File size: 36,760 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
import pytest

from functools import lru_cache

from numpy.testing import (assert_warns, assert_,
                           assert_allclose,
                           assert_equal,
                           assert_array_equal,
                           suppress_warnings)
import numpy as np
from numpy import finfo, power, nan, isclose, sqrt, exp, sin, cos

from scipy import optimize
from scipy.optimize import (_zeros_py as zeros, newton, root_scalar,
                            OptimizeResult)

from scipy._lib._util import getfullargspec_no_self as _getfullargspec

# Import testing parameters
from scipy.optimize._tstutils import get_tests, functions as tstutils_functions

TOL = 4*np.finfo(float).eps  # tolerance

_FLOAT_EPS = finfo(float).eps

bracket_methods = [zeros.bisect, zeros.ridder, zeros.brentq, zeros.brenth,
                   zeros.toms748]
gradient_methods = [zeros.newton]
all_methods = bracket_methods + gradient_methods

# A few test functions used frequently:
# # A simple quadratic, (x-1)^2 - 1
def f1(x):
    return x ** 2 - 2 * x - 1


def f1_1(x):
    return 2 * x - 2


def f1_2(x):
    return 2.0 + 0 * x


def f1_and_p_and_pp(x):
    return f1(x), f1_1(x), f1_2(x)


# Simple transcendental function
def f2(x):
    return exp(x) - cos(x)


def f2_1(x):
    return exp(x) + sin(x)


def f2_2(x):
    return exp(x) + cos(x)


# lru cached function
@lru_cache
def f_lrucached(x):
    return x


class TestScalarRootFinders:
    # Basic tests for all scalar root finders

    xtol = 4 * np.finfo(float).eps
    rtol = 4 * np.finfo(float).eps

    def _run_one_test(self, tc, method, sig_args_keys=None,
                      sig_kwargs_keys=None, **kwargs):
        method_args = []
        for k in sig_args_keys or []:
            if k not in tc:
                # If a,b not present use x0, x1. Similarly for f and func
                k = {'a': 'x0', 'b': 'x1', 'func': 'f'}.get(k, k)
            method_args.append(tc[k])

        method_kwargs = dict(**kwargs)
        method_kwargs.update({'full_output': True, 'disp': False})
        for k in sig_kwargs_keys or []:
            method_kwargs[k] = tc[k]

        root = tc.get('root')
        func_args = tc.get('args', ())

        try:
            r, rr = method(*method_args, args=func_args, **method_kwargs)
            return root, rr, tc
        except Exception:
            return root, zeros.RootResults(nan, -1, -1, zeros._EVALUEERR, method), tc

    def run_tests(self, tests, method, name, known_fail=None, **kwargs):
        r"""Run test-cases using the specified method and the supplied signature.

        Extract the arguments for the method call from the test case
        dictionary using the supplied keys for the method's signature."""
        # The methods have one of two base signatures:
        # (f, a, b, **kwargs)  # newton
        # (func, x0, **kwargs)  # bisect/brentq/...

        # FullArgSpec with args, varargs, varkw, defaults, ...
        sig = _getfullargspec(method)
        assert_(not sig.kwonlyargs)
        nDefaults = len(sig.defaults)
        nRequired = len(sig.args) - nDefaults
        sig_args_keys = sig.args[:nRequired]
        sig_kwargs_keys = []
        if name in ['secant', 'newton', 'halley']:
            if name in ['newton', 'halley']:
                sig_kwargs_keys.append('fprime')
                if name in ['halley']:
                    sig_kwargs_keys.append('fprime2')
            kwargs['tol'] = self.xtol
        else:
            kwargs['xtol'] = self.xtol
            kwargs['rtol'] = self.rtol

        results = [list(self._run_one_test(
            tc, method, sig_args_keys=sig_args_keys,
            sig_kwargs_keys=sig_kwargs_keys, **kwargs)) for tc in tests]
        # results= [[true root, full output, tc], ...]

        known_fail = known_fail or []
        notcvgd = [elt for elt in results if not elt[1].converged]
        notcvgd = [elt for elt in notcvgd if elt[-1]['ID'] not in known_fail]
        notcvged_IDS = [elt[-1]['ID'] for elt in notcvgd]
        assert_equal([len(notcvged_IDS), notcvged_IDS], [0, []])

        # The usable xtol and rtol depend on the test
        tols = {'xtol': self.xtol, 'rtol': self.rtol}
        tols.update(**kwargs)
        rtol = tols['rtol']
        atol = tols.get('tol', tols['xtol'])

        cvgd = [elt for elt in results if elt[1].converged]
        approx = [elt[1].root for elt in cvgd]
        correct = [elt[0] for elt in cvgd]
        # See if the root matches the reference value
        notclose = [[a] + elt for a, c, elt in zip(approx, correct, cvgd) if
                    not isclose(a, c, rtol=rtol, atol=atol)
                    and elt[-1]['ID'] not in known_fail]
        # If not, evaluate the function and see if is 0 at the purported root
        fvs = [tc['f'](aroot, *tc.get('args', tuple()))
               for aroot, c, fullout, tc in notclose]
        notclose = [[fv] + elt for fv, elt in zip(fvs, notclose) if fv != 0]
        assert_equal([notclose, len(notclose)], [[], 0])
        method_from_result = [result[1].method for result in results]
        expected_method = [name for _ in results]
        assert_equal(method_from_result, expected_method)

    def run_collection(self, collection, method, name, smoothness=None,
                       known_fail=None, **kwargs):
        r"""Run a collection of tests using the specified method.

