File size: 9,361 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
"""
===================================
Sparse arrays (:mod:`scipy.sparse`)
===================================

.. currentmodule:: scipy.sparse

.. toctree::
   :hidden:

   sparse.csgraph
   sparse.linalg
   sparse.migration_to_sparray

SciPy 2-D sparse array package for numeric data.

.. note::

   This package is switching to an array interface, compatible with
   NumPy arrays, from the older matrix interface.  We recommend that
   you use the array objects (`bsr_array`, `coo_array`, etc.) for
   all new work.

   When using the array interface, please note that:

   - ``x * y`` no longer performs matrix multiplication, but
     element-wise multiplication (just like with NumPy arrays).  To
     make code work with both arrays and matrices, use ``x @ y`` for
     matrix multiplication.
   - Operations such as ``sum``, that used to produce dense matrices, now
     produce arrays, whose multiplication behavior differs similarly.
   - Sparse arrays use array style *slicing* operations, returning scalars,
     1D, or 2D sparse arrays. If you need 2D results, use an appropriate index.
     E.g. ``A[:, i, None]`` or ``A[:, [i]]``.

   The construction utilities (`eye`, `kron`, `random`, `diags`, etc.)
   have appropriate replacements (see :ref:`sparse-construction-functions`).

   For more information see
   :ref:`Migration from spmatrix to sparray <migration_to_sparray>`.


Submodules
==========

.. autosummary::

   csgraph - Compressed sparse graph routines
   linalg - Sparse linear algebra routines


Sparse array classes
====================

.. autosummary::
   :toctree: generated/

   bsr_array - Block Sparse Row array
   coo_array - A sparse array in COOrdinate format
   csc_array - Compressed Sparse Column array
   csr_array - Compressed Sparse Row array
   dia_array - Sparse array with DIAgonal storage
   dok_array - Dictionary Of Keys based sparse array
   lil_array - Row-based list of lists sparse array
   sparray - Sparse array base class

.. _sparse-construction-functions:

Building sparse arrays
----------------------

.. autosummary::
   :toctree: generated/

   diags_array - Return a sparse array from diagonals
   eye_array - Sparse MxN array whose k-th diagonal is all ones
   random_array - Random values in a given shape array
   block_array - Build a sparse array from sub-blocks

.. _combining-arrays:

Combining arrays
----------------

.. autosummary::
   :toctree: generated/

   kron - Kronecker product of two sparse arrays
   kronsum - Kronecker sum of sparse arrays
   block_diag - Build a block diagonal sparse array
   tril - Lower triangular portion of a sparse array
   triu - Upper triangular portion of a sparse array
   hstack - Stack sparse arrays horizontally (column wise)
   vstack - Stack sparse arrays vertically (row wise)

Sparse tools
------------

.. autosummary::
   :toctree: generated/

   save_npz - Save a sparse array to a file using ``.npz`` format.
   load_npz - Load a sparse array from a file using ``.npz`` format.
   find - Return the indices and values of the nonzero elements
   get_index_dtype - determine a good dtype for index arrays.
   safely_cast_index_arrays - cast index array dtype or raise if shape too big

Identifying sparse arrays
-------------------------

.. autosummary::
   :toctree: generated/

   issparse - Check if the argument is a sparse object (array or matrix).


Sparse matrix classes
=====================

.. autosummary::
   :toctree: generated/

   bsr_matrix - Block Sparse Row matrix
   coo_matrix - A sparse matrix in COOrdinate format
   csc_matrix - Compressed Sparse Column matrix
   csr_matrix - Compressed Sparse Row matrix
   dia_matrix - Sparse matrix with DIAgonal storage
   dok_matrix - Dictionary Of Keys based sparse matrix
   lil_matrix - Row-based list of lists sparse matrix
   spmatrix - Sparse matrix base class

Building sparse matrices
------------------------

.. autosummary::
   :toctree: generated/

   eye - Sparse MxN matrix whose k-th diagonal is all ones
   identity - Identity matrix in sparse matrix format
   diags - Return a sparse matrix from diagonals
   spdiags - Return a sparse matrix from diagonals
   bmat - Build a sparse matrix from sparse sub-blocks
   random - Random values in a given shape matrix
   rand - Random values in a given shape matrix (old interface)

**Combining matrices use the same functions as for** :ref:`combining-arrays`.

Identifying sparse matrices
---------------------------

.. autosummary::
   :toctree: generated/

   issparse
   isspmatrix
   isspmatrix_csc
   isspmatrix_csr
   isspmatrix_bsr
   isspmatrix_lil
   isspmatrix_dok
   isspmatrix_coo
   isspmatrix_dia


Warnings
========

.. autosummary::
   :toctree: generated/

   SparseEfficiencyWarning
   SparseWarning


Usage information
=================

There are seven available sparse array types:

    1. csc_array: Compressed Sparse Column format
    2. csr_array: Compressed Sparse Row format
    3. bsr_array: Block Sparse Row format
    4. lil_array: List of Lists format
    5. dok_array: Dictionary of Keys format
    6. coo_array: COOrdinate format (aka IJV, triplet format)
    7. dia_array: DIAgonal format

To construct an array efficiently, use any of `coo_array`,
`dok_array` or `lil_array`. `dok_array` and `lil_array`
support basic slicing and fancy indexing with a similar syntax
to NumPy arrays. The COO format does not support indexing (yet)
but can also be used to efficiently construct arrays using coord
and value info.

Despite their similarity to NumPy arrays, it is **strongly discouraged**
to use NumPy functions directly on these arrays because NumPy typically
treats them as generic Python objects rather than arrays, leading to
unexpected (and incorrect) results. If you do want to apply a NumPy
function to these arrays, first check if SciPy has its own implementation
for the given sparse array class, or **convert the sparse array to
a NumPy array** (e.g., using the `toarray` method of the class)
before applying the method.

All conversions among the CSR, CSC, and COO formats are efficient,
linear-time operations.

To perform manipulations such as multiplication or inversion, first
convert the array to either CSC or CSR format. The `lil_array`
format is row-based, so conversion to CSR is efficient, whereas
conversion to CSC is less so.

Matrix vector product
---------------------

To do a vector product between a 2D sparse array and a vector use
the matmul operator (i.e., ``@``) which performs a dot product (like the
``dot`` method):

>>> import numpy as np
>>> from scipy.sparse import csr_array
>>> A = csr_array([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
>>> v = np.array([1, 0, -1])
>>> A @ v
array([ 1, -3, -1], dtype=int64)

The CSR format is especially suitable for fast matrix vector products.

Example 1
---------

Construct a 1000x1000 `lil_array` and add some values to it:

>>> from scipy.sparse import lil_array
>>> from scipy.sparse.linalg import spsolve
>>> from numpy.linalg import solve, norm
>>> from numpy.random import rand

>>> A = lil_array((1000, 1000))
>>> A[0, :100] = rand(100)
>>> A.setdiag(rand(1000))

Now convert it to CSR format and solve A x = b for x:

>>> A = A.tocsr()
>>> b = rand(1000)
>>> x = spsolve(A, b)

Convert it to a dense array and solve, and check that the result
is the same:

>>> x_ = solve(A.toarray(), b)

Now we can compute norm of the error with:

>>> err = norm(x-x_)
>>> err < 1e-10
True

It should be small :)


Example 2
---------

Construct an array in COO format:

>>> from scipy import sparse
>>> from numpy import array
>>> I = array([0,3,1,0])
>>> J = array([0,3,1,2])
>>> V = array([4,5,7,9])
>>> A = sparse.coo_array((V,(I,J)),shape=(4,4))

Notice that the indices do not need to be sorted.

Duplicate (i,j) entries are summed when converting to CSR or CSC.

>>> I = array([0,0,1,3,1,0,0])
>>> J = array([0,2,1,3,1,0,0])
>>> V = array([1,1,1,1,1,1,1])
>>> B = sparse.coo_array((V,(I,J)),shape=(4,4)).tocsr()

This is useful for constructing finite-element stiffness and mass matrices.

Further details
---------------

CSR column indices are not necessarily sorted. Likewise for CSC row
indices. Use the ``.sorted_indices()`` and ``.sort_indices()`` methods when
sorted indices are required (e.g., when passing data to other libraries).

"""

# Original code by Travis Oliphant.
# Modified and extended by Ed Schofield, Robert Cimrman,
# Nathan Bell, and Jake Vanderplas.

import warnings as _warnings

from ._base import *
from ._csr import *
from ._csc import *
from ._lil import *
from ._dok import *
from ._coo import *
from ._dia import *
from ._bsr import *
from ._construct import *
from ._extract import *
from ._matrix import spmatrix
from ._matrix_io import *
from ._sputils import get_index_dtype, safely_cast_index_arrays

# For backward compatibility with v0.19.
from . import csgraph

# Deprecated namespaces, to be removed in v2.0.0
from . import (
    base, bsr, compressed, construct, coo, csc, csr, data, dia, dok, extract,
    lil, sparsetools, sputils
)

__all__ = [s for s in dir() if not s.startswith('_')]

# Filter PendingDeprecationWarning for np.matrix introduced with numpy 1.15
msg = 'the matrix subclass is not the recommended way'
_warnings.filterwarnings('ignore', message=msg)

from scipy._lib._testutils import PytestTester
test = PytestTester(__name__)
del PytestTester