File size: 30,934 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 |
"""Compressed Block Sparse Row format"""
__docformat__ = "restructuredtext en"
__all__ = ['bsr_array', 'bsr_matrix', 'isspmatrix_bsr']
from warnings import warn
import numpy as np
from scipy._lib._util import copy_if_needed
from ._matrix import spmatrix
from ._data import _data_matrix, _minmax_mixin
from ._compressed import _cs_matrix
from ._base import issparse, _formats, _spbase, sparray
from ._sputils import (isshape, getdtype, getdata, to_native, upcast,
check_shape)
from . import _sparsetools
from ._sparsetools import (bsr_matvec, bsr_matvecs, csr_matmat_maxnnz,
bsr_matmat, bsr_transpose, bsr_sort_indices,
bsr_tocsr)
class _bsr_base(_cs_matrix, _minmax_mixin):
_format = 'bsr'
def __init__(self, arg1, shape=None, dtype=None, copy=False,
blocksize=None, *, maxprint=None):
_data_matrix.__init__(self, arg1, maxprint=maxprint)
if issparse(arg1):
if arg1.format == self.format and copy:
arg1 = arg1.copy()
else:
arg1 = arg1.tobsr(blocksize=blocksize)
self.indptr, self.indices, self.data, self._shape = (
arg1.indptr, arg1.indices, arg1.data, arg1._shape
)
elif isinstance(arg1,tuple):
if isshape(arg1):
# it's a tuple of matrix dimensions (M,N)
self._shape = check_shape(arg1)
M,N = self.shape
# process blocksize
if blocksize is None:
blocksize = (1,1)
else:
if not isshape(blocksize):
raise ValueError(f'invalid blocksize={blocksize}')
blocksize = tuple(blocksize)
self.data = np.zeros((0,) + blocksize, getdtype(dtype, default=float))
R,C = blocksize
if (M % R) != 0 or (N % C) != 0:
raise ValueError('shape must be multiple of blocksize')
# Select index dtype large enough to pass array and
# scalar parameters to sparsetools
idx_dtype = self._get_index_dtype(maxval=max(M//R, N//C, R, C))
self.indices = np.zeros(0, dtype=idx_dtype)
self.indptr = np.zeros(M//R + 1, dtype=idx_dtype)
elif len(arg1) == 2:
# (data,(row,col)) format
coo = self._coo_container(arg1, dtype=dtype, shape=shape)
bsr = coo.tobsr(blocksize=blocksize)
self.indptr, self.indices, self.data, self._shape = (
bsr.indptr, bsr.indices, bsr.data, bsr._shape
)
elif len(arg1) == 3:
# (data,indices,indptr) format
(data, indices, indptr) = arg1
# Select index dtype large enough to pass array and
# scalar parameters to sparsetools
maxval = 1
if shape is not None:
maxval = max(shape)
if blocksize is not None:
maxval = max(maxval, max(blocksize))
idx_dtype = self._get_index_dtype((indices, indptr), maxval=maxval,
check_contents=True)
if not copy:
copy = copy_if_needed
self.indices = np.array(indices, copy=copy, dtype=idx_dtype)
self.indptr = np.array(indptr, copy=copy, dtype=idx_dtype)
self.data = getdata(data, copy=copy, dtype=dtype)
if self.data.ndim != 3:
raise ValueError(
f'BSR data must be 3-dimensional, got shape={self.data.shape}'
)
if blocksize is not None:
if not isshape(blocksize):
raise ValueError(f'invalid blocksize={blocksize}')
if tuple(blocksize) != self.data.shape[1:]:
raise ValueError(
f'mismatching blocksize={blocksize}'
f' vs {self.data.shape[1:]}'
)
else:
raise ValueError('unrecognized bsr_array constructor usage')
else:
# must be dense
try:
arg1 = np.asarray(arg1)
except Exception as e:
raise ValueError("unrecognized form for "
f"{self.format}_matrix constructor") from e
if isinstance(self, sparray) and arg1.ndim != 2:
raise ValueError(f"BSR arrays don't support {arg1.ndim}D input. Use 2D")
arg1 = self._coo_container(arg1, dtype=dtype).tobsr(blocksize=blocksize)
self.indptr, self.indices, self.data, self._shape = (
arg1.indptr, arg1.indices, arg1.data, arg1._shape
)
if shape is not None:
self._shape = check_shape(shape)
else:
if self.shape is None:
# shape not already set, try to infer dimensions
try:
M = len(self.indptr) - 1
N = self.indices.max() + 1
except Exception as e:
raise ValueError('unable to infer matrix dimensions') from e
else:
R,C = self.blocksize
self._shape = check_shape((M*R,N*C))
if self.shape is None:
if shape is None:
# TODO infer shape here
raise ValueError('need to infer shape')
else:
self._shape = check_shape(shape)
if dtype is not None:
self.data = self.data.astype(getdtype(dtype, self.data), copy=False)
self.check_format(full_check=False)
def check_format(self, full_check=True):
"""Check whether the array/matrix respects the BSR format.