        The name is used to determine some optional arguments."""
        tests = get_tests(collection, smoothness=smoothness)
        self.run_tests(tests, method, name, known_fail=known_fail, **kwargs)


class TestBracketMethods(TestScalarRootFinders):
    @pytest.mark.parametrize('method', bracket_methods)
    @pytest.mark.parametrize('function', tstutils_functions)
    def test_basic_root_scalar(self, method, function):
        # Tests bracketing root finders called via `root_scalar` on a small
        # set of simple problems, each of which has a root at `x=1`. Checks for
        # converged status and that the root was found.
        a, b = .5, sqrt(3)

        r = root_scalar(function, method=method.__name__, bracket=[a, b], x0=a,
                        xtol=self.xtol, rtol=self.rtol)
        assert r.converged
        assert_allclose(r.root, 1.0, atol=self.xtol, rtol=self.rtol)
        assert r.method == method.__name__

    @pytest.mark.parametrize('method', bracket_methods)
    @pytest.mark.parametrize('function', tstutils_functions)
    def test_basic_individual(self, method, function):
        # Tests individual bracketing root finders on a small set of simple
        # problems, each of which has a root at `x=1`. Checks for converged
        # status and that the root was found.
        a, b = .5, sqrt(3)
        root, r = method(function, a, b, xtol=self.xtol, rtol=self.rtol,
                         full_output=True)

        assert r.converged
        assert_allclose(root, 1.0, atol=self.xtol, rtol=self.rtol)

    @pytest.mark.parametrize('method', bracket_methods)
    @pytest.mark.parametrize('function', tstutils_functions)
    def test_bracket_is_array(self, method, function):
        # Test bracketing root finders called via `root_scalar` on a small set
        # of simple problems, each of which has a root at `x=1`. Check that
        # passing `bracket` as a `ndarray` is accepted and leads to finding the
        # correct root.
        a, b = .5, sqrt(3)
        r = root_scalar(function, method=method.__name__,
                        bracket=np.array([a, b]), x0=a, xtol=self.xtol,
                        rtol=self.rtol)
        assert r.converged
        assert_allclose(r.root, 1.0, atol=self.xtol, rtol=self.rtol)
        assert r.method == method.__name__

    @pytest.mark.parametrize('method', bracket_methods)
    def test_aps_collection(self, method):
        self.run_collection('aps', method, method.__name__, smoothness=1)

    @pytest.mark.parametrize('method', [zeros.bisect, zeros.ridder,
                                        zeros.toms748])
    def test_chandrupatla_collection(self, method):
        known_fail = {'fun7.4'} if method == zeros.ridder else {}
        self.run_collection('chandrupatla', method, method.__name__,
                            known_fail=known_fail)

    @pytest.mark.parametrize('method', bracket_methods)
    def test_lru_cached_individual(self, method):
        # check that https://github.com/scipy/scipy/issues/10846 is fixed
        # (`root_scalar` failed when passed a function that was `@lru_cache`d)
        a, b = -1, 1
        root, r = method(f_lrucached, a, b, full_output=True)
        assert r.converged
        assert_allclose(root, 0)


class TestNewton(TestScalarRootFinders):
    def test_newton_collections(self):
        known_fail = ['aps.13.00']
        known_fail += ['aps.12.05', 'aps.12.17']  # fails under Windows Py27
        for collection in ['aps', 'complex']:
            self.run_collection(collection, zeros.newton, 'newton',
                                smoothness=2, known_fail=known_fail)

    def test_halley_collections(self):
        known_fail = ['aps.12.06', 'aps.12.07', 'aps.12.08', 'aps.12.09',
                      'aps.12.10', 'aps.12.11', 'aps.12.12', 'aps.12.13',
                      'aps.12.14', 'aps.12.15', 'aps.12.16', 'aps.12.17',
                      'aps.12.18', 'aps.13.00']
        for collection in ['aps', 'complex']:
            self.run_collection(collection, zeros.newton, 'halley',
                                smoothness=2, known_fail=known_fail)

