File size: 58,983 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
"""Base class for sparse matrix formats using compressed storage."""
__all__ = []

from warnings import warn
import itertools
import operator

import numpy as np
from scipy._lib._util import _prune_array, copy_if_needed

from ._base import _spbase, issparse, sparray, SparseEfficiencyWarning
from ._data import _data_matrix, _minmax_mixin
from . import _sparsetools
from ._sparsetools import (get_csr_submatrix, csr_sample_offsets, csr_todense,
                           csr_sample_values, csr_row_index, csr_row_slice,
                           csr_column_index1, csr_column_index2)
from ._index import IndexMixin
from ._sputils import (upcast, upcast_char, to_native, isdense, isshape,
                       getdtype, isscalarlike, isintlike, downcast_intp_index,
                       get_sum_dtype, check_shape, get_index_dtype, broadcast_shapes,
                       is_pydata_spmatrix)


class _cs_matrix(_data_matrix, _minmax_mixin, IndexMixin):
    """
    base array/matrix class for compressed row- and column-oriented arrays/matrices
    """

    def __init__(self, arg1, shape=None, dtype=None, copy=False, *, maxprint=None):
        _data_matrix.__init__(self, arg1, maxprint=maxprint)

        if issparse(arg1):
            if arg1.format == self.format and copy:
                arg1 = arg1.copy()
            else:
                arg1 = arg1.asformat(self.format)
            self.indptr, self.indices, self.data, self._shape = (
                arg1.indptr, arg1.indices, arg1.data, arg1._shape
            )

        elif isinstance(arg1, tuple):
            if isshape(arg1, allow_nd=self._allow_nd):
                # It's a tuple of matrix dimensions (M, N)
                # create empty matrix
                self._shape = check_shape(arg1, allow_nd=self._allow_nd)
                M, N = self._swap(self._shape_as_2d)
                # Select index dtype large enough to pass array and
                # scalar parameters to sparsetools
                idx_dtype = self._get_index_dtype(maxval=max(self.shape))
                self.data = np.zeros(0, getdtype(dtype, default=float))
                self.indices = np.zeros(0, idx_dtype)
                self.indptr = np.zeros(M + 1, dtype=idx_dtype)
            else:
                if len(arg1) == 2:
                    # (data, ij) format
                    coo = self._coo_container(arg1, shape=shape, dtype=dtype)
                    arrays = coo._coo_to_compressed(self._swap)
                    self.indptr, self.indices, self.data, self._shape = arrays
                    self.sum_duplicates()
                elif len(arg1) == 3:
                    # (data, indices, indptr) format
                    (data, indices, indptr) = arg1

                    # Select index dtype large enough to pass array and
                    # scalar parameters to sparsetools
                    maxval = None
                    if shape is not None and 0 not in shape:
                        maxval = max(shape)
                    idx_dtype = self._get_index_dtype((indices, indptr),
                                                maxval=maxval,
                                                check_contents=True)

                    if not copy:
                        copy = copy_if_needed
                    self.indices = np.array(indices, copy=copy, dtype=idx_dtype)
                    self.indptr = np.array(indptr, copy=copy, dtype=idx_dtype)
                    self.data = np.array(data, copy=copy, dtype=dtype)
                else:
                    raise ValueError(f"unrecognized {self.__class__.__name__} "
                                     f"constructor input: {arg1}")

        else:
            # must be dense
            try:
                arg1 = np.asarray(arg1)
            except Exception as e:
                raise ValueError(f"unrecognized {self.__class__.__name__} "
                                 f"constructor input: {arg1}") from e
            if isinstance(self, sparray) and arg1.ndim != 2 and self.format == "csc":
                raise ValueError(f"CSC arrays don't support {arg1.ndim}D input. Use 2D")
            if arg1.ndim > 2:
                raise ValueError(f"CSR arrays don't yet support {arg1.ndim}D.")

            coo = self._coo_container(arg1, dtype=dtype)
            arrays = coo._coo_to_compressed(self._swap)
            self.indptr, self.indices, self.data, self._shape = arrays

        # Read matrix dimensions given, if any
        if shape is not None:
            self._shape = check_shape(shape, allow_nd=self._allow_nd)
        elif self.shape is None:
            # shape not already set, try to infer dimensions
            try:
                M = len(self.indptr) - 1
                N = self.indices.max() + 1
            except Exception as e:
                raise ValueError('unable to infer matrix dimensions') from e

            self._shape = check_shape(self._swap((M, N)), allow_nd=self._allow_nd)

        if dtype is not None:
            newdtype = getdtype(dtype)
            self.data = self.data.astype(newdtype, copy=False)

        self.check_format(full_check=False)

    def _getnnz(self, axis=None):
        if axis is None:
            return int(self.indptr[-1])
        elif self.ndim == 1:
            if axis in (0, -1):
                return int(self.indptr[-1])
            raise ValueError('axis out of bounds')
        else:
            if axis < 0:
                axis += 2
            axis, _ = self._swap((axis, 1 - axis))
            _, N = self._swap(self.shape)
            if axis == 0:
                return np.bincount(downcast_intp_index(self.indices), minlength=N)
            elif axis == 1:
                return np.diff(self.indptr)
            raise ValueError('axis out of bounds')

    _getnnz.__doc__ = _spbase._getnnz.__doc__

    def count_nonzero(self, axis=None):
        self.sum_duplicates()
        if axis is None:
            return np.count_nonzero(self.data)

        if self.ndim == 1:
            if axis not in (0, -1):
                raise ValueError('axis out of bounds')
            return np.count_nonzero(self.data)

        if axis < 0:
            axis += 2
        axis, _ = self._swap((axis, 1 - axis))
        if axis == 0:
            _, N = self._swap(self.shape)
            mask = self.data != 0
            idx = self.indices if mask.all() else self.indices[mask]
            return np.bincount(downcast_intp_index(idx), minlength=N)
        elif axis == 1:
            if self.data.all():
                return np.diff(self.indptr)
            pairs = itertools.pairwise(self.indptr)
            return np.array([np.count_nonzero(self.data[i:j]) for i, j in pairs])
        else:
            raise ValueError('axis out of bounds')

    count_nonzero.__doc__ = _spbase.count_nonzero.__doc__

    def check_format(self, full_check=True):
        """Check whether the array/matrix respects the CSR or CSC format.