Parameters
----------
full_check : bool, optional
If `True`, run rigorous check, scanning arrays for valid values.
Note that activating those check might copy arrays for casting,
modifying indices and index pointers' inplace.
If `False`, run basic checks on attributes. O(1) operations.
Default is `True`.
"""
M,N = self.shape
R,C = self.blocksize
# index arrays should have integer data types
if self.indptr.dtype.kind != 'i':
warn(f"indptr array has non-integer dtype ({self.indptr.dtype.name})",
stacklevel=2)
if self.indices.dtype.kind != 'i':
warn(f"indices array has non-integer dtype ({self.indices.dtype.name})",
stacklevel=2)
# check array shapes
if self.indices.ndim != 1 or self.indptr.ndim != 1:
raise ValueError("indices, and indptr should be 1-D")
if self.data.ndim != 3:
raise ValueError("data should be 3-D")
# check index pointer
if (len(self.indptr) != M//R + 1):
raise ValueError("index pointer size (%d) should be (%d)" %
(len(self.indptr), M//R + 1))
if (self.indptr[0] != 0):
raise ValueError("index pointer should start with 0")
# check index and data arrays
if (len(self.indices) != len(self.data)):
raise ValueError("indices and data should have the same size")
if (self.indptr[-1] > len(self.indices)):
raise ValueError("Last value of index pointer should be less than "
"the size of index and data arrays")
self.prune()
if full_check:
# check format validity (more expensive)
if self.nnz > 0:
if self.indices.max() >= N//C:
raise ValueError("column index values must be < %d (now max %d)"
% (N//C, self.indices.max()))
if self.indices.min() < 0:
raise ValueError("column index values must be >= 0")
if np.diff(self.indptr).min() < 0:
raise ValueError("index pointer values must form a "
"non-decreasing sequence")
idx_dtype = self._get_index_dtype((self.indices, self.indptr))
self.indptr = np.asarray(self.indptr, dtype=idx_dtype)
self.indices = np.asarray(self.indices, dtype=idx_dtype)
self.data = to_native(self.data)
# if not self.has_sorted_indices():
# warn('Indices were not in sorted order. Sorting indices.')
# self.sort_indices(check_first=False)
@property
def blocksize(self) -> tuple:
"""Block size of the matrix."""
return self.data.shape[1:]
def _getnnz(self, axis=None):
if axis is not None:
raise NotImplementedError("_getnnz over an axis is not implemented "
"for BSR format")
R, C = self.blocksize
return int(self.indptr[-1]) * R * C
_getnnz.__doc__ = _spbase._getnnz.__doc__
def count_nonzero(self, axis=None):
if axis is not None:
raise NotImplementedError(
"count_nonzero over axis is not implemented for BSR format."