    def test_newton(self):
        for f, f_1, f_2 in [(f1, f1_1, f1_2), (f2, f2_1, f2_2)]:
            x = zeros.newton(f, 3, tol=1e-6)
            assert_allclose(f(x), 0, atol=1e-6)
            x = zeros.newton(f, 3, x1=5, tol=1e-6)  # secant, x0 and x1
            assert_allclose(f(x), 0, atol=1e-6)
            x = zeros.newton(f, 3, fprime=f_1, tol=1e-6)   # newton
            assert_allclose(f(x), 0, atol=1e-6)
            x = zeros.newton(f, 3, fprime=f_1, fprime2=f_2, tol=1e-6)  # halley
            assert_allclose(f(x), 0, atol=1e-6)

    def test_newton_by_name(self):
        r"""Invoke newton through root_scalar()"""
        for f, f_1, f_2 in [(f1, f1_1, f1_2), (f2, f2_1, f2_2)]:
            r = root_scalar(f, method='newton', x0=3, fprime=f_1, xtol=1e-6)
            assert_allclose(f(r.root), 0, atol=1e-6)
        for f, f_1, f_2 in [(f1, f1_1, f1_2), (f2, f2_1, f2_2)]:
            r = root_scalar(f, method='newton', x0=3, xtol=1e-6)  # without f'
            assert_allclose(f(r.root), 0, atol=1e-6)

    def test_secant_by_name(self):
        r"""Invoke secant through root_scalar()"""
        for f, f_1, f_2 in [(f1, f1_1, f1_2), (f2, f2_1, f2_2)]:
            r = root_scalar(f, method='secant', x0=3, x1=2, xtol=1e-6)
            assert_allclose(f(r.root), 0, atol=1e-6)
            r = root_scalar(f, method='secant', x0=3, x1=5, xtol=1e-6)
            assert_allclose(f(r.root), 0, atol=1e-6)
        for f, f_1, f_2 in [(f1, f1_1, f1_2), (f2, f2_1, f2_2)]:
            r = root_scalar(f, method='secant', x0=3, xtol=1e-6)  # without x1
            assert_allclose(f(r.root), 0, atol=1e-6)

    def test_halley_by_name(self):
        r"""Invoke halley through root_scalar()"""
        for f, f_1, f_2 in [(f1, f1_1, f1_2), (f2, f2_1, f2_2)]:
            r = root_scalar(f, method='halley', x0=3,
                            fprime=f_1, fprime2=f_2, xtol=1e-6)
            assert_allclose(f(r.root), 0, atol=1e-6)

    def test_root_scalar_fail(self):
        message = 'fprime2 must be specified for halley'
        with pytest.raises(ValueError, match=message):
            root_scalar(f1, method='halley', fprime=f1_1, x0=3, xtol=1e-6)  # no fprime2
        message = 'fprime must be specified for halley'
        with pytest.raises(ValueError, match=message):
            root_scalar(f1, method='halley', fprime2=f1_2, x0=3, xtol=1e-6)  # no fprime

    def test_array_newton(self):
        """test newton with array"""

        def f1(x, *a):
            b = a[0] + x * a[3]
            return a[1] - a[2] * (np.exp(b / a[5]) - 1.0) - b / a[4] - x

        def f1_1(x, *a):
            b = a[3] / a[5]
            return -a[2] * np.exp(a[0] / a[5] + x * b) * b - a[3] / a[4] - 1

        def f1_2(x, *a):
            b = a[3] / a[5]
            return -a[2] * np.exp(a[0] / a[5] + x * b) * b**2

        a0 = np.array([
            5.32725221, 5.48673747, 5.49539973,
            5.36387202, 4.80237316, 1.43764452,
            5.23063958, 5.46094772, 5.50512718,
            5.42046290
        ])
        a1 = (np.sin(range(10)) + 1.0) * 7.0
        args = (a0, a1, 1e-09, 0.004, 10, 0.27456)
        x0 = [7.0] * 10
        x = zeros.newton(f1, x0, f1_1, args)
        x_expected = (
            6.17264965, 11.7702805, 12.2219954,
            7.11017681, 1.18151293, 0.143707955,
            4.31928228, 10.5419107, 12.7552490,
            8.91225749
        )
        assert_allclose(x, x_expected)
        # test halley's
        x = zeros.newton(f1, x0, f1_1, args, fprime2=f1_2)
        assert_allclose(x, x_expected)
        # test secant
        x = zeros.newton(f1, x0, args=args)
        assert_allclose(x, x_expected)

    def test_array_newton_complex(self):
        def f(x):
            return x + 1+1j

        def fprime(x):
            return 1.0

        t = np.full(4, 1j)
        x = zeros.newton(f, t, fprime=fprime)
        assert_allclose(f(x), 0.)