        Parameters
        ----------
        full_check : bool, optional
            If `True`, run rigorous check, scanning arrays for valid values.
            Note that activating those check might copy arrays for casting,
            modifying indices and index pointers' inplace.
            If `False`, run basic checks on attributes. O(1) operations.
            Default is `True`.
        """
        # index arrays should have integer data types
        if self.indptr.dtype.kind != 'i':
            warn(f"indptr array has non-integer dtype ({self.indptr.dtype.name})",
                 stacklevel=3)
        if self.indices.dtype.kind != 'i':
            warn(f"indices array has non-integer dtype ({self.indices.dtype.name})",
                 stacklevel=3)

        # check array shapes
        for x in [self.data.ndim, self.indices.ndim, self.indptr.ndim]:
            if x != 1:
                raise ValueError('data, indices, and indptr should be 1-D')

        # check index pointer. Use _swap to determine proper bounds
        M, N = self._swap(self._shape_as_2d)

        if (len(self.indptr) != M + 1):
            raise ValueError(f"index pointer size {len(self.indptr)} should be {M + 1}")
        if (self.indptr[0] != 0):
            raise ValueError("index pointer should start with 0")

        # check index and data arrays
        if (len(self.indices) != len(self.data)):
            raise ValueError("indices and data should have the same size")
        if (self.indptr[-1] > len(self.indices)):
            raise ValueError("Last value of index pointer should be less than "
                             "the size of index and data arrays")

        self.prune()

        if full_check:
            # check format validity (more expensive)
            if self.nnz > 0:
                if self.indices.max() >= N:
                    raise ValueError(f"indices must be < {N}")
                if self.indices.min() < 0:
                    raise ValueError("indices must be >= 0")
                if np.diff(self.indptr).min() < 0:
                    raise ValueError("indptr must be a non-decreasing sequence")

            idx_dtype = self._get_index_dtype((self.indptr, self.indices))
            self.indptr = np.asarray(self.indptr, dtype=idx_dtype)
            self.indices = np.asarray(self.indices, dtype=idx_dtype)
            self.data = to_native(self.data)

        # if not self.has_sorted_indices():
        #    warn('Indices were not in sorted order.  Sorting indices.')
        #    self.sort_indices()
        #    assert(self.has_sorted_indices())
        # TODO check for duplicates?

    #######################
    # Boolean comparisons #
    #######################

    def _scalar_binopt(self, other, op):
        """Scalar version of self._binopt, for cases in which no new nonzeros
        are added. Produces a new sparse array in canonical form.
        """
        self.sum_duplicates()
        res = self._with_data(op(self.data, other), copy=True)
        res.eliminate_zeros()
        return res

    def __eq__(self, other):
        # Scalar other.
        if isscalarlike(other):
            if np.isnan(other):
                return self.__class__(self.shape, dtype=np.bool_)

            if other == 0:
                warn("Comparing a sparse matrix with 0 using == is inefficient"
                     ", try using != instead.", SparseEfficiencyWarning,
                     stacklevel=3)
                all_true = self.__class__(np.ones(self.shape, dtype=np.bool_))
                inv = self._scalar_binopt(other, operator.ne)
                return all_true - inv
            else:
                return self._scalar_binopt(other, operator.eq)
        # Dense other.
        elif isdense(other):
            return self.todense() == other
        # Pydata sparse other.
        elif is_pydata_spmatrix(other):
            return NotImplemented
        # Sparse other.
        elif issparse(other):
            warn("Comparing sparse matrices using == is inefficient, try using"
                 " != instead.", SparseEfficiencyWarning, stacklevel=3)
            # TODO sparse broadcasting
            if self.shape != other.shape:
                return False
            elif self.format != other.format:
                other = other.asformat(self.format)
            res = self._binopt(other, '_ne_')
            all_true = self.__class__(np.ones(self.shape, dtype=np.bool_))
            return all_true - res
        else:
            return NotImplemented

    def __ne__(self, other):
        # Scalar other.
        if isscalarlike(other):
            if np.isnan(other):
                warn("Comparing a sparse matrix with nan using != is"
                     " inefficient", SparseEfficiencyWarning, stacklevel=3)
                all_true = self.__class__(np.ones(self.shape, dtype=np.bool_))
                return all_true
            elif other != 0:
                warn("Comparing a sparse matrix with a nonzero scalar using !="
                     " is inefficient, try using == instead.",
                     SparseEfficiencyWarning, stacklevel=3)
                all_true = self.__class__(np.ones(self.shape), dtype=np.bool_)
                inv = self._scalar_binopt(other, operator.eq)
                return all_true - inv
            else:
                return self._scalar_binopt(other, operator.ne)
        # Dense other.
        elif isdense(other):
            return self.todense() != other
        # Pydata sparse other.
        elif is_pydata_spmatrix(other):
            return NotImplemented
        # Sparse other.
        elif issparse(other):
            # TODO sparse broadcasting
            if self.shape != other.shape:
                return True
            elif self.format != other.format:
                other = other.asformat(self.format)
            return self._binopt(other, '_ne_')
        else:
            return NotImplemented

    def _inequality(self, other, op, op_name, bad_scalar_msg):
        # Scalar other.
        if isscalarlike(other):
            if 0 == other and op_name in ('_le_', '_ge_'):
                raise NotImplementedError(" >= and <= don't work with 0.")
            elif op(0, other):
                warn(bad_scalar_msg, SparseEfficiencyWarning, stacklevel=3)
                other_arr = np.empty(self.shape, dtype=np.result_type(other))
                other_arr.fill(other)
                other_arr = self.__class__(other_arr)
                return self._binopt(other_arr, op_name)
            else:
                return self._scalar_binopt(other, op)
        # Dense other.
        elif isdense(other):
            return op(self.todense(), other)
        # Sparse other.
        elif issparse(other):
            # TODO sparse broadcasting
            if self.shape != other.shape:
                raise ValueError("inconsistent shapes")
            elif self.format != other.format:
                other = other.asformat(self.format)
            if op_name not in ('_ge_', '_le_'):
                return self._binopt(other, op_name)

            warn("Comparing sparse matrices using >= and <= is inefficient, "
                 "using <, >, or !=, instead.",
                 SparseEfficiencyWarning, stacklevel=3)
            all_true = self.__class__(np.ones(self.shape, dtype=np.bool_))
            res = self._binopt(other, '_gt_' if op_name == '_le_' else '_lt_')
            return all_true - res
        else:
            return NotImplemented

    def __lt__(self, other):
        return self._inequality(other, operator.lt, '_lt_',
                                "Comparing a sparse matrix with a scalar "
                                "greater than zero using < is inefficient, "
                                "try using >= instead.")

    def __gt__(self, other):
        return self._inequality(other, operator.gt, '_gt_',
                                "Comparing a sparse matrix with a scalar "
                                "less than zero using > is inefficient, "
                                "try using <= instead.")

    def __le__(self, other):
        return self._inequality(other, operator.le, '_le_',
                                "Comparing a sparse matrix with a scalar "
                                "greater than zero using <= is inefficient, "
                                "try using > instead.")

    def __ge__(self, other):
        return self._inequality(other, operator.ge, '_ge_',
                                "Comparing a sparse matrix with a scalar "
                                "less than zero using >= is inefficient, "
                                "try using < instead.")