)
return np.count_nonzero(self._deduped_data())
count_nonzero.__doc__ = _spbase.count_nonzero.__doc__
def __repr__(self):
_, fmt = _formats[self.format]
sparse_cls = 'array' if isinstance(self, sparray) else 'matrix'
b = 'x'.join(str(x) for x in self.blocksize)
return (
f"<{fmt} sparse {sparse_cls} of dtype '{self.dtype}'\n"
f"\twith {self.nnz} stored elements (blocksize={b}) and shape {self.shape}>"
)
def diagonal(self, k=0):
rows, cols = self.shape
if k <= -rows or k >= cols:
return np.empty(0, dtype=self.data.dtype)
R, C = self.blocksize
y = np.zeros(min(rows + min(k, 0), cols - max(k, 0)),
dtype=upcast(self.dtype))
_sparsetools.bsr_diagonal(k, rows // R, cols // C, R, C,
self.indptr, self.indices,
np.ravel(self.data), y)
return y
diagonal.__doc__ = _spbase.diagonal.__doc__
##########################
# NotImplemented methods #
##########################
def __getitem__(self,key):
raise NotImplementedError
def __setitem__(self,key,val):
raise NotImplementedError
######################
# Arithmetic methods #
######################
def _add_dense(self, other):
return self.tocoo(copy=False)._add_dense(other)
def _matmul_vector(self, other):
M,N = self.shape
R,C = self.blocksize
result = np.zeros(self.shape[0], dtype=upcast(self.dtype, other.dtype))
bsr_matvec(M//R, N//C, R, C,
self.indptr, self.indices, self.data.ravel(),
other, result)
return result
def _matmul_multivector(self,other):
R,C = self.blocksize
M,N = self.shape
n_vecs = other.shape[1] # number of column vectors
result = np.zeros((M,n_vecs), dtype=upcast(self.dtype,other.dtype))
bsr_matvecs(M//R, N//C, n_vecs, R, C,
self.indptr, self.indices, self.data.ravel(),
other.ravel(), result.ravel())
return result
def _matmul_sparse(self, other):
M, K1 = self.shape
K2, N = other.shape
R,n = self.blocksize
# convert to this format
if other.format == "bsr":
C = other.blocksize[1]
else:
C = 1
if other.format == "csr" and n == 1:
other = other.tobsr(blocksize=(n,C), copy=False) # lightweight conversion
else:
other = other.tobsr(blocksize=(n,C))
idx_dtype = self._get_index_dtype((self.indptr, self.indices,
other.indptr, other.indices))
bnnz = csr_matmat_maxnnz(M//R, N//C,
self.indptr.astype(idx_dtype),
self.indices.astype(idx_dtype),
other.indptr.astype(idx_dtype),
other.indices.astype(idx_dtype))
idx_dtype = self._get_index_dtype((self.indptr, self.indices,
other.indptr, other.indices),
maxval=bnnz)
indptr = np.empty(self.indptr.shape, dtype=idx_dtype)
indices = np.empty(bnnz, dtype=idx_dtype)
data = np.empty(R*C*bnnz, dtype=upcast(self.dtype,other.dtype))
bsr_matmat(bnnz, M//R, N//C, R, C, n,
self.indptr.astype(idx_dtype),
self.indices.astype(idx_dtype),
np.ravel(self.data),
other.indptr.astype(idx_dtype),
other.indices.astype(idx_dtype),
np.ravel(other.data),
indptr,
indices,
data)
data = data.reshape(-1,R,C)
# TODO eliminate zeros
return self._bsr_container(
(data, indices, indptr), shape=(M, N), blocksize=(R, C)
)
######################
# Conversion methods #
######################
def tobsr(self, blocksize=None, copy=False):
"""Convert this array/matrix into Block Sparse Row Format.
With copy=False, the data/indices may be shared between this
array/matrix and the resultant bsr_array/bsr_matrix.
If blocksize=(R, C) is provided, it will be used for determining
block size of the bsr_array/bsr_matrix.
"""
if blocksize not in [None, self.blocksize]:
return self.tocsr().tobsr(blocksize=blocksize)
if copy:
return self.copy()
else:
return self
def tocsr(self, copy=False):
M, N = self.shape
R, C = self.blocksize
nnz = self.nnz
idx_dtype = self._get_index_dtype((self.indptr, self.indices),
maxval=max(nnz, N))
indptr = np.empty(M + 1, dtype=idx_dtype)
indices = np.empty(nnz, dtype=idx_dtype)
data = np.empty(nnz, dtype=upcast(self.dtype))
bsr_tocsr(M // R, # n_brow
N // C, # n_bcol
R, C,
self.indptr.astype(idx_dtype, copy=False),
self.indices.astype(idx_dtype, copy=False),
self.data,
indptr,
indices,
data)
return self._csr_container((data, indices, indptr), shape=self.shape)
tocsr.__doc__ = _spbase.tocsr.__doc__
def tocsc(self, copy=False):
return self.tocsr(copy=False).tocsc(copy=copy)
tocsc.__doc__ = _spbase.tocsc.__doc__
def tocoo(self, copy=True):
"""Convert this array/matrix to COOrdinate format.
When copy=False the data array will be shared between
this array/matrix and the resultant coo_array/coo_matrix.
