl0='hello')
with pytest.raises(ValueError, match=message):
_bracket_minimum(lambda x: x**2, xp.asarray(-4),
xr0='farcical aquatic ceremony')
with pytest.raises(ValueError, match=message):
_bracket_minimum(lambda x: x**2, xp.asarray(-4), xmin=np)
with pytest.raises(ValueError, match=message):
_bracket_minimum(lambda x: x**2, xp.asarray(-4), xmax=object())
with pytest.raises(ValueError, match=message):
_bracket_minimum(lambda x: x**2, xp.asarray(-4), factor=sum)
message = "All elements of `factor` must be greater than 1."
with pytest.raises(ValueError, match=message):
_bracket_minimum(lambda x: x, xp.asarray(-4), factor=0.5)
message = "shape mismatch: objects cannot be broadcast"
# raised by `xp.broadcast, but the traceback is readable IMO
with pytest.raises(ValueError, match=message):
_bracket_minimum(lambda x: x**2, xp.asarray([-2, -3]), xl0=[-3, -4, -5])
message = '`maxiter` must be a non-negative integer.'
with pytest.raises(ValueError, match=message):
_bracket_minimum(lambda x: x**2, xp.asarray(-4), xr0=4, maxiter=1.5)
with pytest.raises(ValueError, match=message):
_bracket_minimum(lambda x: x**2, xp.asarray(-4), xr0=4, maxiter=-1)
with pytest.raises(ValueError, match=message):
_bracket_minimum(lambda x: x**2, xp.asarray(-4), xr0=4, maxiter="ekki")
@pytest.mark.parametrize("xl0", [0.0, None])
@pytest.mark.parametrize("xm0", (0.05, 0.1, 0.15))
@pytest.mark.parametrize("xr0", (0.2, 0.4, 0.6, None))
# Minimum is ``a`` for each tuple ``(a, b)`` below. Tests cases where minimum
# is within, or at varying distances to the left or right of the initial
# bracket.
@pytest.mark.parametrize(
"args",
(
(1.2, 0), (-0.5, 0), (0.1, 0), (0.2, 0), (3.6, 0), (21.4, 0),
(121.6, 0), (5764.1, 0), (-6.4, 0), (-12.9, 0), (-146.2, 0)
)
)
def test_scalar_no_limits(self, xl0, xm0, xr0, args, xp):
f = self.init_f()
kwargs = self.get_kwargs(xl0=xl0, xr0=xr0, args=tuple(map(xp.asarray, args)))
result = _bracket_minimum(f, xp.asarray(xm0, dtype=xp.float64), **kwargs)
self.assert_valid_bracket(result, xp)
assert result.status == 0
assert result.success
assert result.nfev == f.count
@pytest.mark.parametrize(
# xmin is set at 0.0 in all cases.
"xl0,xm0,xr0,xmin",
(
# Initial bracket at varying distances from the xmin.
(0.5, 0.75, 1.0, 0.0),
(1.0, 2.5, 4.0, 0.0),
(2.0, 4.0, 6.0, 0.0),
(12.0, 16.0, 20.0, 0.0),
# Test default initial left endpoint selection. It should not
# be below xmin.
(None, 0.75, 1.0, 0.0),
(None, 2.5, 4.0, 0.0),
(None, 4.0, 6.0, 0.0),
(None, 16.0, 20.0, 0.0),
)
)
@pytest.mark.parametrize(
"args", (
(0.0, 0.0), # Minimum is directly at xmin.
(1e-300, 0.0), # Minimum is extremely close to xmin.
(1e-20, 0.0), # Minimum is very close to xmin.
# Minimum at varying distances from xmin.
(0.1, 0.0),
(0.2, 0.0),
(0.4, 0.0)
)
)
def test_scalar_with_limit_left(self, xl0, xm0, xr0, xmin, args, xp):
f = self.init_f()
kwargs = self.get_kwargs(xl0=xl0, xr0=xr0, xmin=xmin,
args=tuple(map(xp.asarray, args)))
result = _bracket_minimum(f, xp.asarray(xm0), **kwargs)
self.assert_valid_bracket(result, xp)
assert result.status == 0
assert result.success
assert result.nfev == f.count
@pytest.mark.parametrize(
#xmax is set to 1.0 in all cases.