    #################################
    # Arithmetic operator overrides #
    #################################

    def _add_dense(self, other):
        if other.shape != self.shape:
            raise ValueError(f'Incompatible shapes ({self.shape} and {other.shape})')
        dtype = upcast_char(self.dtype.char, other.dtype.char)
        order = self._swap('CF')[0]
        result = np.array(other, dtype=dtype, order=order, copy=True)
        y = result if result.flags.c_contiguous else result.T
        M, N = self._swap(self._shape_as_2d)
        csr_todense(M, N, self.indptr, self.indices, self.data, y)
        return self._container(result, copy=False)

    def _add_sparse(self, other):
        return self._binopt(other, '_plus_')

    def _sub_sparse(self, other):
        return self._binopt(other, '_minus_')

    def multiply(self, other):
        """Point-wise multiplication by array/matrix, vector, or scalar."""
        # Scalar multiplication.
        if isscalarlike(other):
            return self._mul_scalar(other)
        # Sparse matrix or vector.
        if issparse(other):
            if self.shape == other.shape:
                other = self.__class__(other)
                return self._binopt(other, '_elmul_')
            # Single element.
            if other.shape == (1, 1):
                result = self._mul_scalar(other.toarray()[0, 0])
                if self.ndim == 1:
                    return result.reshape((1, self.shape[0]))
                return result
            if other.shape == (1,):
                return self._mul_scalar(other.toarray()[0])
            if self.shape in ((1,), (1, 1)):
                return other._mul_scalar(self.data.sum())

            # broadcast. treat 1d like a row
            sM, sN = self._shape_as_2d
            oM, oN = other._shape_as_2d
            # A row times a column.
            if sM == 1 and oN == 1:
                return other._matmul_sparse(self.reshape(sM, sN).tocsc())
            if sN == 1 and oM == 1:
                return self._matmul_sparse(other.reshape(oM, oN).tocsc())

            is_array = isinstance(self, sparray)
            # Other is a row.
            if oM == 1 and sN == oN:
                new_other = _make_diagonal_csr(other.toarray().ravel(), is_array)
                result = self._matmul_sparse(new_other)
                return result if self.ndim == 2 else result.reshape((1, oN))
            # self is a row.
            if sM == 1 and sN == oN:
                copy = _make_diagonal_csr(self.toarray().ravel(), is_array)
                return other._matmul_sparse(copy)

            # Other is a column.
            if oN == 1 and sM == oM:
                new_other = _make_diagonal_csr(other.toarray().ravel(), is_array)
                return new_other._matmul_sparse(self)
            # self is a column.
            if sN == 1 and sM == oM:
                new_self = _make_diagonal_csr(self.toarray().ravel(), is_array)
                return new_self._matmul_sparse(other)
            raise ValueError("inconsistent shapes")

        # Assume other is a dense matrix/array, which produces a single-item
        # object array if other isn't convertible to ndarray.
        other = np.asanyarray(other)

        if other.ndim > 2:
            return np.multiply(self.toarray(), other)
        # Single element / wrapped object.
        if other.size == 1:
            if other.dtype == np.object_:
                # 'other' not convertible to ndarray.
                return NotImplemented
            bshape = broadcast_shapes(self.shape, other.shape)
            return self._mul_scalar(other.flat[0]).reshape(bshape)
        # Fast case for trivial sparse matrix.
        if self.shape in ((1,), (1, 1)):
            bshape = broadcast_shapes(self.shape, other.shape)
            return np.multiply(self.data.sum(), other).reshape(bshape)

        ret = self.tocoo()
        # Matching shapes.
        if self.shape == other.shape:
            data = np.multiply(ret.data, other[ret.coords])
            ret.data = data.view(np.ndarray).ravel()
            return ret

        # convert other to 2d
        other2d = np.atleast_2d(other)
        # Sparse row vector times...
        if self.shape[0] == 1 or self.ndim == 1:
            if other2d.shape[1] == 1:  # Dense column vector.
                data = np.multiply(ret.data, other2d)
            elif other2d.shape[1] == self.shape[-1]:  # Dense 2d matrix.
                data = np.multiply(ret.data, other2d[:, ret.col])
            else:
                raise ValueError("inconsistent shapes")
            idx_dtype = self._get_index_dtype(ret.col,
                                              maxval=ret.nnz * other2d.shape[0])
            row = np.repeat(np.arange(other2d.shape[0], dtype=idx_dtype), ret.nnz)
            col = np.tile(ret.col.astype(idx_dtype, copy=False), other2d.shape[0])
            return self._coo_container(
                (data.view(np.ndarray).ravel(), (row, col)),
                shape=(other2d.shape[0], self.shape[-1]),
                copy=False
            )
        # Sparse column vector times...
        if self.shape[1] == 1:
            if other2d.shape[0] == 1:  # Dense row vector.
                data = np.multiply(ret.data[:, None], other2d)
            elif other2d.shape[0] == self.shape[0]:  # Dense 2d array.
                data = np.multiply(ret.data[:, None], other2d[ret.row])
            else:
                raise ValueError("inconsistent shapes")
            idx_dtype = self._get_index_dtype(ret.row,
                                              maxval=ret.nnz * other2d.shape[1])
            row = np.repeat(ret.row.astype(idx_dtype, copy=False), other2d.shape[1])
            col = np.tile(np.arange(other2d.shape[1], dtype=idx_dtype), ret.nnz)
            return self._coo_container(
                (data.view(np.ndarray).ravel(), (row, col)),
                shape=(self.shape[0], other2d.shape[1]),
                copy=False
            )
        # Sparse matrix times dense row vector.
        if other2d.shape[0] == 1 and self.shape[1] == other2d.shape[1]:
            data = np.multiply(ret.data, other2d[:, ret.col].ravel())
        # Sparse matrix times dense column vector.
        elif other2d.shape[1] == 1 and self.shape[0] == other2d.shape[0]:
            data = np.multiply(ret.data, other2d[ret.row].ravel())
        else:
            raise ValueError("inconsistent shapes")
        ret.data = data.view(np.ndarray).ravel()
        return ret

    ###########################
    # Multiplication handlers #
    ###########################

    def _matmul_vector(self, other):
        M, N = self._shape_as_2d

        # output array
        result = np.zeros(M, dtype=upcast_char(self.dtype.char, other.dtype.char))

        # csr_matvec or csc_matvec
        fn = getattr(_sparsetools, self.format + '_matvec')
        fn(M, N, self.indptr, self.indices, self.data, other, result)

        return result[0] if self.ndim == 1 else result

    def _matmul_multivector(self, other):
        M, N = self._shape_as_2d
        n_vecs = other.shape[-1]  # number of column vectors

        result = np.zeros((M, n_vecs),
                          dtype=upcast_char(self.dtype.char, other.dtype.char))