        # should work even if x0 is not complex
        t = np.ones(4)
        x = zeros.newton(f, t, fprime=fprime)
        assert_allclose(f(x), 0.)

        x = zeros.newton(f, t)
        assert_allclose(f(x), 0.)

    def test_array_secant_active_zero_der(self):
        """test secant doesn't continue to iterate zero derivatives"""
        x = zeros.newton(lambda x, *a: x*x - a[0], x0=[4.123, 5],
                         args=[np.array([17, 25])])
        assert_allclose(x, (4.123105625617661, 5.0))

    def test_array_newton_integers(self):
        # test secant with float
        x = zeros.newton(lambda y, z: z - y ** 2, [4.0] * 2,
                         args=([15.0, 17.0],))
        assert_allclose(x, (3.872983346207417, 4.123105625617661))
        # test integer becomes float
        x = zeros.newton(lambda y, z: z - y ** 2, [4] * 2, args=([15, 17],))
        assert_allclose(x, (3.872983346207417, 4.123105625617661))

    @pytest.mark.thread_unsafe
    def test_array_newton_zero_der_failures(self):
        # test derivative zero warning
        assert_warns(RuntimeWarning, zeros.newton,
                     lambda y: y**2 - 2, [0., 0.], lambda y: 2 * y)
        # test failures and zero_der
        with pytest.warns(RuntimeWarning):
            results = zeros.newton(lambda y: y**2 - 2, [0., 0.],
                                   lambda y: 2*y, full_output=True)
            assert_allclose(results.root, 0)
            assert results.zero_der.all()
            assert not results.converged.any()

    def test_newton_combined(self):
        def f1(x):
            return x ** 2 - 2 * x - 1
        def f1_1(x):
            return 2 * x - 2
        def f1_2(x):
            return 2.0 + 0 * x

        def f1_and_p_and_pp(x):
            return x**2 - 2*x-1, 2*x-2, 2.0

        sol0 = root_scalar(f1, method='newton', x0=3, fprime=f1_1)
        sol = root_scalar(f1_and_p_and_pp, method='newton', x0=3, fprime=True)
        assert_allclose(sol0.root, sol.root, atol=1e-8)
        assert_equal(2*sol.function_calls, sol0.function_calls)

        sol0 = root_scalar(f1, method='halley', x0=3, fprime=f1_1, fprime2=f1_2)
        sol = root_scalar(f1_and_p_and_pp, method='halley', x0=3, fprime2=True)
        assert_allclose(sol0.root, sol.root, atol=1e-8)
        assert_equal(3*sol.function_calls, sol0.function_calls)

    def test_newton_full_output(self, capsys):
        # Test the full_output capability, both when converging and not.
        # Use simple polynomials, to avoid hitting platform dependencies
        # (e.g., exp & trig) in number of iterations

        x0 = 3
        expected_counts = [(6, 7), (5, 10), (3, 9)]

        for derivs in range(3):
            kwargs = {'tol': 1e-6, 'full_output': True, }
            for k, v in [['fprime', f1_1], ['fprime2', f1_2]][:derivs]:
                kwargs[k] = v

            x, r = zeros.newton(f1, x0, disp=False, **kwargs)
            assert_(r.converged)
            assert_equal(x, r.root)
            assert_equal((r.iterations, r.function_calls), expected_counts[derivs])
            if derivs == 0:
                assert r.function_calls <= r.iterations + 1
            else:
                assert_equal(r.function_calls, (derivs + 1) * r.iterations)

            # Now repeat, allowing one fewer iteration to force convergence failure
            iters = r.iterations - 1
            x, r = zeros.newton(f1, x0, maxiter=iters, disp=False, **kwargs)
            assert_(not r.converged)
            assert_equal(x, r.root)
            assert_equal(r.iterations, iters)

            if derivs == 1:
                # Check that the correct Exception is raised and
                # validate the start of the message.
                msg = 'Failed to converge after %d iterations, value is .*' % (iters)
                with pytest.raises(RuntimeError, match=msg):
                    x, r = zeros.newton(f1, x0, maxiter=iters, disp=True, **kwargs)

    @pytest.mark.thread_unsafe
    def test_deriv_zero_warning(self):
        def func(x):
            return x ** 2 - 2.0
        def dfunc(x):
            return 2 * x
        assert_warns(RuntimeWarning, zeros.newton, func, 0.0, dfunc, disp=False)
        with pytest.raises(RuntimeError, match='Derivative was zero'):
            zeros.newton(func, 0.0, dfunc)

    def test_newton_does_not_modify_x0(self):
        # https://github.com/scipy/scipy/issues/9964
        x0 = np.array([0.1, 3])
        x0_copy = x0.copy()  # Copy to test for equality.
        newton(np.sin, x0, np.cos)
        assert_array_equal(x0, x0_copy)

    def test_gh17570_defaults(self):
        # Previously, when fprime was not specified, root_scalar would default
        # to secant. When x1 was not specified, secant failed.
        # Check that without fprime, the default is secant if x1 is specified
        # and newton otherwise.
        # Also confirm that `x` is always a scalar (gh-21148)
        def f(x):
            assert np.isscalar(x)
            return f1(x)

        res_newton_default = root_scalar(f, method='newton', x0=3, xtol=1e-6)
        res_secant_default = root_scalar(f, method='secant', x0=3, x1=2,
                                         xtol=1e-6)
        # `newton` uses the secant method when `x1` and `x2` are specified
        res_secant = newton(f, x0=3, x1=2, tol=1e-6, full_output=True)[1]