"""
M,N = self.shape
R,C = self.blocksize
indptr_diff = np.diff(self.indptr)
if indptr_diff.dtype.itemsize > np.dtype(np.intp).itemsize:
# Check for potential overflow
indptr_diff_limited = indptr_diff.astype(np.intp)
if np.any(indptr_diff_limited != indptr_diff):
raise ValueError("Matrix too big to convert")
indptr_diff = indptr_diff_limited
idx_dtype = self._get_index_dtype(maxval=max(M, N))
row = (R * np.arange(M//R, dtype=idx_dtype)).repeat(indptr_diff)
row = row.repeat(R*C).reshape(-1,R,C)
row += np.tile(np.arange(R, dtype=idx_dtype).reshape(-1,1), (1,C))
row = row.reshape(-1)
col = ((C * self.indices).astype(idx_dtype, copy=False)
.repeat(R*C).reshape(-1,R,C))
col += np.tile(np.arange(C, dtype=idx_dtype), (R,1))
col = col.reshape(-1)
data = self.data.reshape(-1)
if copy:
data = data.copy()
return self._coo_container(
(data, (row, col)), shape=self.shape
)
def toarray(self, order=None, out=None):
return self.tocoo(copy=False).toarray(order=order, out=out)
toarray.__doc__ = _spbase.toarray.__doc__
def transpose(self, axes=None, copy=False):
if axes is not None and axes != (1, 0):
raise ValueError("Sparse matrices do not support "
"an 'axes' parameter because swapping "
"dimensions is the only logical permutation.")
R, C = self.blocksize
M, N = self.shape
NBLK = self.nnz//(R*C)
if self.nnz == 0:
return self._bsr_container((N, M), blocksize=(C, R),
dtype=self.dtype, copy=copy)
indptr = np.empty(N//C + 1, dtype=self.indptr.dtype)
indices = np.empty(NBLK, dtype=self.indices.dtype)
data = np.empty((NBLK, C, R), dtype=self.data.dtype)
bsr_transpose(M//R, N//C, R, C,
self.indptr, self.indices, self.data.ravel(),
indptr, indices, data.ravel())
return self._bsr_container((data, indices, indptr),
shape=(N, M), copy=copy)
transpose.__doc__ = _spbase.transpose.__doc__
##############################################################
# methods that examine or modify the internal data structure #
##############################################################
def eliminate_zeros(self):
"""Remove zero elements in-place."""
if not self.nnz:
return # nothing to do
R,C = self.blocksize
M,N = self.shape
mask = (self.data != 0).reshape(-1,R*C).sum(axis=1) # nonzero blocks
nonzero_blocks = mask.nonzero()[0]
self.data[:len(nonzero_blocks)] = self.data[nonzero_blocks]
# modifies self.indptr and self.indices *in place*
_sparsetools.csr_eliminate_zeros(M//R, N//C, self.indptr,
self.indices, mask)
self.prune()
def sum_duplicates(self):
"""Eliminate duplicate array/matrix entries by adding them together
The is an *in place* operation
"""
if self.has_canonical_format:
return
self.sort_indices()
R, C = self.blocksize
M, N = self.shape
# port of _sparsetools.csr_sum_duplicates
n_row = M // R
nnz = 0
row_end = 0
for i in range(n_row):
jj = row_end
row_end = self.indptr[i+1]
while jj < row_end:
j = self.indices[jj]
x = self.data[jj]
jj += 1
while jj < row_end and self.indices[jj] == j:
x += self.data[jj]
jj += 1
self.indices[nnz] = j
self.data[nnz] = x
nnz += 1
self.indptr[i+1] = nnz
self.prune() # nnz may have changed
self.has_canonical_format = True
def sort_indices(self):
"""Sort the indices of this array/matrix *in place*
"""
if self.has_sorted_indices:
return
R,C = self.blocksize
M,N = self.shape
bsr_sort_indices(M//R, N//C, R, C, self.indptr, self.indices, self.data.ravel())
self.has_sorted_indices = True
def prune(self):
"""Remove empty space after all non-zero elements.
"""
R,C = self.blocksize
M,N = self.shape
if len(self.indptr) != M//R + 1:
raise ValueError("index pointer has invalid length")
bnnz = self.indptr[-1]
if len(self.indices) < bnnz:
raise ValueError("indices array has too few elements")
if len(self.data) < bnnz:
raise ValueError("data array has too few elements")
self.data = self.data[:bnnz]
self.indices = self.indices[:bnnz]
# utility functions
def _binopt(self, other, op, in_shape=None, out_shape=None):
"""Apply the binary operation fn to two sparse matrices."""