        # csr_matvecs or csc_matvecs
        fn = getattr(_sparsetools, self.format + '_matvecs')
        fn(M, N, n_vecs, self.indptr, self.indices, self.data,
           other.ravel(), result.ravel())

        if self.ndim == 1:
            return result.reshape((n_vecs,))
        return result

    def _matmul_sparse(self, other):
        M, K1 = self._shape_as_2d
        # if other is 1d, treat as a **column**
        o_ndim = other.ndim
        if o_ndim == 1:
            # convert 1d array to a 2d column when on the right of @
            other = other.reshape((1, other.shape[0])).T  # Note: converts to CSC
        K2, N = other._shape if other.ndim == 2 else (other.shape[0], 1)

        # find new_shape: (M, N), (M,), (N,) or ()
        new_shape = ()
        if self.ndim == 2:
            new_shape += (M,)
        if o_ndim == 2:
            new_shape += (N,)
        faux_shape = (M if self.ndim == 2 else 1, N if o_ndim == 2 else 1)

        major_dim = self._swap((M, N))[0]
        other = self.__class__(other)  # convert to this format

        idx_dtype = self._get_index_dtype((self.indptr, self.indices,
                                     other.indptr, other.indices))

        fn = getattr(_sparsetools, self.format + '_matmat_maxnnz')
        nnz = fn(M, N,
                 np.asarray(self.indptr, dtype=idx_dtype),
                 np.asarray(self.indices, dtype=idx_dtype),
                 np.asarray(other.indptr, dtype=idx_dtype),
                 np.asarray(other.indices, dtype=idx_dtype))
        if nnz == 0:
            if new_shape == ():
                return np.array(0, dtype=upcast(self.dtype, other.dtype))
            return self.__class__(new_shape, dtype=upcast(self.dtype, other.dtype))

        idx_dtype = self._get_index_dtype((self.indptr, self.indices,
                                     other.indptr, other.indices),
                                    maxval=nnz)

        indptr = np.empty(major_dim + 1, dtype=idx_dtype)
        indices = np.empty(nnz, dtype=idx_dtype)
        data = np.empty(nnz, dtype=upcast(self.dtype, other.dtype))

        fn = getattr(_sparsetools, self.format + '_matmat')
        fn(M, N, np.asarray(self.indptr, dtype=idx_dtype),
           np.asarray(self.indices, dtype=idx_dtype),
           self.data,
           np.asarray(other.indptr, dtype=idx_dtype),
           np.asarray(other.indices, dtype=idx_dtype),
           other.data,
           indptr, indices, data)

        if new_shape == ():
            return np.array(data[0])
        res = self.__class__((data, indices, indptr), shape=faux_shape)
        if faux_shape != new_shape:
            if res.format != 'csr':
                res = res.tocsr()
            res = res.reshape(new_shape)
        return res

    def diagonal(self, k=0):
        rows, cols = self.shape
        if k <= -rows or k >= cols:
            return np.empty(0, dtype=self.data.dtype)
        fn = getattr(_sparsetools, self.format + "_diagonal")
        y = np.empty(min(rows + min(k, 0), cols - max(k, 0)),
                     dtype=upcast(self.dtype))
        fn(k, self.shape[0], self.shape[1], self.indptr, self.indices,
           self.data, y)
        return y

    diagonal.__doc__ = _spbase.diagonal.__doc__

    #####################
    # Other binary ops  #
    #####################

    def _maximum_minimum(self, other, npop, op_name, dense_check):
        if isscalarlike(other):
            if dense_check(other):
                warn("Taking maximum (minimum) with > 0 (< 0) number results"
                     " to a dense matrix.", SparseEfficiencyWarning,
                     stacklevel=3)
                other_arr = np.empty(self.shape, dtype=np.asarray(other).dtype)
                other_arr.fill(other)
                other_arr = self.__class__(other_arr)
                return self._binopt(other_arr, op_name)
            else:
                self.sum_duplicates()
                new_data = npop(self.data, np.asarray(other))
                mat = self.__class__((new_data, self.indices, self.indptr),
                                     dtype=new_data.dtype, shape=self.shape)
                return mat
        elif isdense(other):
            return npop(self.todense(), other)
        elif issparse(other):
            return self._binopt(other, op_name)
        else:
            raise ValueError("Operands not compatible.")

    def maximum(self, other):
        return self._maximum_minimum(other, np.maximum,
                                     '_maximum_', lambda x: np.asarray(x) > 0)

    maximum.__doc__ = _spbase.maximum.__doc__

    def minimum(self, other):
        return self._maximum_minimum(other, np.minimum,
                                     '_minimum_', lambda x: np.asarray(x) < 0)

    minimum.__doc__ = _spbase.minimum.__doc__

    #####################
    # Reduce operations #
    #####################

    def sum(self, axis=None, dtype=None, out=None):
        """Sum the array/matrix over the given axis.  If the axis is None, sum
        over both rows and columns, returning a scalar.
        """
        # The _spbase base class already does axis=0 and axis=1 efficiently
        # so we only do the case axis=None here
        if (self.ndim == 2 and not hasattr(self, 'blocksize') and
                axis in self._swap(((1, -1), (0, -2)))[0]):
            # faster than multiplication for large minor axis in CSC/CSR
            res_dtype = get_sum_dtype(self.dtype)
            ret = np.zeros(len(self.indptr) - 1, dtype=res_dtype)

            major_index, value = self._minor_reduce(np.add)
            ret[major_index] = value
            ret = self._ascontainer(ret)
            if axis % 2 == 1:
                ret = ret.T

            if out is not None and out.shape != ret.shape:
                raise ValueError('dimensions do not match')

            return ret.sum(axis=(), dtype=dtype, out=out)
        else:
            # _spbase handles the situations when axis is in {None, -2, -1, 0, 1}
            return _spbase.sum(self, axis=axis, dtype=dtype, out=out)

    sum.__doc__ = _spbase.sum.__doc__

    def _minor_reduce(self, ufunc, data=None):
        """Reduce nonzeros with a ufunc over the minor axis when non-empty

        Can be applied to a function of self.data by supplying data parameter.