        # all three found a root
        assert_allclose(f(res_newton_default.root), 0, atol=1e-6)
        assert res_newton_default.root.shape == tuple()
        assert_allclose(f(res_secant_default.root), 0, atol=1e-6)
        assert res_secant_default.root.shape == tuple()
        assert_allclose(f(res_secant.root), 0, atol=1e-6)
        assert res_secant.root.shape == tuple()

        # Defaults are correct
        assert (res_secant_default.root
                == res_secant.root
                != res_newton_default.iterations)
        assert (res_secant_default.iterations
                == res_secant_default.function_calls - 1  # true for secant
                == res_secant.iterations
                != res_newton_default.iterations
                == res_newton_default.function_calls/2)  # newton 2-point diff

    @pytest.mark.parametrize('kwargs', [dict(), {'method': 'newton'}])
    def test_args_gh19090(self, kwargs):
        def f(x, a, b):
            assert a == 3
            assert b == 1
            return (x ** a - b)

        res = optimize.root_scalar(f, x0=3, args=(3, 1), **kwargs)
        assert res.converged
        assert_allclose(res.root, 1)

    @pytest.mark.parametrize('method', ['secant', 'newton'])
    def test_int_x0_gh19280(self, method):
        # Originally, `newton` ensured that only floats were passed to the
        # callable. This was inadvertently changed by gh-17669. Check that
        # it has been changed back.
        def f(x):
            # an integer raised to a negative integer power would fail
            return x**-2 - 2

        res = optimize.root_scalar(f, x0=1, method=method)
        assert res.converged
        assert_allclose(abs(res.root), 2**-0.5)
        assert res.root.dtype == np.dtype(np.float64)


def test_gh_5555():
    root = 0.1

    def f(x):
        return x - root

    methods = [zeros.bisect, zeros.ridder]
    xtol = rtol = TOL
    for method in methods:
        res = method(f, -1e8, 1e7, xtol=xtol, rtol=rtol)
        assert_allclose(root, res, atol=xtol, rtol=rtol,
                        err_msg=f'method {method.__name__}')


def test_gh_5557():
    # Show that without the changes in 5557 brentq and brenth might
    # only achieve a tolerance of 2*(xtol + rtol*|res|).

    # f linearly interpolates (0, -0.1), (0.5, -0.1), and (1,
    # 0.4). The important parts are that |f(0)| < |f(1)| (so that
    # brent takes 0 as the initial guess), |f(0)| < atol (so that
    # brent accepts 0 as the root), and that the exact root of f lies
    # more than atol away from 0 (so that brent doesn't achieve the
    # desired tolerance).
    def f(x):
        if x < 0.5:
            return -0.1
        else:
            return x - 0.6

    atol = 0.51
    rtol = 4 * _FLOAT_EPS
    methods = [zeros.brentq, zeros.brenth]
    for method in methods:
        res = method(f, 0, 1, xtol=atol, rtol=rtol)
        assert_allclose(0.6, res, atol=atol, rtol=rtol)


def test_brent_underflow_in_root_bracketing():
    # Testing if an interval [a,b] brackets a zero of a function
    # by checking f(a)*f(b) < 0 is not reliable when the product
    # underflows/overflows. (reported in issue# 13737)

    underflow_scenario = (-450.0, -350.0, -400.0)
    overflow_scenario = (350.0, 450.0, 400.0)

    for a, b, root in [underflow_scenario, overflow_scenario]:
        c = np.exp(root)
        for method in [zeros.brenth, zeros.brentq]:
            res = method(lambda x: np.exp(x)-c, a, b)
            assert_allclose(root, res)


class TestRootResults:
    r = zeros.RootResults(root=1.0, iterations=44, function_calls=46, flag=0,
                          method="newton")

    def test_repr(self):
        expected_repr = ("      converged: True\n           flag: converged"
                         "\n function_calls: 46\n     iterations: 44\n"
                         "           root: 1.0\n         method: newton")
        assert_equal(repr(self.r), expected_repr)

    def test_type(self):
        assert isinstance(self.r, OptimizeResult)


def test_complex_halley():
    """Test Halley's works with complex roots"""
    def f(x, *a):
        return a[0] * x**2 + a[1] * x + a[2]

    def f_1(x, *a):
        return 2 * a[0] * x + a[1]

    def f_2(x, *a):
        retval = 2 * a[0]
        try:
            size = len(x)
        except TypeError:
            return retval
        else:
            return [retval] * size

    z = complex(1.0, 2.0)
    coeffs = (2.0, 3.0, 4.0)
    y = zeros.newton(f, z, args=coeffs, fprime=f_1, fprime2=f_2, tol=1e-6)
    # (-0.75000000000000078+1.1989578808281789j)
    assert_allclose(f(y, *coeffs), 0, atol=1e-6)
    z = [z] * 10
    coeffs = (2.0, 3.0, 4.0)
    y = zeros.newton(f, z, args=coeffs, fprime=f_1, fprime2=f_2, tol=1e-6)
    assert_allclose(f(y, *coeffs), 0, atol=1e-6)


