File size: 23,011 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
"""Dictionary Of Keys based matrix"""

__docformat__ = "restructuredtext en"

__all__ = ['dok_array', 'dok_matrix', 'isspmatrix_dok']

import itertools
from warnings import warn
import numpy as np

from ._matrix import spmatrix
from ._base import _spbase, sparray, issparse
from ._index import IndexMixin
from ._sputils import (isdense, getdtype, isshape, isintlike, isscalarlike,
                       upcast, upcast_scalar, check_shape)


class _dok_base(_spbase, IndexMixin, dict):
    _format = 'dok'
    _allow_nd = (1, 2)

    def __init__(self, arg1, shape=None, dtype=None, copy=False, *, maxprint=None):
        _spbase.__init__(self, arg1, maxprint=maxprint)

        if isinstance(arg1, tuple) and isshape(arg1, allow_nd=self._allow_nd):
            self._shape = check_shape(arg1, allow_nd=self._allow_nd)
            self._dict = {}
            self.dtype = getdtype(dtype, default=float)
        elif issparse(arg1):  # Sparse ctor
            if arg1.format == self.format:
                arg1 = arg1.copy() if copy else arg1
            else:
                arg1 = arg1.todok()

            if dtype is not None:
                arg1 = arg1.astype(dtype, copy=False)

            self._dict = arg1._dict
            self._shape = check_shape(arg1.shape, allow_nd=self._allow_nd)
            self.dtype = getdtype(arg1.dtype)
        else:  # Dense ctor
            try:
                arg1 = np.asarray(arg1)
            except Exception as e:
                raise TypeError('Invalid input format.') from e

            if arg1.ndim > 2:
                raise ValueError(f"DOK arrays don't yet support {arg1.ndim}D input.")

            if arg1.ndim == 1:
                if dtype is not None:
                    arg1 = arg1.astype(dtype)
                self._dict = {i: v for i, v in enumerate(arg1) if v != 0}
                self.dtype = getdtype(arg1.dtype)
            else:
                d = self._coo_container(arg1, shape=shape, dtype=dtype).todok()
                self._dict = d._dict
                self.dtype = getdtype(d.dtype)
            self._shape = check_shape(arg1.shape, allow_nd=self._allow_nd)

    def update(self, val):
        # Prevent direct usage of update
        raise NotImplementedError("Direct update to DOK sparse format is not allowed.")

    def _getnnz(self, axis=None):
        if axis is not None:
            raise NotImplementedError(
                "_getnnz over an axis is not implemented for DOK format."
            )
        return len(self._dict)

    def count_nonzero(self, axis=None):
        if axis is not None:
            raise NotImplementedError(
                "count_nonzero over an axis is not implemented for DOK format."
            )
        return sum(x != 0 for x in self.values())

    _getnnz.__doc__ = _spbase._getnnz.__doc__
    count_nonzero.__doc__ = _spbase.count_nonzero.__doc__

    def __len__(self):
        return len(self._dict)

    def __contains__(self, key):
        return key in self._dict

    def setdefault(self, key, default=None, /):
        return self._dict.setdefault(key, default)

    def __delitem__(self, key, /):
        del self._dict[key]

    def clear(self):
        return self._dict.clear()

    def pop(self, /, *args):
        return self._dict.pop(*args)

    def __reversed__(self):
        raise TypeError("reversed is not defined for dok_array type")

    def __or__(self, other):
        type_names = f"{type(self).__name__} and {type(other).__name__}"
        raise TypeError(f"unsupported operand type for |: {type_names}")

    def __ror__(self, other):
        type_names = f"{type(self).__name__} and {type(other).__name__}"
        raise TypeError(f"unsupported operand type for |: {type_names}")

    def __ior__(self, other):
        type_names = f"{type(self).__name__} and {type(other).__name__}"
        raise TypeError(f"unsupported operand type for |: {type_names}")

    def popitem(self):
        return self._dict.popitem()

    def items(self):
        return self._dict.items()

    def keys(self):
        return self._dict.keys()

    def values(self):
        return self._dict.values()

    def get(self, key, default=0.0):
        """This provides dict.get method functionality with type checking"""
        if key in self._dict:
            return self._dict[key]
        if isintlike(key) and self.ndim == 1:
            key = (key,)
        if self.ndim != len(key):
            raise IndexError(f'Index {key} length needs to match self.shape')
        try:
            for i in key:
                assert isintlike(i)
        except (AssertionError, TypeError, ValueError) as e:
            raise IndexError('Index must be or consist of integers.') from e
        key = tuple(i + M if i < 0 else i for i, M in zip(key, self.shape))
        if any(i < 0 or i >= M for i, M in zip(key, self.shape)):
            raise IndexError('Index out of bounds.')
        if self.ndim == 1:
            key = key[0]
        return self._dict.get(key, default)