        Warning: this does not call sum_duplicates()

        Returns
        -------
        major_index : array of ints
            Major indices where nonzero

        value : array of self.dtype
            Reduce result for nonzeros in each major_index
        """
        if data is None:
            data = self.data
        major_index = np.flatnonzero(np.diff(self.indptr))
        value = ufunc.reduceat(data,
                               downcast_intp_index(self.indptr[major_index]))
        return major_index, value

    #######################
    # Getting and Setting #
    #######################

    def _get_intXint(self, row, col):
        M, N = self._swap(self.shape)
        major, minor = self._swap((row, col))
        indptr, indices, data = get_csr_submatrix(
            M, N, self.indptr, self.indices, self.data,
            major, major + 1, minor, minor + 1)
        return data.sum(dtype=self.dtype)

    def _get_sliceXslice(self, row, col):
        major, minor = self._swap((row, col))
        if major.step in (1, None) and minor.step in (1, None):
            return self._get_submatrix(major, minor, copy=True)
        return self._major_slice(major)._minor_slice(minor)

    def _get_arrayXarray(self, row, col):
        # inner indexing
        idx_dtype = self.indices.dtype
        M, N = self._swap(self.shape)
        major, minor = self._swap((row, col))
        major = np.asarray(major, dtype=idx_dtype)
        minor = np.asarray(minor, dtype=idx_dtype)

        val = np.empty(major.size, dtype=self.dtype)
        csr_sample_values(M, N, self.indptr, self.indices, self.data,
                          major.size, major.ravel(), minor.ravel(), val)
        if major.ndim == 1:
            return self._ascontainer(val)
        return self.__class__(val.reshape(major.shape))

    def _get_columnXarray(self, row, col):
        # outer indexing
        major, minor = self._swap((row, col))
        return self._major_index_fancy(major)._minor_index_fancy(minor)

    def _major_index_fancy(self, idx):
        """Index along the major axis where idx is an array of ints.
        """
        idx_dtype = self._get_index_dtype((self.indptr, self.indices))
        indices = np.asarray(idx, dtype=idx_dtype).ravel()

        N = self._swap(self._shape_as_2d)[1]
        M = len(indices)
        new_shape = self._swap((M, N)) if self.ndim == 2 else (M,)
        if M == 0:
            return self.__class__(new_shape, dtype=self.dtype)

        row_nnz = (self.indptr[indices + 1] - self.indptr[indices]).astype(idx_dtype)
        res_indptr = np.zeros(M + 1, dtype=idx_dtype)
        np.cumsum(row_nnz, out=res_indptr[1:])

        nnz = res_indptr[-1]
        res_indices = np.empty(nnz, dtype=idx_dtype)
        res_data = np.empty(nnz, dtype=self.dtype)
        csr_row_index(
            M,
            indices,
            self.indptr.astype(idx_dtype, copy=False),
            self.indices.astype(idx_dtype, copy=False),
            self.data,
            res_indices,
            res_data
        )

        return self.__class__((res_data, res_indices, res_indptr),
                              shape=new_shape, copy=False)

    def _major_slice(self, idx, copy=False):
        """Index along the major axis where idx is a slice object.
        """
        if idx == slice(None):
            return self.copy() if copy else self

        M, N = self._swap(self._shape_as_2d)
        start, stop, step = idx.indices(M)
        M = len(range(start, stop, step))
        new_shape = self._swap((M, N)) if self.ndim == 2 else (M,)
        if M == 0:
            return self.__class__(new_shape, dtype=self.dtype)

        # Work out what slices are needed for `row_nnz`
        # start,stop can be -1, only if step is negative
        start0, stop0 = start, stop
        if stop == -1 and start >= 0:
            stop0 = None
        start1, stop1 = start + 1, stop + 1

        row_nnz = self.indptr[start1:stop1:step] - \
            self.indptr[start0:stop0:step]
        idx_dtype = self.indices.dtype
        res_indptr = np.zeros(M+1, dtype=idx_dtype)
        np.cumsum(row_nnz, out=res_indptr[1:])

        if step == 1:
            all_idx = slice(self.indptr[start], self.indptr[stop])
            res_indices = np.array(self.indices[all_idx], copy=copy)
            res_data = np.array(self.data[all_idx], copy=copy)
        else:
            nnz = res_indptr[-1]
            res_indices = np.empty(nnz, dtype=idx_dtype)
            res_data = np.empty(nnz, dtype=self.dtype)
            csr_row_slice(start, stop, step, self.indptr, self.indices,
                          self.data, res_indices, res_data)

        return self.__class__((res_data, res_indices, res_indptr),
                              shape=new_shape, copy=False)

    def _minor_index_fancy(self, idx):
        """Index along the minor axis where idx is an array of ints.
        """
        idx_dtype = self._get_index_dtype((self.indices, self.indptr))
        indices = self.indices.astype(idx_dtype, copy=False)
        indptr = self.indptr.astype(idx_dtype, copy=False)

        idx = np.asarray(idx, dtype=idx_dtype).ravel()

        M, N = self._swap(self._shape_as_2d)
        k = len(idx)
        new_shape = self._swap((M, k)) if self.ndim == 2 else (k,)
        if k == 0:
            return self.__class__(new_shape, dtype=self.dtype)

        # pass 1: count idx entries and compute new indptr
        col_offsets = np.zeros(N, dtype=idx_dtype)
        res_indptr = np.empty_like(self.indptr, dtype=idx_dtype)
        csr_column_index1(
            k,
            idx,
            M,
            N,
            indptr,
            indices,
            col_offsets,
            res_indptr,
        )

        # pass 2: copy indices/data for selected idxs
        col_order = np.argsort(idx).astype(idx_dtype, copy=False)
        nnz = res_indptr[-1]
        res_indices = np.empty(nnz, dtype=idx_dtype)
        res_data = np.empty(nnz, dtype=self.dtype)
        csr_column_index2(col_order, col_offsets, len(self.indices),
                          indices, self.data, res_indices, res_data)
        return self.__class__((res_data, res_indices, res_indptr),
                              shape=new_shape, copy=False)

    def _minor_slice(self, idx, copy=False):
        """Index along the minor axis where idx is a slice object.
        """
        if idx == slice(None):
            return self.copy() if copy else self

        M, N = self._swap(self._shape_as_2d)
        start, stop, step = idx.indices(N)
        N = len(range(start, stop, step))
        if N == 0:
            return self.__class__(self._swap((M, N)), dtype=self.dtype)
        if step == 1:
            return self._get_submatrix(minor=idx, copy=copy)
        # TODO: don't fall back to fancy indexing here
        return self._minor_index_fancy(np.arange(start, stop, step))

    def _get_submatrix(self, major=None, minor=None, copy=False):
        """Return a submatrix of this matrix.

        major, minor: None, int, or slice with step 1
        """
        M, N = self._swap(self._shape_as_2d)
        i0, i1 = _process_slice(major, M)
        j0, j1 = _process_slice(minor, N)

        if i0 == 0 and j0 == 0 and i1 == M and j1 == N:
            return self.copy() if copy else self

        indptr, indices, data = get_csr_submatrix(
            M, N, self.indptr, self.indices, self.data, i0, i1, j0, j1)

        shape = self._swap((i1 - i0, j1 - j0))
        if self.ndim == 1:
            shape = (shape[1],)
        return self.__class__((data, indices, indptr), shape=shape,
                              dtype=self.dtype, copy=False)

    def _set_intXint(self, row, col, x):
        i, j = self._swap((row, col))
        self._set_many(i, j, x)

    def _set_arrayXarray(self, row, col, x):
        i, j = self._swap((row, col))
        self._set_many(i, j, x)

    def _set_arrayXarray_sparse(self, row, col, x):
        # clear entries that will be overwritten
        self._zero_many(*self._swap((row, col)))