@pytest.mark.thread_unsafe
def test_zero_der_nz_dp(capsys):
    """Test secant method with a non-zero dp, but an infinite newton step"""
    # pick a symmetrical functions and choose a point on the side that with dx
    # makes a secant that is a flat line with zero slope, EG: f = (x - 100)**2,
    # which has a root at x = 100 and is symmetrical around the line x = 100
    # we have to pick a really big number so that it is consistently true
    # now find a point on each side so that the secant has a zero slope
    dx = np.finfo(float).eps ** 0.33
    # 100 - p0 = p1 - 100 = p0 * (1 + dx) + dx - 100
    # -> 200 = p0 * (2 + dx) + dx
    p0 = (200.0 - dx) / (2.0 + dx)
    with suppress_warnings() as sup:
        sup.filter(RuntimeWarning, "RMS of")
        x = zeros.newton(lambda y: (y - 100.0)**2, x0=[p0] * 10)
    assert_allclose(x, [100] * 10)
    # test scalar cases too
    p0 = (2.0 - 1e-4) / (2.0 + 1e-4)
    with suppress_warnings() as sup:
        sup.filter(RuntimeWarning, "Tolerance of")
        x = zeros.newton(lambda y: (y - 1.0) ** 2, x0=p0, disp=False)
    assert_allclose(x, 1)
    with pytest.raises(RuntimeError, match='Tolerance of'):
        x = zeros.newton(lambda y: (y - 1.0) ** 2, x0=p0, disp=True)
    p0 = (-2.0 + 1e-4) / (2.0 + 1e-4)
    with suppress_warnings() as sup:
        sup.filter(RuntimeWarning, "Tolerance of")
        x = zeros.newton(lambda y: (y + 1.0) ** 2, x0=p0, disp=False)
    assert_allclose(x, -1)
    with pytest.raises(RuntimeError, match='Tolerance of'):
        x = zeros.newton(lambda y: (y + 1.0) ** 2, x0=p0, disp=True)


@pytest.mark.thread_unsafe
def test_array_newton_failures():
    """Test that array newton fails as expected"""
    # p = 0.68  # [MPa]
    # dp = -0.068 * 1e6  # [Pa]
    # T = 323  # [K]
    diameter = 0.10  # [m]
    # L = 100  # [m]
    roughness = 0.00015  # [m]
    rho = 988.1  # [kg/m**3]
    mu = 5.4790e-04  # [Pa*s]
    u = 2.488  # [m/s]
    reynolds_number = rho * u * diameter / mu  # Reynolds number

    def colebrook_eqn(darcy_friction, re, dia):
        return (1 / np.sqrt(darcy_friction) +
                2 * np.log10(roughness / 3.7 / dia +
                             2.51 / re / np.sqrt(darcy_friction)))

    # only some failures
    with pytest.warns(RuntimeWarning):
        result = zeros.newton(
            colebrook_eqn, x0=[0.01, 0.2, 0.02223, 0.3], maxiter=2,
            args=[reynolds_number, diameter], full_output=True
        )
        assert not result.converged.all()
    # they all fail
    with pytest.raises(RuntimeError):
        result = zeros.newton(
            colebrook_eqn, x0=[0.01] * 2, maxiter=2,
            args=[reynolds_number, diameter], full_output=True
        )


# this test should **not** raise a RuntimeWarning
def test_gh8904_zeroder_at_root_fails():
    """Test that Newton or Halley don't warn if zero derivative at root"""

    # a function that has a zero derivative at it's root
    def f_zeroder_root(x):
        return x**3 - x**2

    # should work with secant
    r = zeros.newton(f_zeroder_root, x0=0)
    assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
    # test again with array
    r = zeros.newton(f_zeroder_root, x0=[0]*10)
    assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)

    # 1st derivative
    def fder(x):
        return 3 * x**2 - 2 * x

    # 2nd derivative
    def fder2(x):
        return 6*x - 2

    # should work with newton and halley
    r = zeros.newton(f_zeroder_root, x0=0, fprime=fder)
    assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
    r = zeros.newton(f_zeroder_root, x0=0, fprime=fder,
                     fprime2=fder2)
    assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
    # test again with array
    r = zeros.newton(f_zeroder_root, x0=[0]*10, fprime=fder)
    assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
    r = zeros.newton(f_zeroder_root, x0=[0]*10, fprime=fder,
                     fprime2=fder2)
    assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)