"xl0,xm0,xr0,xmax",
(
# Bracket at varying distances from xmax.
(0.2, 0.3, 0.4, 1.0),
(0.05, 0.075, 0.1, 1.0),
(-0.2, -0.1, 0.0, 1.0),
(-21.2, -17.7, -14.2, 1.0),
# Test default right endpoint selection. It should not exceed xmax.
(0.2, 0.3, None, 1.0),
(0.05, 0.075, None, 1.0),
(-0.2, -0.1, None, 1.0),
(-21.2, -17.7, None, 1.0),
)
)
@pytest.mark.parametrize(
"args", (
(0.9999999999999999, 0.0), # Minimum very close to xmax.
# Minimum at varying distances from xmax.
(0.9, 0.0),
(0.7, 0.0),
(0.5, 0.0)
)
)
def test_scalar_with_limit_right(self, xl0, xm0, xr0, xmax, args, xp):
f = self.init_f()
args = tuple(xp.asarray(arg, dtype=xp.float64) for arg in args)
kwargs = self.get_kwargs(xl0=xl0, xr0=xr0, xmax=xmax, args=args)
result = _bracket_minimum(f, xp.asarray(xm0, dtype=xp.float64), **kwargs)
self.assert_valid_bracket(result, xp)
assert result.status == 0
assert result.success
assert result.nfev == f.count
@pytest.mark.parametrize(
"xl0,xm0,xr0,xmin,xmax,args",
(
( # Case 1:
# Initial bracket.
0.2,
0.3,
0.4,
# Function slopes down to the right from the bracket to a minimum
# at 1.0. xmax is also at 1.0
None,
1.0,
(1.0, 0.0)
),
( # Case 2:
# Initial bracket.
1.4,
1.95,
2.5,
# Function slopes down to the left from the bracket to a minimum at
# 0.3 with xmin set to 0.3.
0.3,
None,
(0.3, 0.0)
),
(
# Case 3:
# Initial bracket.
2.6,
3.25,
3.9,
# Function slopes down and to the right to a minimum at 99.4 with xmax
# at 99.4. Tests case where minimum is at xmax relatively further from
# the bracket.
None,
99.4,
(99.4, 0)
),
(
# Case 4:
# Initial bracket.
4,
4.5,
5,
# Function slopes down and to the left away from the bracket with a
# minimum at -26.3 with xmin set to -26.3. Tests case where minimum is
# at xmin relatively far from the bracket.
-26.3,
None,
(-26.3, 0)
),
(
# Case 5:
# Similar to Case 1 above, but tests default values of xl0 and xr0.
None,
0.3,
None,
None,
1.0,
(1.0, 0.0)
),
( # Case 6:
# Similar to Case 2 above, but tests default values of xl0 and xr0.
None,
1.95,
None,
0.3,
None,
(0.3, 0.0)
),
(
# Case 7:
# Similar to Case 3 above, but tests default values of xl0 and xr0.
None,
3.25,
None,
None,
99.4,
(99.4, 0)
),
(
# Case 8:
# Similar to Case 4 above, but tests default values of xl0 and xr0.
None,
4.5,
None,
-26.3,
None,
(-26.3, 0)
),
)
)
def test_minimum_at_boundary_point(self, xl0, xm0, xr0, xmin, xmax, args, xp):
f = self.init_f()
kwargs = self.get_kwargs(xr0=xr0, xmin=xmin, xmax=xmax,
args=tuple(map(xp.asarray, args)))
result = _bracket_minimum(f, xp.asarray(xm0), **kwargs)
assert result.status == -1
assert args[0] in (result.xl, result.xr)
assert result.nfev == f.count
@pytest.mark.parametrize('shape', [tuple(), (12, ), (3, 4), (3, 2, 2)])
def test_vectorization(self, shape, xp):
# Test for correct functionality, output shapes, and dtypes for
# various input shapes.
a = np.linspace(-0.05, 1.05, 12).reshape(shape) if shape else 0.6
args = (a, 0.)