    # 1D get methods
    def _get_int(self, idx):
        return self._dict.get(idx, self.dtype.type(0))

    def _get_slice(self, idx):
        i_range = range(*idx.indices(self.shape[0]))
        return self._get_array(list(i_range))

    def _get_array(self, idx):
        idx = np.asarray(idx)
        if idx.ndim == 0:
            val = self._dict.get(int(idx), self.dtype.type(0))
            return np.array(val, stype=self.dtype)
        new_dok = self._dok_container(idx.shape, dtype=self.dtype)
        dok_vals = [self._dict.get(i, 0) for i in idx.ravel()]
        if dok_vals:
            if len(idx.shape) == 1:
                for i, v in enumerate(dok_vals):
                    if v:
                        new_dok._dict[i] = v
            else:
                new_idx = np.unravel_index(np.arange(len(dok_vals)), idx.shape)
                new_idx = new_idx[0] if len(new_idx) == 1 else zip(*new_idx)
                for i, v in zip(new_idx, dok_vals, strict=True):
                    if v:
                        new_dok._dict[i] = v
        return new_dok

    # 2D get methods
    def _get_intXint(self, row, col):
        return self._dict.get((row, col), self.dtype.type(0))

    def _get_intXslice(self, row, col):
        return self._get_sliceXslice(slice(row, row + 1), col)

    def _get_sliceXint(self, row, col):
        return self._get_sliceXslice(row, slice(col, col + 1))

    def _get_sliceXslice(self, row, col):
        row_start, row_stop, row_step = row.indices(self.shape[0])
        col_start, col_stop, col_step = col.indices(self.shape[1])
        row_range = range(row_start, row_stop, row_step)
        col_range = range(col_start, col_stop, col_step)
        shape = (len(row_range), len(col_range))
        # Switch paths only when advantageous
        # (count the iterations in the loops, adjust for complexity)
        if len(self) >= 2 * shape[0] * shape[1]:
            # O(nr*nc) path: loop over <row x col>
            return self._get_columnXarray(row_range, col_range)
        # O(nnz) path: loop over entries of self
        newdok = self._dok_container(shape, dtype=self.dtype)
        for key in self.keys():
            i, ri = divmod(int(key[0]) - row_start, row_step)
            if ri != 0 or i < 0 or i >= shape[0]:
                continue
            j, rj = divmod(int(key[1]) - col_start, col_step)
            if rj != 0 or j < 0 or j >= shape[1]:
                continue
            newdok._dict[i, j] = self._dict[key]
        return newdok

    def _get_intXarray(self, row, col):
        return self._get_columnXarray([row], col.ravel())

    def _get_arrayXint(self, row, col):
        res = self._get_columnXarray(row.ravel(), [col])
        if row.ndim > 1:
            return res.reshape(row.shape)
        return res

    def _get_sliceXarray(self, row, col):
        row = list(range(*row.indices(self.shape[0])))
        return self._get_columnXarray(row, col)

    def _get_arrayXslice(self, row, col):
        col = list(range(*col.indices(self.shape[1])))
        return self._get_columnXarray(row, col)

    def _get_columnXarray(self, row, col):
        # outer indexing
        newdok = self._dok_container((len(row), len(col)), dtype=self.dtype)

        for i, r in enumerate(row):
            for j, c in enumerate(col):
                v = self._dict.get((r, c), 0)
                if v:
                    newdok._dict[i, j] = v
        return newdok

    def _get_arrayXarray(self, row, col):
        # inner indexing
        i, j = map(np.atleast_2d, np.broadcast_arrays(row, col))
        newdok = self._dok_container(i.shape, dtype=self.dtype)

        for key in itertools.product(range(i.shape[0]), range(i.shape[1])):
            v = self._dict.get((i[key], j[key]), 0)
            if v:
                newdok._dict[key] = v
        return newdok