# Ideally we'd take the GCDs of the blocksize dimensions
# and explode self and other to match.
other = self.__class__(other, blocksize=self.blocksize)
# e.g. bsr_plus_bsr, etc.
fn = getattr(_sparsetools, self.format + op + self.format)
R,C = self.blocksize
max_bnnz = len(self.data) + len(other.data)
idx_dtype = self._get_index_dtype((self.indptr, self.indices,
other.indptr, other.indices),
maxval=max_bnnz)
indptr = np.empty(self.indptr.shape, dtype=idx_dtype)
indices = np.empty(max_bnnz, dtype=idx_dtype)
bool_ops = ['_ne_', '_lt_', '_gt_', '_le_', '_ge_']
if op in bool_ops:
data = np.empty(R*C*max_bnnz, dtype=np.bool_)
else:
data = np.empty(R*C*max_bnnz, dtype=upcast(self.dtype,other.dtype))
fn(self.shape[0]//R, self.shape[1]//C, R, C,
self.indptr.astype(idx_dtype),
self.indices.astype(idx_dtype),
self.data,
other.indptr.astype(idx_dtype),
other.indices.astype(idx_dtype),
np.ravel(other.data),
indptr,
indices,
data)
actual_bnnz = indptr[-1]
indices = indices[:actual_bnnz]
data = data[:R*C*actual_bnnz]
if actual_bnnz < max_bnnz/2:
indices = indices.copy()
data = data.copy()
data = data.reshape(-1,R,C)
return self.__class__((data, indices, indptr), shape=self.shape)
# needed by _data_matrix
def _with_data(self,data,copy=True):
"""Returns a matrix with the same sparsity structure as self,
but with different data. By default the structure arrays
(i.e. .indptr and .indices) are copied.
"""
if copy:
return self.__class__((data,self.indices.copy(),self.indptr.copy()),
shape=self.shape,dtype=data.dtype)
else:
return self.__class__((data,self.indices,self.indptr),
shape=self.shape,dtype=data.dtype)
# # these functions are used by the parent class
# # to remove redundancy between bsc_matrix and bsr_matrix
# def _swap(self,x):
# """swap the members of x if this is a column-oriented matrix
# """
# return (x[0],x[1])
def _broadcast_to(self, shape, copy=False):
return _spbase._broadcast_to(self, shape, copy)
def isspmatrix_bsr(x):
"""Is `x` of a bsr_matrix type?
Parameters
----------
x
object to check for being a bsr matrix
Returns
-------
bool
True if `x` is a bsr matrix, False otherwise
Examples
--------
>>> from scipy.sparse import bsr_array, bsr_matrix, csr_matrix, isspmatrix_bsr
>>> isspmatrix_bsr(bsr_matrix([[5]]))
True
>>> isspmatrix_bsr(bsr_array([[5]]))
False
>>> isspmatrix_bsr(csr_matrix([[5]]))
False
"""
return isinstance(x, bsr_matrix)
# This namespace class separates array from matrix with isinstance
class bsr_array(_bsr_base, sparray):
"""
Block Sparse Row format sparse array.
This can be instantiated in several ways:
bsr_array(D, [blocksize=(R,C)])
where D is a 2-D ndarray.
bsr_array(S, [blocksize=(R,C)])
with another sparse array or matrix S (equivalent to S.tobsr())
bsr_array((M, N), [blocksize=(R,C), dtype])
to construct an empty sparse array with shape (M, N)
dtype is optional, defaulting to dtype='d'.
bsr_array((data, ij), [blocksize=(R,C), shape=(M, N)])
where ``data`` and ``ij`` satisfy ``a[ij[0, k], ij[1, k]] = data[k]``
bsr_array((data, indices, indptr), [shape=(M, N)])
is the standard BSR representation where the block column
indices for row i are stored in ``indices[indptr[i]:indptr[i+1]]``
and their corresponding block values are stored in
``data[ indptr[i]: indptr[i+1] ]``. If the shape parameter is not
supplied, the array dimensions are inferred from the index arrays.
