File size: 5,960 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import numpy as np
import scipy as sp

__all__ = ['save_npz', 'load_npz']


# Make loading safe vs. malicious input
PICKLE_KWARGS = dict(allow_pickle=False)


def save_npz(file, matrix, compressed=True):
    """ Save a sparse matrix or array to a file using ``.npz`` format.

    Parameters
    ----------
    file : str or file-like object
        Either the file name (string) or an open file (file-like object)
        where the data will be saved. If file is a string, the ``.npz``
        extension will be appended to the file name if it is not already
        there.
    matrix: spmatrix or sparray
        The sparse matrix or array to save.
        Supported formats: ``csc``, ``csr``, ``bsr``, ``dia`` or ``coo``.
    compressed : bool, optional
        Allow compressing the file. Default: True

    See Also
    --------
    scipy.sparse.load_npz: Load a sparse matrix from a file using ``.npz`` format.
    numpy.savez: Save several arrays into a ``.npz`` archive.
    numpy.savez_compressed : Save several arrays into a compressed ``.npz`` archive.

    Examples
    --------
    Store sparse matrix to disk, and load it again:

    >>> import numpy as np
    >>> import scipy as sp
    >>> sparse_matrix = sp.sparse.csc_matrix([[0, 0, 3], [4, 0, 0]])
    >>> sparse_matrix
    <Compressed Sparse Column sparse matrix of dtype 'int64'
        with 2 stored elements and shape (2, 3)>
    >>> sparse_matrix.toarray()
    array([[0, 0, 3],
           [4, 0, 0]], dtype=int64)

    >>> sp.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix)
    >>> sparse_matrix = sp.sparse.load_npz('/tmp/sparse_matrix.npz')

    >>> sparse_matrix
    <Compressed Sparse Column sparse matrix of dtype 'int64'
        with 2 stored elements and shape (2, 3)>
    >>> sparse_matrix.toarray()
    array([[0, 0, 3],
           [4, 0, 0]], dtype=int64)
    """
    arrays_dict = {}
    if matrix.format in ('csc', 'csr', 'bsr'):
        arrays_dict.update(indices=matrix.indices, indptr=matrix.indptr)
    elif matrix.format == 'dia':
        arrays_dict.update(offsets=matrix.offsets)
    elif matrix.format == 'coo':
        arrays_dict.update(row=matrix.row, col=matrix.col)
    else:
        msg = f'Save is not implemented for sparse matrix of format {matrix.format}.'
        raise NotImplementedError(msg)
    arrays_dict.update(
        format=matrix.format.encode('ascii'),
        shape=matrix.shape,
        data=matrix.data
    )
    if isinstance(matrix, sp.sparse.sparray):
        arrays_dict.update(_is_array=True)
    if compressed:
        np.savez_compressed(file, **arrays_dict)
    else:
        np.savez(file, **arrays_dict)


def load_npz(file):
    """ Load a sparse array/matrix from a file using ``.npz`` format.

    Parameters
    ----------
    file : str or file-like object
        Either the file name (string) or an open file (file-like object)
        where the data will be loaded.

    Returns
    -------
    result : csc_array, csr_array, bsr_array, dia_array or coo_array
        A sparse array/matrix containing the loaded data.

    Raises
    ------
    OSError
        If the input file does not exist or cannot be read.

    See Also
    --------
    scipy.sparse.save_npz: Save a sparse array/matrix to a file using ``.npz`` format.
    numpy.load: Load several arrays from a ``.npz`` archive.

    Examples
    --------
    Store sparse array/matrix to disk, and load it again:

    >>> import numpy as np
    >>> import scipy as sp
    >>> sparse_array = sp.sparse.csc_array([[0, 0, 3], [4, 0, 0]])
    >>> sparse_array
    <Compressed Sparse Column sparse array of dtype 'int64'
        with 2 stored elements and shape (2, 3)>
    >>> sparse_array.toarray()
    array([[0, 0, 3],
           [4, 0, 0]], dtype=int64)

    >>> sp.sparse.save_npz('/tmp/sparse_array.npz', sparse_array)
    >>> sparse_array = sp.sparse.load_npz('/tmp/sparse_array.npz')

    >>> sparse_array
    <Compressed Sparse Column sparse array of dtype 'int64'
        with 2 stored elements and shape (2, 3)>
    >>> sparse_array.toarray()
    array([[0, 0, 3],
           [4, 0, 0]], dtype=int64)

    In this example we force the result to be csr_array from csr_matrix
    >>> sparse_matrix = sp.sparse.csc_matrix([[0, 0, 3], [4, 0, 0]])
    >>> sp.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix)
    >>> tmp = sp.sparse.load_npz('/tmp/sparse_matrix.npz')
    >>> sparse_array = sp.sparse.csr_array(tmp)
    """
    with np.load(file, **PICKLE_KWARGS) as loaded:
        sparse_format = loaded.get('format')
        if sparse_format is None:
            raise ValueError(f'The file {file} does not contain '
                             f'a sparse array or matrix.')
        sparse_format = sparse_format.item()

        if not isinstance(sparse_format, str):
            # Play safe with Python 2 vs 3 backward compatibility;
            # files saved with SciPy < 1.0.0 may contain unicode or bytes.
            sparse_format = sparse_format.decode('ascii')

        if loaded.get('_is_array'):
            sparse_type = sparse_format + '_array'
        else:
            sparse_type = sparse_format + '_matrix'

        try:
            cls = getattr(sp.sparse, f'{sparse_type}')
        except AttributeError as e:
            raise ValueError(f'Unknown format "{sparse_type}"') from e

        if sparse_format in ('csc', 'csr', 'bsr'):
            return cls((loaded['data'], loaded['indices'], loaded['indptr']),
                       shape=loaded['shape'])
        elif sparse_format == 'dia':
            return cls((loaded['data'], loaded['offsets']),
                       shape=loaded['shape'])
        elif sparse_format == 'coo':
            return cls((loaded['data'], (loaded['row'], loaded['col'])),
                       shape=loaded['shape'])
        else:
            raise NotImplementedError(f'Load is not implemented for '
                                      f'sparse matrix of format {sparse_format}.')