    # 1D set methods
    def _set_int(self, idx, x):
        if x:
            self._dict[idx] = x
        elif idx in self._dict:
            del self._dict[idx]

    def _set_array(self, idx, x):
        idx_set = idx.ravel()
        x_set = x.ravel()
        if len(idx_set) != len(x_set):
            if len(x_set) == 1:
                x_set = np.full(len(idx_set), x_set[0], dtype=self.dtype)
            else:
              raise ValueError("Need len(index)==len(data) or len(data)==1")
        for i, v in zip(idx_set, x_set):
            if v:
                self._dict[i] = v
            elif i in self._dict:
                del self._dict[i]

    # 2D set methods
    def _set_intXint(self, row, col, x):
        key = (row, col)
        if x:
            self._dict[key] = x
        elif key in self._dict:
            del self._dict[key]

    def _set_arrayXarray(self, row, col, x):
        row = list(map(int, row.ravel()))
        col = list(map(int, col.ravel()))
        x = x.ravel()
        self._dict.update(zip(zip(row, col), x))

        for i in np.nonzero(x == 0)[0]:
            key = (row[i], col[i])
            if self._dict[key] == 0:
                # may have been superseded by later update
                del self._dict[key]

    def __add__(self, other):
        if isscalarlike(other):
            res_dtype = upcast_scalar(self.dtype, other)
            new = self._dok_container(self.shape, dtype=res_dtype)
            # Add this scalar to each element.
            for key in itertools.product(*[range(d) for d in self.shape]):
                aij = self._dict.get(key, 0) + other
                if aij:
                    new[key] = aij
        elif issparse(other):
            if other.shape != self.shape:
                raise ValueError("Matrix dimensions are not equal.")
            res_dtype = upcast(self.dtype, other.dtype)
            new = self._dok_container(self.shape, dtype=res_dtype)
            new._dict = self._dict.copy()
            if other.format == "dok":
                o_items = other.items()
            else:
                other = other.tocoo()
                if self.ndim == 1:
                    o_items = zip(other.coords[0], other.data)
                else:
                    o_items = zip(zip(*other.coords), other.data)
            with np.errstate(over='ignore'):
                new._dict.update((k, new[k] + v) for k, v in o_items)
        elif isdense(other):
            new = self.todense() + other
        else:
            return NotImplemented
        return new

    def __radd__(self, other):
        return self + other  # addition is commutative

    def __neg__(self):
        if self.dtype.kind == 'b':
            raise NotImplementedError(
                'Negating a sparse boolean matrix is not supported.'
            )
        new = self._dok_container(self.shape, dtype=self.dtype)
        new._dict.update((k, -v) for k, v in self.items())
        return new

    def _mul_scalar(self, other):
        res_dtype = upcast_scalar(self.dtype, other)
        # Multiply this scalar by every element.
        new = self._dok_container(self.shape, dtype=res_dtype)
        new._dict.update(((k, v * other) for k, v in self.items()))
        return new

    def _matmul_vector(self, other):
        res_dtype = upcast(self.dtype, other.dtype)

        # vector @ vector
        if self.ndim == 1:
            if issparse(other):
                if other.format == "dok":
                    keys = self.keys() & other.keys()
                else:
                    keys = self.keys() & other.tocoo().coords[0]
                return res_dtype(sum(self._dict[k] * other._dict[k] for k in keys))
            elif isdense(other):
                return res_dtype(sum(other[k] * v for k, v in self.items()))
            else:
                return NotImplemented

        # matrix @ vector
        result = np.zeros(self.shape[0], dtype=res_dtype)
        for (i, j), v in self.items():
            result[i] += v * other[j]
        return result

    def _matmul_multivector(self, other):
        result_dtype = upcast(self.dtype, other.dtype)
        # vector @ multivector
        if self.ndim == 1:
            # works for other 1d or 2d
            return sum(v * other[j] for j, v in self._dict.items())