    # also test that if a root is found we do not raise RuntimeWarning even if
    # the derivative is zero, EG: at x = 0.5, then fval = -0.125 and
    # fder = -0.25 so the next guess is 0.5 - (-0.125/-0.5) = 0 which is the
    # root, but if the solver continued with that guess, then it will calculate
    # a zero derivative, so it should return the root w/o RuntimeWarning
    r = zeros.newton(f_zeroder_root, x0=0.5, fprime=fder)
    assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
    # test again with array
    r = zeros.newton(f_zeroder_root, x0=[0.5]*10, fprime=fder)
    assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
    # doesn't apply to halley


def test_gh_8881():
    r"""Test that Halley's method realizes that the 2nd order adjustment
    is too big and drops off to the 1st order adjustment."""
    n = 9

    def f(x):
        return power(x, 1.0/n) - power(n, 1.0/n)

    def fp(x):
        return power(x, (1.0-n)/n)/n

    def fpp(x):
        return power(x, (1.0-2*n)/n) * (1.0/n) * (1.0-n)/n

    x0 = 0.1
    # The root is at x=9.
    # The function has positive slope, x0 < root.
    # Newton succeeds in 8 iterations
    rt, r = newton(f, x0, fprime=fp, full_output=True)
    assert r.converged
    # Before the Issue 8881/PR 8882, halley would send x in the wrong direction.
    # Check that it now succeeds.
    rt, r = newton(f, x0, fprime=fp, fprime2=fpp, full_output=True)
    assert r.converged


def test_gh_9608_preserve_array_shape():
    """
    Test that shape is preserved for array inputs even if fprime or fprime2 is
    scalar
    """
    def f(x):
        return x**2

    def fp(x):
        return 2 * x

    def fpp(x):
        return 2

    x0 = np.array([-2], dtype=np.float32)
    rt, r = newton(f, x0, fprime=fp, fprime2=fpp, full_output=True)
    assert r.converged

    x0_array = np.array([-2, -3], dtype=np.float32)
    # This next invocation should fail
    with pytest.raises(IndexError):
        result = zeros.newton(
            f, x0_array, fprime=fp, fprime2=fpp, full_output=True
        )

    def fpp_array(x):
        return np.full(np.shape(x), 2, dtype=np.float32)

    result = zeros.newton(
        f, x0_array, fprime=fp, fprime2=fpp_array, full_output=True
    )
    assert result.converged.all()


@pytest.mark.parametrize(
    "maximum_iterations,flag_expected",
    [(10, zeros.CONVERR), (100, zeros.CONVERGED)])
def test_gh9254_flag_if_maxiter_exceeded(maximum_iterations, flag_expected):
    """
    Test that if the maximum iterations is exceeded that the flag is not
    converged.
    """
    result = zeros.brentq(
        lambda x: ((1.2*x - 2.3)*x + 3.4)*x - 4.5,
        -30, 30, (), 1e-6, 1e-6, maximum_iterations,
        full_output=True, disp=False)
    assert result[1].flag == flag_expected
    if flag_expected == zeros.CONVERR:
        # didn't converge because exceeded maximum iterations
        assert result[1].iterations == maximum_iterations
    elif flag_expected == zeros.CONVERGED:
        # converged before maximum iterations
        assert result[1].iterations < maximum_iterations


@pytest.mark.thread_unsafe
def test_gh9551_raise_error_if_disp_true():
    """Test that if disp is true then zero derivative raises RuntimeError"""

    def f(x):
        return x*x + 1

    def f_p(x):
        return 2*x

    assert_warns(RuntimeWarning, zeros.newton, f, 1.0, f_p, disp=False)
    with pytest.raises(
            RuntimeError,
            match=r'^Derivative was zero\. Failed to converge after \d+ iterations, '
                  r'value is [+-]?\d*\.\d+\.$'):
        zeros.newton(f, 1.0, f_p)
    root = zeros.newton(f, complex(10.0, 10.0), f_p)
    assert_allclose(root, complex(0.0, 1.0))


@pytest.mark.parametrize('solver_name',
                         ['brentq', 'brenth', 'bisect', 'ridder', 'toms748'])
def test_gh3089_8394(solver_name):
    # gh-3089 and gh-8394 reported that bracketing solvers returned incorrect
    # results when they encountered NaNs. Check that this is resolved.
    def f(x):
        return np.nan

    solver = getattr(zeros, solver_name)
    with pytest.raises(ValueError, match="The function value at x..."):
        solver(f, 0, 1)


@pytest.mark.parametrize('method',
                         ['brentq', 'brenth', 'bisect', 'ridder', 'toms748'])
def test_gh18171(method):
    # gh-3089 and gh-8394 reported that bracketing solvers returned incorrect
    # results when they encountered NaNs. Check that `root_scalar` returns
    # normally but indicates that convergence was unsuccessful. See gh-18171.
    def f(x):
        f._count += 1
        return np.nan
    f._count = 0

    res = root_scalar(f, bracket=(0, 1), method=method)
    assert res.converged is False
    assert res.flag.startswith("The function value at x")
    assert res.function_calls == f._count
    assert str(res.root) in res.flag