Attributes
----------
dtype : dtype
Data type of the array
shape : 2-tuple
Shape of the array
ndim : int
Number of dimensions (this is always 2)
nnz
size
data
BSR format data array of the array
indices
BSR format index array of the array
indptr
BSR format index pointer array of the array
blocksize
Block size
has_sorted_indices : bool
Whether indices are sorted
has_canonical_format : bool
T
Notes
-----
Sparse arrays can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
**Summary of BSR format**
The Block Sparse Row (BSR) format is very similar to the Compressed
Sparse Row (CSR) format. BSR is appropriate for sparse matrices with dense
sub matrices like the last example below. Such sparse block matrices often
arise in vector-valued finite element discretizations. In such cases, BSR is
considerably more efficient than CSR and CSC for many sparse arithmetic
operations.
**Blocksize**
The blocksize (R,C) must evenly divide the shape of the sparse array (M,N).
That is, R and C must satisfy the relationship ``M % R = 0`` and
``N % C = 0``.
If no blocksize is specified, a simple heuristic is applied to determine
an appropriate blocksize.
**Canonical Format**
In canonical format, there are no duplicate blocks and indices are sorted
per row.
**Limitations**
Block Sparse Row format sparse arrays do not support slicing.
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import bsr_array
>>> bsr_array((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3 ,4, 5, 6])
>>> bsr_array((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6]).repeat(4).reshape(6, 2, 2)
>>> bsr_array((data,indices,indptr), shape=(6, 6)).toarray()
array([[1, 1, 0, 0, 2, 2],
[1, 1, 0, 0, 2, 2],
[0, 0, 0, 0, 3, 3],
[0, 0, 0, 0, 3, 3],
[4, 4, 5, 5, 6, 6],
[4, 4, 5, 5, 6, 6]])
"""
class bsr_matrix(spmatrix, _bsr_base):
"""
Block Sparse Row format sparse matrix.
This can be instantiated in several ways:
bsr_matrix(D, [blocksize=(R,C)])
where D is a 2-D ndarray.
bsr_matrix(S, [blocksize=(R,C)])
with another sparse array or matrix S (equivalent to S.tobsr())
bsr_matrix((M, N), [blocksize=(R,C), dtype])
to construct an empty sparse matrix with shape (M, N)
dtype is optional, defaulting to dtype='d'.
bsr_matrix((data, ij), [blocksize=(R,C), shape=(M, N)])
where ``data`` and ``ij`` satisfy ``a[ij[0, k], ij[1, k]] = data[k]``
bsr_matrix((data, indices, indptr), [shape=(M, N)])
is the standard BSR representation where the block column
indices for row i are stored in ``indices[indptr[i]:indptr[i+1]]``
and their corresponding block values are stored in
``data[ indptr[i]: indptr[i+1] ]``. If the shape parameter is not
supplied, the matrix dimensions are inferred from the index arrays.
Attributes
----------
dtype : dtype
Data type of the matrix
shape : 2-tuple
Shape of the matrix
ndim : int
Number of dimensions (this is always 2)
nnz
size
data
BSR format data array of the matrix
indices
BSR format index array of the matrix
indptr
BSR format index pointer array of the matrix
blocksize
Block size
has_sorted_indices : bool
Whether indices are sorted
has_canonical_format : bool
T
Notes
-----
Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
**Summary of BSR format**
The Block Sparse Row (BSR) format is very similar to the Compressed
Sparse Row (CSR) format. BSR is appropriate for sparse matrices with dense
sub matrices like the last example below. Such sparse block matrices often
arise in vector-valued finite element discretizations. In such cases, BSR is
considerably more efficient than CSR and CSC for many sparse arithmetic
operations.
**Blocksize**
The blocksize (R,C) must evenly divide the shape of the sparse matrix (M,N).
That is, R and C must satisfy the relationship ``M % R = 0`` and
``N % C = 0``.
If no blocksize is specified, a simple heuristic is applied to determine
an appropriate blocksize.
**Canonical Format**
In canonical format, there are no duplicate blocks and indices are sorted
per row.
**Limitations**
Block Sparse Row format sparse matrices do not support slicing.
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import bsr_matrix
>>> bsr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3 ,4, 5, 6])
>>> bsr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6]).repeat(4).reshape(6, 2, 2)
>>> bsr_matrix((data,indices,indptr), shape=(6, 6)).toarray()
array([[1, 1, 0, 0, 2, 2],
[1, 1, 0, 0, 2, 2],
[0, 0, 0, 0, 3, 3],
[0, 0, 0, 0, 3, 3],
[4, 4, 5, 5, 6, 6],
[4, 4, 5, 5, 6, 6]])
"""
|