        # matrix @ multivector
        M = self.shape[0]
        new_shape = (M,) if other.ndim == 1 else (M, other.shape[1])
        result = np.zeros(new_shape, dtype=result_dtype)
        for (i, j), v in self.items():
            result[i] += v * other[j]
        return result

    def __imul__(self, other):
        if isscalarlike(other):
            self._dict.update((k, v * other) for k, v in self.items())
            return self
        return NotImplemented

    def __truediv__(self, other):
        if isscalarlike(other):
            res_dtype = upcast_scalar(self.dtype, other)
            new = self._dok_container(self.shape, dtype=res_dtype)
            new._dict.update(((k, v / other) for k, v in self.items()))
            return new
        return self.tocsr() / other

    def __itruediv__(self, other):
        if isscalarlike(other):
            self._dict.update((k, v / other) for k, v in self.items())
            return self
        return NotImplemented

    def __reduce__(self):
        # this approach is necessary because __setstate__ is called after
        # __setitem__ upon unpickling and since __init__ is not called there
        # is no shape attribute hence it is not possible to unpickle it.
        return dict.__reduce__(self)

    def diagonal(self, k=0):
        if self.ndim == 2:
            return super().diagonal(k)
        raise ValueError("diagonal requires two dimensions")

    def transpose(self, axes=None, copy=False):
        if self.ndim == 1:
            return self.copy()

        if axes is not None and axes != (1, 0):
            raise ValueError(
                "Sparse arrays/matrices do not support "
                "an 'axes' parameter because swapping "
                "dimensions is the only logical permutation."
            )

        M, N = self.shape
        new = self._dok_container((N, M), dtype=self.dtype, copy=copy)
        new._dict.update((((right, left), val) for (left, right), val in self.items()))
        return new

    transpose.__doc__ = _spbase.transpose.__doc__

    def conjtransp(self):
        """DEPRECATED: Return the conjugate transpose.

        .. deprecated:: 1.14.0

            `conjtransp` is deprecated and will be removed in v1.16.0.
            Use ``.T.conj()`` instead.
        """
        msg = ("`conjtransp` is deprecated and will be removed in v1.16.0. "
                   "Use `.T.conj()` instead.")
        warn(msg, DeprecationWarning, stacklevel=2)

        if self.ndim == 1:
            new = self.tocoo()
            new.data = new.data.conjugate()
            return new

        M, N = self.shape
        new = self._dok_container((N, M), dtype=self.dtype)
        new._dict = {(right, left): np.conj(val) for (left, right), val in self.items()}
        return new

    def copy(self):
        new = self._dok_container(self.shape, dtype=self.dtype)
        new._dict.update(self._dict)
        return new

    copy.__doc__ = _spbase.copy.__doc__

    @classmethod
    def fromkeys(cls, iterable, value=1, /):
        tmp = dict.fromkeys(iterable, value)
        if isinstance(next(iter(tmp)), tuple):
            shape = tuple(max(idx) + 1 for idx in zip(*tmp))
        else:
            shape = (max(tmp) + 1,)
        result = cls(shape, dtype=type(value))
        result._dict = tmp
        return result

    def tocoo(self, copy=False):
        nnz = self.nnz
        if nnz == 0:
            return self._coo_container(self.shape, dtype=self.dtype)

        idx_dtype = self._get_index_dtype(maxval=max(self.shape))
        data = np.fromiter(self.values(), dtype=self.dtype, count=nnz)
        # handle 1d keys specially b/c not a tuple
        inds = zip(*self.keys()) if self.ndim > 1 else (self.keys(),)
        coords = tuple(np.fromiter(ix, dtype=idx_dtype, count=nnz) for ix in inds)
        A = self._coo_container((data, coords), shape=self.shape, dtype=self.dtype)
        A.has_canonical_format = True
        return A

    tocoo.__doc__ = _spbase.tocoo.__doc__

    def todok(self, copy=False):
        if copy:
            return self.copy()
        return self

    todok.__doc__ = _spbase.todok.__doc__

    def tocsc(self, copy=False):
        if self.ndim == 1:
            raise NotImplementedError("tocsr() not valid for 1d sparse array")
        return self.tocoo(copy=False).tocsc(copy=copy)

    tocsc.__doc__ = _spbase.tocsc.__doc__

    def resize(self, *shape):
        shape = check_shape(shape, allow_nd=self._allow_nd)
        if len(shape) != len(self.shape):
            # TODO implement resize across dimensions
            raise NotImplementedError

        if self.ndim == 1:
            newN = shape[-1]
            for i in list(self._dict):
                if i >= newN:
                    del self._dict[i]
            self._shape = shape
            return

        newM, newN = shape
        M, N = self.shape
        if newM < M or newN < N:
            # Remove all elements outside new dimensions
            for i, j in list(self.keys()):
                if i >= newM or j >= newN:
                    del self._dict[i, j]
        self._shape = shape

    resize.__doc__ = _spbase.resize.__doc__

    # Added for 1d to avoid `tocsr` from _base.py
    def astype(self, dtype, casting='unsafe', copy=True):
        dtype = np.dtype(dtype)
        if self.dtype != dtype:
            result = self._dok_container(self.shape, dtype=dtype)
            data = np.array(list(self._dict.values()), dtype=dtype)
            result._dict = dict(zip(self._dict, data))
            return result
        elif copy:
            return self.copy()
        return self


def isspmatrix_dok(x):
    """Is `x` of dok_array type?