        M, N = row.shape  # matches col.shape
        broadcast_row = M != 1 and x.shape[0] == 1
        broadcast_col = N != 1 and x.shape[1] == 1
        r, c = x.row, x.col

        x = np.asarray(x.data, dtype=self.dtype)
        if x.size == 0:
            return

        if broadcast_row:
            r = np.repeat(np.arange(M), len(r))
            c = np.tile(c, M)
            x = np.tile(x, M)
        if broadcast_col:
            r = np.repeat(r, N)
            c = np.tile(np.arange(N), len(c))
            x = np.repeat(x, N)
        # only assign entries in the new sparsity structure
        i, j = self._swap((row[r, c], col[r, c]))
        self._set_many(i, j, x)

    def _setdiag(self, values, k):
        if 0 in self.shape:
            return
        if self.ndim == 1:
            raise NotImplementedError('diagonals cant be set in 1d arrays')

        M, N = self.shape
        broadcast = (values.ndim == 0)

        if k < 0:
            if broadcast:
                max_index = min(M + k, N)
            else:
                max_index = min(M + k, N, len(values))
            i = np.arange(-k, max_index - k, dtype=self.indices.dtype)
            j = np.arange(max_index, dtype=self.indices.dtype)

        else:
            if broadcast:
                max_index = min(M, N - k)
            else:
                max_index = min(M, N - k, len(values))
            i = np.arange(max_index, dtype=self.indices.dtype)
            j = np.arange(k, k + max_index, dtype=self.indices.dtype)

        if not broadcast:
            values = values[:len(i)]

        x = np.atleast_1d(np.asarray(values, dtype=self.dtype)).ravel()
        if x.squeeze().shape != i.squeeze().shape:
            x = np.broadcast_to(x, i.shape)
        if x.size == 0:
            return

        M, N = self._swap((M, N))
        i, j = self._swap((i, j))
        n_samples = x.size
        offsets = np.empty(n_samples, dtype=self.indices.dtype)
        ret = csr_sample_offsets(M, N, self.indptr, self.indices, n_samples,
                                 i, j, offsets)
        if ret == 1:
            # rinse and repeat
            self.sum_duplicates()
            csr_sample_offsets(M, N, self.indptr, self.indices, n_samples,
                               i, j, offsets)
        if -1 not in offsets:
            # only affects existing non-zero cells
            self.data[offsets] = x
            return

        mask = (offsets >= 0)
        # Boundary between csc and convert to coo
        # The value 0.001 is justified in gh-19962#issuecomment-1920499678
        if self.nnz - mask.sum() < self.nnz * 0.001:
            # replace existing entries
            self.data[offsets[mask]] = x[mask]
            # create new entries
            mask = ~mask
            i = i[mask]
            j = j[mask]
            self._insert_many(i, j, x[mask])
        else:
            # convert to coo for _set_diag
            coo = self.tocoo()
            coo._setdiag(values, k)
            arrays = coo._coo_to_compressed(self._swap)
            self.indptr, self.indices, self.data, _ = arrays

    def _prepare_indices(self, i, j):
        M, N = self._swap(self._shape_as_2d)

        def check_bounds(indices, bound):
            idx = indices.max()
            if idx >= bound:
                raise IndexError(f'index ({idx}) out of range (>= {bound})')
            idx = indices.min()
            if idx < -bound:
                raise IndexError(f'index ({idx}) out of range (< -{bound})')

        i = np.atleast_1d(np.asarray(i, dtype=self.indices.dtype)).ravel()
        j = np.atleast_1d(np.asarray(j, dtype=self.indices.dtype)).ravel()
        check_bounds(i, M)
        check_bounds(j, N)
        return i, j, M, N

    def _set_many(self, i, j, x):
        """Sets value at each (i, j) to x

        Here (i,j) index major and minor respectively, and must not contain
        duplicate entries.
        """
        i, j, M, N = self._prepare_indices(i, j)
        x = np.atleast_1d(np.asarray(x, dtype=self.dtype)).ravel()

        n_samples = x.size
        offsets = np.empty(n_samples, dtype=self.indices.dtype)
        ret = csr_sample_offsets(M, N, self.indptr, self.indices, n_samples,
                                 i, j, offsets)
        if ret == 1:
            # rinse and repeat
            self.sum_duplicates()
            csr_sample_offsets(M, N, self.indptr, self.indices, n_samples,
                               i, j, offsets)

        if -1 not in offsets:
            # only affects existing non-zero cells
            self.data[offsets] = x
            return

        else:
            warn(f"Changing the sparsity structure of a {self.__class__.__name__} is"
                 " expensive. lil and dok are more efficient.",
                 SparseEfficiencyWarning, stacklevel=3)
            # replace where possible
            mask = offsets > -1
            self.data[offsets[mask]] = x[mask]
            # only insertions remain
            mask = ~mask
            i = i[mask]
            i[i < 0] += M
            j = j[mask]
            j[j < 0] += N
            self._insert_many(i, j, x[mask])

    def _zero_many(self, i, j):
        """Sets value at each (i, j) to zero, preserving sparsity structure.

        Here (i,j) index major and minor respectively.
        """
        i, j, M, N = self._prepare_indices(i, j)

        n_samples = len(i)
        offsets = np.empty(n_samples, dtype=self.indices.dtype)
        ret = csr_sample_offsets(M, N, self.indptr, self.indices, n_samples,
                                 i, j, offsets)
        if ret == 1:
            # rinse and repeat
            self.sum_duplicates()
            csr_sample_offsets(M, N, self.indptr, self.indices, n_samples,
                               i, j, offsets)

        # only assign zeros to the existing sparsity structure
        self.data[offsets[offsets > -1]] = 0

    def _insert_many(self, i, j, x):
        """Inserts new nonzero at each (i, j) with value x

        Here (i,j) index major and minor respectively.
        i, j and x must be non-empty, 1d arrays.
        Inserts each major group (e.g. all entries per row) at a time.
        Maintains has_sorted_indices property.
        Modifies i, j, x in place.
        """
        order = np.argsort(i, kind='mergesort')  # stable for duplicates
        i = i.take(order, mode='clip')
        j = j.take(order, mode='clip')
        x = x.take(order, mode='clip')

        do_sort = self.has_sorted_indices

        # Update index data type
        idx_dtype = self._get_index_dtype((self.indices, self.indptr),
                                    maxval=(self.indptr[-1] + x.size))
        self.indptr = np.asarray(self.indptr, dtype=idx_dtype)
        self.indices = np.asarray(self.indices, dtype=idx_dtype)
        i = np.asarray(i, dtype=idx_dtype)
        j = np.asarray(j, dtype=idx_dtype)