@pytest.mark.parametrize('solver_name',
                         ['brentq', 'brenth', 'bisect', 'ridder', 'toms748'])
@pytest.mark.parametrize('rs_interface', [True, False])
def test_function_calls(solver_name, rs_interface):
    # There do not appear to be checks that the bracketing solvers report the
    # correct number of function evaluations. Check that this is the case.
    solver = ((lambda f, a, b, **kwargs: root_scalar(f, bracket=(a, b)))
              if rs_interface else getattr(zeros, solver_name))

    def f(x):
        f.calls += 1
        return x**2 - 1
    f.calls = 0

    res = solver(f, 0, 10, full_output=True)

    if rs_interface:
        assert res.function_calls == f.calls
    else:
        assert res[1].function_calls == f.calls


@pytest.mark.thread_unsafe
def test_gh_14486_converged_false():
    """Test that zero slope with secant method results in a converged=False"""
    def lhs(x):
        return x * np.exp(-x*x) - 0.07

    with pytest.warns(RuntimeWarning, match='Tolerance of'):
        res = root_scalar(lhs, method='secant', x0=-0.15, x1=1.0)
    assert not res.converged
    assert res.flag == 'convergence error'

    with pytest.warns(RuntimeWarning, match='Tolerance of'):
        res = newton(lhs, x0=-0.15, x1=1.0, disp=False, full_output=True)[1]
    assert not res.converged
    assert res.flag == 'convergence error'


@pytest.mark.parametrize('solver_name',
                         ['brentq', 'brenth', 'bisect', 'ridder', 'toms748'])
@pytest.mark.parametrize('rs_interface', [True, False])
def test_gh5584(solver_name, rs_interface):
    # gh-5584 reported that an underflow can cause sign checks in the algorithm
    # to fail. Check that this is resolved.
    solver = ((lambda f, a, b, **kwargs: root_scalar(f, bracket=(a, b)))
              if rs_interface else getattr(zeros, solver_name))

    def f(x):
        return 1e-200*x

    # Report failure when signs are the same
    with pytest.raises(ValueError, match='...must have different signs'):
        solver(f, -0.5, -0.4, full_output=True)

    # Solve successfully when signs are different
    res = solver(f, -0.5, 0.4, full_output=True)
    res = res if rs_interface else res[1]
    assert res.converged
    assert_allclose(res.root, 0, atol=1e-8)

    # Solve successfully when one side is negative zero
    res = solver(f, -0.5, float('-0.0'), full_output=True)
    res = res if rs_interface else res[1]
    assert res.converged
    assert_allclose(res.root, 0, atol=1e-8)


def test_gh13407():
    # gh-13407 reported that the message produced by `scipy.optimize.toms748`
    # when `rtol < eps` is incorrect, and also that toms748 is unusual in
    # accepting `rtol` as low as eps while other solvers raise at 4*eps. Check
    # that the error message has been corrected and that `rtol=eps` can produce
    # a lower function value than `rtol=4*eps`.
    def f(x):
        return x**3 - 2*x - 5

    xtol = 1e-300
    eps = np.finfo(float).eps
    x1 = zeros.toms748(f, 1e-10, 1e10, xtol=xtol, rtol=1*eps)
    f1 = f(x1)
    x4 = zeros.toms748(f, 1e-10, 1e10, xtol=xtol, rtol=4*eps)
    f4 = f(x4)
    assert f1 < f4

    # using old-style syntax to get exactly the same message
    message = fr"rtol too small \({eps/2:g} < {eps:g}\)"
    with pytest.raises(ValueError, match=message):
        zeros.toms748(f, 1e-10, 1e10, xtol=xtol, rtol=eps/2)


def test_newton_complex_gh10103():
    # gh-10103 reported a problem when `newton` is pass a Python complex x0,
    # no `fprime` (secant method), and no `x1` (`x1` must be constructed).
    # Check that this is resolved.
    def f(z):
        return z - 1
    res = newton(f, 1+1j)
    assert_allclose(res, 1, atol=1e-12)

    res = root_scalar(f, x0=1+1j, x1=2+1.5j, method='secant')
    assert_allclose(res.root, 1, atol=1e-12)


@pytest.mark.parametrize('method', all_methods)
def test_maxiter_int_check_gh10236(method):
    # gh-10236 reported that the error message when `maxiter` is not an integer
    # was difficult to interpret. Check that this was resolved (by gh-10907).
    message = "'float' object cannot be interpreted as an integer"
    with pytest.raises(TypeError, match=message):
        method(f1, 0.0, 1.0, maxiter=72.45)