    Parameters
    ----------
    x
        object to check for being a dok matrix

    Returns
    -------
    bool
        True if `x` is a dok matrix, False otherwise

    Examples
    --------
    >>> from scipy.sparse import dok_array, dok_matrix, coo_matrix, isspmatrix_dok
    >>> isspmatrix_dok(dok_matrix([[5]]))
    True
    >>> isspmatrix_dok(dok_array([[5]]))
    False
    >>> isspmatrix_dok(coo_matrix([[5]]))
    False
    """
    return isinstance(x, dok_matrix)


# This namespace class separates array from matrix with isinstance
class dok_array(_dok_base, sparray):
    """
    Dictionary Of Keys based sparse array.

    This is an efficient structure for constructing sparse
    arrays incrementally.

    This can be instantiated in several ways:
        dok_array(D)
            where D is a 2-D ndarray

        dok_array(S)
            with another sparse array or matrix S (equivalent to S.todok())

        dok_array((M,N), [dtype])
            create the array with initial shape (M,N)
            dtype is optional, defaulting to dtype='d'

    Attributes
    ----------
    dtype : dtype
        Data type of the array
    shape : 2-tuple
        Shape of the array
    ndim : int
        Number of dimensions (this is always 2)
    nnz
        Number of nonzero elements
    size
    T

    Notes
    -----

    Sparse arrays can be used in arithmetic operations: they support
    addition, subtraction, multiplication, division, and matrix power.

    - Allows for efficient O(1) access of individual elements.
    - Duplicates are not allowed.
    - Can be efficiently converted to a coo_array once constructed.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.sparse import dok_array
    >>> S = dok_array((5, 5), dtype=np.float32)
    >>> for i in range(5):
    ...     for j in range(5):
    ...         S[i, j] = i + j    # Update element

    """


class dok_matrix(spmatrix, _dok_base):
    """
    Dictionary Of Keys based sparse matrix.

    This is an efficient structure for constructing sparse
    matrices incrementally.

    This can be instantiated in several ways:
        dok_matrix(D)
            where D is a 2-D ndarray

        dok_matrix(S)
            with another sparse array or matrix S (equivalent to S.todok())

        dok_matrix((M,N), [dtype])
            create the matrix with initial shape (M,N)
            dtype is optional, defaulting to dtype='d'

    Attributes
    ----------
    dtype : dtype
        Data type of the matrix
    shape : 2-tuple
        Shape of the matrix
    ndim : int
        Number of dimensions (this is always 2)
    nnz
        Number of nonzero elements
    size
    T

    Notes
    -----

    Sparse matrices can be used in arithmetic operations: they support
    addition, subtraction, multiplication, division, and matrix power.

    - Allows for efficient O(1) access of individual elements.
    - Duplicates are not allowed.
    - Can be efficiently converted to a coo_matrix once constructed.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.sparse import dok_matrix
    >>> S = dok_matrix((5, 5), dtype=np.float32)
    >>> for i in range(5):
    ...     for j in range(5):
    ...         S[i, j] = i + j    # Update element

    """

    def set_shape(self, shape):
        new_matrix = self.reshape(shape, copy=False).asformat(self.format)
        self.__dict__ = new_matrix.__dict__

    def get_shape(self):
        """Get shape of a sparse matrix."""
        return self._shape

    shape = property(fget=get_shape, fset=set_shape)

    def __reversed__(self):
        return self._dict.__reversed__()

    def __or__(self, other):
        if isinstance(other, _dok_base):
            return self._dict | other._dict
        return self._dict | other

    def __ror__(self, other):
        if isinstance(other, _dok_base):
            return self._dict | other._dict
        return self._dict | other

    def __ior__(self, other):
        if isinstance(other, _dok_base):
            self._dict |= other._dict
        else:
            self._dict |= other
        return self