        # Collate old and new in chunks by major index
        indices_parts = []
        data_parts = []
        ui, ui_indptr = np.unique(i, return_index=True)
        ui_indptr = np.append(ui_indptr, len(j))
        new_nnzs = np.diff(ui_indptr)
        prev = 0
        for c, (ii, js, je) in enumerate(zip(ui, ui_indptr, ui_indptr[1:])):
            # old entries
            start = self.indptr[prev]
            stop = self.indptr[ii]
            indices_parts.append(self.indices[start:stop])
            data_parts.append(self.data[start:stop])

            # handle duplicate j: keep last setting
            uj, uj_indptr = np.unique(j[js:je][::-1], return_index=True)
            if len(uj) == je - js:
                indices_parts.append(j[js:je])
                data_parts.append(x[js:je])
            else:
                indices_parts.append(j[js:je][::-1][uj_indptr])
                data_parts.append(x[js:je][::-1][uj_indptr])
                new_nnzs[c] = len(uj)

            prev = ii

        # remaining old entries
        start = self.indptr[ii]
        indices_parts.append(self.indices[start:])
        data_parts.append(self.data[start:])

        # update attributes
        self.indices = np.concatenate(indices_parts)
        self.data = np.concatenate(data_parts)
        nnzs = np.empty(self.indptr.shape, dtype=idx_dtype)
        nnzs[0] = idx_dtype(0)
        indptr_diff = np.diff(self.indptr)
        indptr_diff[ui] += new_nnzs
        nnzs[1:] = indptr_diff
        self.indptr = np.cumsum(nnzs, out=nnzs)

        if do_sort:
            # TODO: only sort where necessary
            self.has_sorted_indices = False
            self.sort_indices()

        self.check_format(full_check=False)

    ######################
    # Conversion methods #
    ######################

    def tocoo(self, copy=True):
        if self.ndim == 1:
            csr = self.tocsr()
            return self._coo_container((csr.data, (csr.indices,)), csr.shape, copy=copy)
        major_dim, minor_dim = self._swap(self.shape)
        minor_indices = self.indices
        major_indices = np.empty(len(minor_indices), dtype=self.indices.dtype)
        _sparsetools.expandptr(major_dim, self.indptr, major_indices)
        coords = self._swap((major_indices, minor_indices))

        return self._coo_container(
            (self.data, coords), self.shape, copy=copy, dtype=self.dtype
        )

    tocoo.__doc__ = _spbase.tocoo.__doc__

    def toarray(self, order=None, out=None):
        if out is None and order is None:
            order = self._swap('cf')[0]
        out = self._process_toarray_args(order, out)
        if not (out.flags.c_contiguous or out.flags.f_contiguous):
            raise ValueError('Output array must be C or F contiguous')
        # align ideal order with output array order
        if out.flags.c_contiguous:
            x = self.tocsr()
            y = out
        else:
            x = self.tocsc()
            y = out.T
        M, N = x._swap(x._shape_as_2d)
        csr_todense(M, N, x.indptr, x.indices, x.data, y)
        return out

    toarray.__doc__ = _spbase.toarray.__doc__

    ##############################################################
    # methods that examine or modify the internal data structure #
    ##############################################################

    def eliminate_zeros(self):
        """Remove zero entries from the array/matrix

        This is an *in place* operation.
        """
        M, N = self._swap(self._shape_as_2d)
        _sparsetools.csr_eliminate_zeros(M, N, self.indptr, self.indices, self.data)
        self.prune()  # nnz may have changed

    @property
    def has_canonical_format(self) -> bool:
        """Whether the array/matrix has sorted indices and no duplicates

        Returns
            - True: if the above applies
            - False: otherwise

        has_canonical_format implies has_sorted_indices, so if the latter flag
        is False, so will the former be; if the former is found True, the
        latter flag is also set.
        """
        # first check to see if result was cached
        if not getattr(self, '_has_sorted_indices', True):
            # not sorted => not canonical
            self._has_canonical_format = False
        elif not hasattr(self, '_has_canonical_format'):
            self.has_canonical_format = bool(
                _sparsetools.csr_has_canonical_format(
                    len(self.indptr) - 1, self.indptr, self.indices)
                )
        return self._has_canonical_format

    @has_canonical_format.setter
    def has_canonical_format(self, val: bool):
        self._has_canonical_format = bool(val)
        if val:
            self.has_sorted_indices = True

    def sum_duplicates(self):
        """Eliminate duplicate entries by adding them together

        This is an *in place* operation.
        """
        if self.has_canonical_format:
            return
        self.sort_indices()

        M, N = self._swap(self._shape_as_2d)
        _sparsetools.csr_sum_duplicates(M, N, self.indptr, self.indices, self.data)

        self.prune()  # nnz may have changed
        self.has_canonical_format = True

    @property
    def has_sorted_indices(self) -> bool:
        """Whether the indices are sorted

        Returns
            - True: if the indices of the array/matrix are in sorted order
            - False: otherwise
        """
        # first check to see if result was cached
        if not hasattr(self, '_has_sorted_indices'):
            self._has_sorted_indices = bool(
                _sparsetools.csr_has_sorted_indices(
                    len(self.indptr) - 1, self.indptr, self.indices)
                )
        return self._has_sorted_indices

    @has_sorted_indices.setter
    def has_sorted_indices(self, val: bool):
        self._has_sorted_indices = bool(val)


    def sorted_indices(self):
        """Return a copy of this array/matrix with sorted indices
        """
        A = self.copy()
        A.sort_indices()
        return A

        # an alternative that has linear complexity is the following
        # although the previous option is typically faster
        # return self.toother().toother()

    def sort_indices(self):
        """Sort the indices of this array/matrix *in place*
        """

        if not self.has_sorted_indices:
            _sparsetools.csr_sort_indices(len(self.indptr) - 1, self.indptr,
                                          self.indices, self.data)
            self.has_sorted_indices = True

    def prune(self):
        """Remove empty space after all non-zero elements.
        """
        major_dim = self._swap(self._shape_as_2d)[0]

        if len(self.indptr) != major_dim + 1:
            raise ValueError('index pointer has invalid length')
        if len(self.indices) < self.nnz:
            raise ValueError('indices array has fewer than nnz elements')
        if len(self.data) < self.nnz:
            raise ValueError('data array has fewer than nnz elements')

        self.indices = _prune_array(self.indices[:self.nnz])
        self.data = _prune_array(self.data[:self.nnz])

    def resize(self, *shape):
        shape = check_shape(shape, allow_nd=self._allow_nd)

        if hasattr(self, 'blocksize'):
            bm, bn = self.blocksize
            new_M, rm = divmod(shape[0], bm)
            new_N, rn = divmod(shape[1], bn)
            if rm or rn:
                raise ValueError(f"shape must be divisible into {self.blocksize}"
                                 f" blocks. Got {shape}")
            M, N = self.shape[0] // bm, self.shape[1] // bn
        else:
            new_M, new_N = self._swap(shape if len(shape)>1 else (1, shape[0]))
            M, N = self._swap(self._shape_as_2d)