maxiter = 10
@np.vectorize
def bracket_minimum_single(xm0, xl0, xr0, xmin, xmax, factor, a):
return _bracket_minimum(self.init_f(), xm0, xl0=xl0, xr0=xr0, xmin=xmin,
xmax=xmax, factor=factor, maxiter=maxiter,
args=(a, 0.0))
f = self.init_f()
rng = np.random.default_rng(2348234)
xl0 = -rng.random(size=shape)
xr0 = rng.random(size=shape)
xm0 = xl0 + rng.random(size=shape) * (xr0 - xl0)
xmin, xmax = 1e3*xl0, 1e3*xr0
if shape: # make some elements un
i = rng.random(size=shape) > 0.5
xmin[i], xmax[i] = -np.inf, np.inf
factor = rng.random(size=shape) + 1.5
refs = bracket_minimum_single(xm0, xl0, xr0, xmin, xmax, factor, a).ravel()
args = tuple(xp.asarray(arg, dtype=xp.float64) for arg in args)
res = _bracket_minimum(f, xp.asarray(xm0), xl0=xl0, xr0=xr0, xmin=xmin,
xmax=xmax, factor=factor, args=args, maxiter=maxiter)
attrs = ['xl', 'xm', 'xr', 'fl', 'fm', 'fr', 'success', 'nfev', 'nit']
for attr in attrs:
ref_attr = [xp.asarray(getattr(ref, attr)) for ref in refs]
res_attr = getattr(res, attr)
xp_assert_close(xp_ravel(res_attr, xp=xp), xp.stack(ref_attr))
xp_assert_equal(res_attr.shape, shape)
xp_test = array_namespace(xp.asarray(1.))
assert res.success.dtype == xp_test.bool
if shape:
assert xp.all(res.success[1:-1])
assert res.status.dtype == xp.int32
assert res.nfev.dtype == xp.int32
assert res.nit.dtype == xp.int32
assert xp.max(res.nit) == f.count - 3
self.assert_valid_bracket(res, xp)
xp_assert_close(res.fl, f(res.xl, *args))
xp_assert_close(res.fm, f(res.xm, *args))
xp_assert_close(res.fr, f(res.xr, *args))
def test_special_cases(self, xp):
# Test edge cases and other special cases.
xp_test = array_namespace(xp.asarray(1.))
# Test that integers are not passed to `f`
# (otherwise this would overflow)
def f(x):
assert xp_test.isdtype(x.dtype, "numeric")
return x ** 98 - 1
result = _bracket_minimum(f, xp.asarray(-7., dtype=xp.float64), xr0=5)
assert result.success
# Test maxiter = 0. Should do nothing to bracket.
def f(x):
return x**2 - 10
xl0, xm0, xr0 = xp.asarray(-3.), xp.asarray(-1.), xp.asarray(2.)
result = _bracket_minimum(f, xm0, xl0=xl0, xr0=xr0, maxiter=0)
xp_assert_equal(result.xl, xl0)
xp_assert_equal(result.xm, xm0)
xp_assert_equal(result.xr, xr0)
# Test scalar `args` (not in tuple)
def f(x, c):
return c*x**2 - 1
result = _bracket_minimum(f, xp.asarray(-1.), args=xp.asarray(3.))
assert result.success
xp_assert_close(result.fl, f(result.xl, 3))
# Initial bracket is valid.
f = self.init_f()
xl0, xm0, xr0 = xp.asarray(-1.0), xp.asarray(-0.2), xp.asarray(1.0)
args = (xp.asarray(0.), xp.asarray(0.))
result = _bracket_minimum(f, xm0, xl0=xl0, xr0=xr0, args=args)
assert f.count == 3
xp_assert_equal(result.xl, xl0)
xp_assert_equal(result.xm , xm0)
xp_assert_equal(result.xr, xr0)
xp_assert_equal(result.fl, f(xl0, *args))
xp_assert_equal(result.fm, f(xm0, *args))
xp_assert_equal(result.fr, f(xr0, *args))
def test_gh_20562_left(self, xp):
# Regression test for https://github.com/scipy/scipy/issues/20562
# minimum of f in [xmin, xmax] is at xmin.
xmin, xmax = xp.asarray(0.21933608), xp.asarray(1.39713606)
def f(x):
log_a, log_b = xp.log(xmin), xp.log(xmax)
return -((log_b - log_a)*x)**-1
result = _bracket_minimum(f, xp.asarray(0.5535723499480897), xmin=xmin,
xmax=xmax)
assert xmin == result.xl
def test_gh_20562_right(self, xp):
# Regression test for https://github.com/scipy/scipy/issues/20562
# minimum of f in [xmin, xmax] is at xmax.
xmin, xmax = xp.asarray(-1.39713606), xp.asarray(-0.21933608)
def f(x):
log_a, log_b = xp.log(-xmax), xp.log(-xmin)
return ((log_b - log_a)*x)**-1
result = _bracket_minimum(f, xp.asarray(-0.5535723499480897),
xmin=xmin, xmax=xmax)
assert xmax == result.xr
|