        if new_M < M:
            self.indices = self.indices[:self.indptr[new_M]]
            self.data = self.data[:self.indptr[new_M]]
            self.indptr = self.indptr[:new_M + 1]
        elif new_M > M:
            self.indptr = np.resize(self.indptr, new_M + 1)
            self.indptr[M + 1:].fill(self.indptr[M])

        if new_N < N:
            mask = self.indices < new_N
            if not np.all(mask):
                self.indices = self.indices[mask]
                self.data = self.data[mask]
                major_index, val = self._minor_reduce(np.add, mask)
                self.indptr.fill(0)
                self.indptr[1:][major_index] = val
                np.cumsum(self.indptr, out=self.indptr)

        self._shape = shape

    resize.__doc__ = _spbase.resize.__doc__

    ###################
    # utility methods #
    ###################

    # needed by _data_matrix
    def _with_data(self, data, copy=True):
        """Returns a matrix with the same sparsity structure as self,
        but with different data.  By default the structure arrays
        (i.e. .indptr and .indices) are copied.
        """
        if copy:
            return self.__class__((data, self.indices.copy(),
                                   self.indptr.copy()),
                                  shape=self.shape,
                                  dtype=data.dtype)
        else:
            return self.__class__((data, self.indices, self.indptr),
                                  shape=self.shape, dtype=data.dtype)

    def _binopt(self, other, op):
        """apply the binary operation fn to two sparse matrices."""
        other = self.__class__(other)

        # e.g. csr_plus_csr, csr_minus_csr, etc.
        fn = getattr(_sparsetools, self.format + op + self.format)

        maxnnz = self.nnz + other.nnz
        idx_dtype = self._get_index_dtype((self.indptr, self.indices,
                                     other.indptr, other.indices),
                                    maxval=maxnnz)
        indptr = np.empty(self.indptr.shape, dtype=idx_dtype)
        indices = np.empty(maxnnz, dtype=idx_dtype)

        bool_ops = ['_ne_', '_lt_', '_gt_', '_le_', '_ge_']
        if op in bool_ops:
            data = np.empty(maxnnz, dtype=np.bool_)
        else:
            data = np.empty(maxnnz, dtype=upcast(self.dtype, other.dtype))

        M, N = self._shape_as_2d
        fn(M, N,
           np.asarray(self.indptr, dtype=idx_dtype),
           np.asarray(self.indices, dtype=idx_dtype),
           self.data,
           np.asarray(other.indptr, dtype=idx_dtype),
           np.asarray(other.indices, dtype=idx_dtype),
           other.data,
           indptr, indices, data)

        A = self.__class__((data, indices, indptr), shape=self.shape)
        A.prune()

        return A

    def _divide_sparse(self, other):
        """
        Divide this matrix by a second sparse matrix.
        """
        if other.shape != self.shape:
            raise ValueError('inconsistent shapes')

        r = self._binopt(other, '_eldiv_')

        if np.issubdtype(r.dtype, np.inexact):
            # Eldiv leaves entries outside the combined sparsity
            # pattern empty, so they must be filled manually.
            # Everything outside of other's sparsity is NaN, and everything
            # inside it is either zero or defined by eldiv.
            out = np.empty(self.shape, dtype=self.dtype)
            out.fill(np.nan)
            coords = other.nonzero()
            if self.ndim == 1:
                coords = (coords[-1],)
            out[coords] = 0
            r = r.tocoo()
            out[r.coords] = r.data
            return self._container(out)
        else:
            # integers types go with nan <-> 0
            out = r
            return out

    def _broadcast_to(self, shape, copy=False):
        if self.shape == shape:
            return self.copy() if copy else self

        shape = check_shape(shape, allow_nd=(self._allow_nd))

        if broadcast_shapes(self.shape, shape) != shape:
            raise ValueError("cannot be broadcast")

        if len(self.shape) == 1 and len(shape) == 1:
            self.sum_duplicates()
            if self.nnz == 0: # array has no non zero elements
                return self.__class__(shape, dtype=self.dtype, copy=False)

            N = shape[0]
            data = np.full(N, self.data[0])
            indices = np.arange(0,N)
            indptr = np.array([0, N])
            return self._csr_container((data, indices, indptr), shape=shape, copy=False)

        # treat 1D as a 2D row
        old_shape = self._shape_as_2d

        if len(shape) != 2:
            ndim = len(shape)
            raise ValueError(f'CSR/CSC broadcast_to cannot have shape >2D. Got {ndim}D')

        if self.nnz == 0: # array has no non zero elements
            return self.__class__(shape, dtype=self.dtype, copy=False)

        self.sum_duplicates()
        M, N = self._swap(shape)
        oM, oN = self._swap(old_shape)
        if all(s == 1 for s in old_shape):
            # Broadcast a single element to the entire shape
            data = np.full(M * N, self.data[0])
            indices = np.tile(np.arange(N), M)
            indptr = np.arange(0, len(data) + 1, N)
        elif oM == 1 and oN == N:
            # Broadcast row-wise (columns for CSC)
            data = np.tile(self.data, M)
            indices = np.tile(self.indices, M)
            indptr = np.arange(0, len(data) + 1, len(self.data))
        elif oN == 1 and oM == M:
            # Broadcast column-wise (rows for CSC)
            data = np.repeat(self.data, N)
            indices = np.tile(np.arange(N), len(self.data))
            indptr = self.indptr * N
        return self.__class__((data, indices, indptr), shape=shape, copy=False)


def _make_diagonal_csr(data, is_array=False):
    """build diagonal csc_array/csr_array => self._csr_container

    Parameter `data` should be a raveled numpy array holding the
    values on the diagonal of the resulting sparse matrix.
    """
    from ._csr import csr_array, csr_matrix
    csr_array = csr_array if is_array else csr_matrix

    N = len(data)
    idx_dtype = get_index_dtype(maxval=N)
    indptr = np.arange(N + 1, dtype=idx_dtype)
    indices = indptr[:-1]

    return csr_array((data, indices, indptr), shape=(N, N))


def _process_slice(sl, num):
    if sl is None:
        i0, i1 = 0, num
    elif isinstance(sl, slice):
        i0, i1, stride = sl.indices(num)
        if stride != 1:
            raise ValueError('slicing with step != 1 not supported')
        i0 = min(i0, i1)  # give an empty slice when i0 > i1
    elif isintlike(sl):
        if sl < 0:
            sl += num
        i0, i1 = sl, sl + 1
        if i0 < 0 or i1 > num:
            raise IndexError(f'index out of bounds: 0 <= {i0} < {i1} <= {num}')
    else:
        raise TypeError('expected slice or scalar')

    return i0, i1